CO2-Tolerant Oxygen Permeation Membranes Containing Transition Metals as Sintering Aids with High Oxygen Permeability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Powders and Membranes
2.2. Characterization of Membranes
2.3. Oxygen Permeability of Membranes
3. Results and Discussion
3.1. Structural Characterization
3.2. Morphology Characterization
Materials | Thickness (mm) | Temperature (°C) | JO2 (mL cm−2 min−1) (Sweeping Gas: He) | Ref. |
---|---|---|---|---|
SrSc0.05Co0.95O3-δ | 0.91 | 900 | 3.10 | [53] |
Ce0.85Sm0.15O1.925-Sm0.6Sr0.4Al0.3Fe0.7O3-δ | 0.5 | 950 | 0.50 | [54] |
60 wt.%Ce0.9Pr0.1O2-δ- 40 wt.%Pr0.6Sr0.4Fe0.5Co0.5O3-δ | 0.6 | 1000 | 1.08 | [55,58] |
60 wt.%Ce0.8Nd0.2O2-δ- 40 wt.%Nd0.5Sr0.5Al0.2Fe0.8O3-δ | 0.6 | 1000 | 1.00 | [55,56] |
60 wt.%Ce0.9Pr0.1O2-δ- 40 wt.%Pr0.6Sr0.4Fe1-xAlxO3-δ | 0.6 | 1000 | 0.77 | [33] |
60 wt.%Ce0.85Pr0.1Fe0.05O2-δ- 40 wt.%Pr0.6Sr0.4Fe0.8Al0.2O3-δ | 0.6 | 1000 | 0.82 | This work |
60 wt.%Ce0.85Pr0.1Co0.05O2-δ- 40 wt.%Pr0.6Sr0.4Fe0.8Al0.2O3-δ | 0.6 | 1000 | 0.87 | This work |
60 wt.%Ce0.85Pr0.1Ni0.05O2-δ- 40 wt.%Pr0.6Sr0.4Fe0.8Al0.2O3-δ | 0.6 | 1000 | 0.82 | This work |
60 wt.%Ce0.85Pr0.1Cu0.05O2-δ- 40 wt.%Pr0.6Sr0.4Fe0.8Al0.2O3-δ | 0.6 | 1000 | 1.05 | This work |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, Y.Y.; Tang, J.; Zhou, L.Y.; Li, Z.; Wang, H.H. Oxygen permeation through U-shaped K2NiF4—Type oxide hollow-fiber membranes. Ind. Eng. Chem. Res. 2011, 50, 12727–12734. [Google Scholar] [CrossRef]
- Wei, Y.Y.; Liao, Q.; Xue, J.; Li, Z.; Wang, H.H. Influence of SO2 on the phase structure, oxygen permeation and microstructure of K2NiF4—type hollow fiber membranes. Chem. Eng. J. 2013, 217, 34–40. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, X.F.; Li, M.R.; O’Hayre, R.P.; Yang, W.S. Nanoparticales at grain boundaries inhibit the phase transition of perovskite membrane. Nano Lett. 2015, 15, 7678–7683. [Google Scholar] [CrossRef]
- Du, Z.H.; Ma, Y.H.; Zhao, H.; Kui Li, Y.L. High CO2-tolerant and Cobalt-free dual-phase membranes for pure oxygen separation. J. Membr. Sci. 2019, 574, 243–251. [Google Scholar] [CrossRef]
- Lee, S.I.; Choi, M.B.; Dasari, H.P.; Hong, J.; Kim, H.C.; Son, J.W.; Lee, J.H.; Kim, B.K.; Je, H.J.; Yoon, K.J. Role of ceria-Zirconia solid solution with high oxygen storage capacity in cermet anodes of solid oxide fuel cells. J. Electrochem. Soc. 2014, 161, F883–F888. [Google Scholar] [CrossRef]
- Liang, W.Y.; Zhou, H.Y.; Caro, J.; Jiang, H.Q. Methane conversion to syngas and hydrogen in a dual phase Ce0.8Sm0.2O2-δ-Sr2Fe1.5Mo0.5O5+δ membrane reactor with improved stability. Int. J. Hydrog. Energy 2018, 43, 14478–14485. [Google Scholar] [CrossRef]
- Tonziello, J.; Vellini, M. Oxygen production technologies for IGCC power plants with CO2 capture. Energy Procedia 2011, 4, 637–644. [Google Scholar] [CrossRef]
- Lima, F.; Daoutidis, P.; Tsapatsis, M. Modeling, optimization, and cost analysis of an IGCC plant with a membrane reactor for carbon capture. AIChE J. 2016, 62, 1568–1580. [Google Scholar] [CrossRef]
- Dong, X.L.; Jin, W.Q.; Xu, N.P.; Li, K. Dense ceramic catalytic membranes and membrane reactors for energy and environmental applications. Chem. Commun. 2011, 47, 10886–10902. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.W.; Jiang, H.Q.; Luo, H.X.; Baumann, S.; Meulenberg, W.A.; Assmann, J.; Mleczko, L.; Liu, Y.; Caro, J. Natural gas to fuels and chemicals: Improved methane aromatization in an oxygen-permeable membrane reactor. Angew. Chem. Int. Ed. 2013, 52, 13794–13797. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.Q.; Wang, H.H.; Werth, S.; Schiestel, T.; Caro, J. Simultaneous production of hydrogen and synthesis gas by combining water splitting with partial oxidation of methane in a hollow-fiber membrane reactor. Angew. Chem. Int. Ed. 2008, 47, 9341–9344. [Google Scholar] [CrossRef]
- Zhu, X.F.; Yang, W.S. Microstructural and interfacial designs of oxygen-permeable membranes for oxygen separation and reaction–separation coupling. Adv. Mater. 2019, 31, 1902547. [Google Scholar] [CrossRef]
- Jiang, H.Q.; Wang, H.H.; Liang, F.Y.; Werth, S.; Schirrmeister, S.; Schiestel, T.; Caro, J. Improved water dissociation and nitrous oxide decomposition by in situ oxygen removal in perovskite catalytic membrane reactor. Catal. Today 2010, 156, 187–190. [Google Scholar] [CrossRef]
- Cai, L.L.; Zhu, Y.; Cao, Z.W.; Li, W.P.; Li, H.B.; Zhu, X.F.; Yang, W.S. Non-noble metal catalysts coated on oxygen-permeable membrane reactors for hydrogen separation. J. Membr. Sci. 2020, 594, 117463. [Google Scholar] [CrossRef]
- Escolastico, S.; Solís, C.; Kjølseth, C.; Serra, J.M. Outstanding hydrogen permeation through CO2-stable dual-phase ceramic membranes. Energy Environ. Sci. 2014, 7, 3736–3746. [Google Scholar] [CrossRef]
- Wu, X.Y.; Cai, L.L.; Zhu, X.F.; Ghoniem, A.F.; Yang, W.S. A high-efficiency novel IGCC-OTM carbon capture power plant design. J. Adv. Manuf. Process. 2020, 2, e10059. [Google Scholar] [CrossRef]
- Maas, P.; Nauels, N.; Zhao, L.; Markewitz, P.; Scherer, V.; Modigell, M.; Stolten, D.; Hake, J.F. Energetic and economic evaluation of membrane-based carbon capture routes for power plant processes. Int. J. Greenh. Gas Control 2016, 44, 124–139. [Google Scholar] [CrossRef]
- Chi, J.L.; Li, K.Y.; Zhang, S.J.; Zhu, X.F.; Zhao, L.F.; Wang, B.; Xiao, Y.H. Process simulation and integration of IGCC systems with novel mixed ionic and electronic conducting membrane-based water gas shift membrane reactors for CO2 capture. Int. J. Hydrog. Energy 2020, 45, 13884–13898. [Google Scholar] [CrossRef]
- Stadler, H.; Beggel, F.; Habermehl, M.; Persigehl, B.; Kneer, R.; Modigell, M.; Jeschke, P. Oxyfuel coal combustion by efficient integration of oxygen transport membranes. Int. J. Greenh. Gas Control 2011, 5, 7–15. [Google Scholar] [CrossRef]
- Kim, J.S.; Lin, Y.S. Synthesis and oxygen-permeation properties of thin YSZ/Pd composite membranes. AIChE J. 2000, 46, 1521–1529. [Google Scholar] [CrossRef]
- Han, N.; Wei, Q.; Tian, H.; Zhang, S.G.; Zhu, Z.H.; Liu, J.; Liu, S.M. Highly stable dual-phase membrane based on Ce0.9Gd0.1O2-δ-La2NiO4+δ for oxygen permeation under pure CO2 atmosphere. Energy Tech. 2019, 7, 1800701. [Google Scholar] [CrossRef]
- Liu, T.; He, W.; Huang, H.; Wang, S.W.; Bouwmeester, H.J.M.; Chen, C.S. Ce0.8Sm0.2O1.9-La0.8Sr0.2Cr0.5Fe0.5O3-δ dual-phase hollow fiber membranes operated under different gradients. Ind. Eng. Chem. Res. 2014, 53, 6131–6136. [Google Scholar] [CrossRef]
- Lia, C.Q.; Ban, X.K.; Chen, C.S.; Zhan, Z.L. Sandwich-like symmetric dual-phase composite membrane with an ultra-thin oxygen separation layer and excellent durability. Solid State Ion. 2020, 345, 115176. [Google Scholar] [CrossRef]
- He, W.; Liu, J.J.; Chen, C.S.; Ni, M. Oxygen permeation modeling for Zr0.84Y0.16O1.92-La0.8Sr0.2Cr0.5Fe0.5O3-δ asymmetric membrane made by phase-inversion. J. Membr. Sci. 2015, 491, 90–98. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Ning, K.; Xu, Z.; Zheng, Q.K.; Tan, J.K.; Liu, Z.K.; Wu, Z.T.; Zhang, G.R.; Jin, W.Q. Highly efficient preparation of Ce0.8Sm0.2O2-δ-SrCo0.9Nb0.1O3-δ dual-phase four-channel hollow fiber membrane via one-step thermal processing approach. J. Membr. Sci. 2021, 620, 118752. [Google Scholar] [CrossRef]
- Nam, G.D.; Lee, G.; Choi, S.; Lee, J.; Song, S.J.; Joo, J.H. A chemically and mechanically stable dual-phase membrane with high oxygen permeation flux. J. Mater. Chem. A 2020, 8, 23884–23893. [Google Scholar] [CrossRef]
- Chen, G.X.; Tang, B.J.; Widenmeyer, M.; Wang, L.; Feldhoff, A.; Weidenkaff, A. Novel CO2-tolerant dual-phase Ce0.9Pr0.1O2-δ-La0.5Sr0.5Fe0.9Cu0.1O3-δ membranes with high oxygen permeability. J. Membr. Sci. 2020, 595, 117530. [Google Scholar] [CrossRef]
- Xue, J.; Zheng, Q.; Wei, Y.Y.; Yuan, K.J.; Li, Z.; Wang, H.H. Dual phase composite oxide of Ce0.9Gd0.1O2-δ-Ba0.5Sr0.5Co0.8Fe0.2O3-δ with excellent oxygen permeation. Ind. Eng. Chem. Res. 2012, 51, 4703–4709. [Google Scholar] [CrossRef]
- Luo, H.X.; Efimov, K.; Jiang, H.Q.; Feldhoff, A.; Wang, H.H.; Caro, J. CO2-stable and cobalt-free dual-phase membrane for oxygen separation. Angew. Chem. Int. Ed. 2011, 50, 759–763. [Google Scholar] [CrossRef]
- Zhu, X.F.; Liu, H.Y.; Cong, Y.; Yang, W.S. Novel dual-phase membranes for CO2 capture via an oxyfuel route. Chem Commun. 2012, 48, 251–253. [Google Scholar] [CrossRef]
- Cai, L.L.; Hu, S.Q.; Cao, Z.W.; Li, H.B.; Zhu, X.F.; Yang, W.S. Dual-phase membrane reactor for hydrogen separation with high tolerance to CO2 and H2S impurities. AIChE J. 2019, 65, 1088–1096. [Google Scholar] [CrossRef]
- Wang, S.; Shi, L.; Boubeche, M.; Wang, X.P.; Zeng, L.Y.; Wang, H.Q.; Xie, Z.A.; Tan, W.; Luo, H.X. Influence of Ln elements (Ln = La, Pr, Nd, Sm) on the structure and oxygen permeability of Ca-containing dual-phase membranes. Sep. Purif. Technol. 2020, 251, 117361. [Google Scholar] [CrossRef]
- Shi, L.; Wang, S.; Lu, T.N.; He, H.; Yan, D.; Lan, Q.; Xie, Z.A.; Wang, H.Q.; Boubeche, M.; Luo, H.X. Effects of Al content on the oxygen permeability through dual-phase membrane 60Ce0.9Pr0.1O2-δ-40Pr0.6Sr0.4Fe1-xAlxO3-δ. Ceram. Int. 2019, 45, 20033–20039. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.X.; Jiang, H.Q.; Klande, T.; Cao, Z.W.; Liang, F.Y.; Wang, H.H.; Caro, J. Novel cobalt-free, noble metal-free oxygen-permeable 40Pr0.6Sr0.4FeO3-δ-60Ce0.9Pr0.1O2-δ dual-phase membrane. Chem. Mater. 2012, 24, 2148–2154. [Google Scholar] [CrossRef]
- Dutta, P.; Pal, S.; Seehra, M.S.; Shi, Y.; Eyring, E.M.; Ernst, R.D. Concentration of Ce3+ and oxygen vacancies in cerium oxide nanoparticles. Chem. Mater. 2006, 18, 5144–5146. [Google Scholar] [CrossRef]
- Aarthi, U.; Shukla, D.; Rengaraj, S.; Babu, K.S. Ordered to defect fluorite structural transition in Ce1-xNdxO2-δ system and its influence on ionic conductivity. J. Alloys Compd. 2020, 838, 155534. [Google Scholar] [CrossRef]
- Sameshima, S.; Hirata, Y.; Ehira, Y. Structural change in Sm- and Nd-doped ceria under a low oxygen partial pressure. J. Alloys Compd. 2006, 408–412, 628–631. [Google Scholar] [CrossRef]
- Chueh, W.C.; McDaniel, A.H.; Grass, M.E.; Hao, Y.; Jabeen, N.; Liu, Z.; Haile, S.M.; McCarty, K.F.; Hendrik Bluhm, H.; Gabaly, F.E. Highly enhanced concentration and stability of reactive Ce3+ on doped CeO2 surface revealed in operando. Chem. Mater. 2012, 24, 1876–1882. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.F.; Liu, Y.; Cong, Y.; Yang, W.S. Ce0.85Sm0.15O1.925-Sm0.6Sr0.4Al0.3Fe0.7O3 dual-phase membranes: One-pot synthesis and stability in a CO2 atmosphere. Solid State Ionics 2013, 253, 57–63. [Google Scholar] [CrossRef]
- Balaguer, M.; García-Fayos, J.; Solís, C.; Serra, J.M. Fast oxygen separation through SO2- and CO2-stable dual-phase membrane based on NiFe2O4-Ce0.8Tb0.2O2-δ. Chem. Mater. 2013, 25, 4986–4993. [Google Scholar] [CrossRef]
- García-Fayos, J.; Ruhl, R.; Navarrete, L.; Bouwmeester, H.J.M.; Serra, J.M. Enhancing oxygen permeation through Fe2NiO4-Ce0.8Tb0.2O2-δ composite membranes using porous layers activated with Pr6O11 nanoparticles. J. Mater. Chem. A 2018, 6, 1201–1209. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Huang, H.; Ovtar, S.; Simonsen, S.B.; Chen, M.; Zhang, W.; Søgaard, M.; Kaiser, A.; Hendriksen, P.V.; Chen, C.S. High-performance microchanneled asymmetric Gd0.1Ce0.9O1.95-δ-La0.6Sr0.4FeO3-δ-based membranes for oxygen separation. ACS Appl. Mater. Interfaces 2016, 8, 4548–4560. [Google Scholar] [CrossRef]
- Balaguer, M.; Solís, C.; Serra, J.M. Structural-transport properties relationships on Ce1–xLnxO2-δ system (Ln = Gd, La, Tb, Pr, Eu, Er, Yb, Nd) and effect of cobalt addition. J. Phys. Chem. C 2012, 116, 7975–7982. [Google Scholar] [CrossRef]
- Fang, W.; Liang, F.Y.; Cao, Z.W.; Steinbach, F.; Feldhoff, A. A Mixed ionic and electronic conducting dual-phase membrane with high oxygen permeability. Angew. Chem. Int. Ed. 2015, 54, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Nasani, N.; Shakel, Z.; Loureiro, F.J.A.; Panigrahi, B.B.; Kale, B.B.; Fagg, D.P. Exploring the impact of sintering additives on the densification and conductivity of BaCe0.3Zr0.55Y0.15O3-δ electrolyte for protonic ceramic fuel cells. J. Alloys Compd. 2021, 862, 158640. [Google Scholar] [CrossRef]
- Taub, S.; Williams, R.E.A.; Wang, X.; McComb, D.W.; Kilner, J.A.; Atkinson, A. The effects of transition metal oxide doping on the sintering of cerium gadolinium oxide. Acta Mater. 2014, 81, 128–140. [Google Scholar] [CrossRef]
- Shi, L.; Wang, S.; Lu, T.N.; He, Y.; Yan, D.; Lan, Q.; Xie, Z.A.; Wang, H.Q.; Li, M.R.; Caro, J.; et al. High CO2-tolerance oxygen permeation dual-phase membranes Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe0.8Al0.2O3-δ. J. Alloys Compd. 2019, 806, 500–509. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Shi, L.; Wu, F.; Xie, W.W.; Wang, S.; Yan, D.; Liu, P.J.; Li, M.R.; Caro, J.; Luo, H.X. A novel dual phase membrane 40wt% Nd0.6Sr0.4CoO3-δ-60wt%Ce0.9Nd0.1O2-δ: Design, synthesis and properties. J. Mater. Chem. A 2018, 6, 84–92. [Google Scholar] [CrossRef]
- Steele, B.C.H. Oxygen ion conductors and their technological applications. Mater. Sci. Eng. B 1992, 13, 79. [Google Scholar] [CrossRef]
- Kharton, V.V.; Tikhonovich, V.N.; Shuangbao, L.; Naumovich, E.N.; Yaremchenko, A.A. Ceramic microstructure and oxygen permeability of SrCo(Fe, M)O3-δ (M = Cu or Cr) perovskite membranes. J. Electrochem. Soc. 1998, 145, 1363–1373. [Google Scholar] [CrossRef]
- Shaula, A.L.; Fuentes, R.O.; Figueiredo, F.M.; Kharton, V.V.; Frade, J.R. Grain size effects on oxygen permeation in submicrometric CaTi0.8Fe0.2O3-δ ceramics obtained by mechanical activation. J. Euro. Ceram. Soc. 2005, 25, 2613–2616. [Google Scholar] [CrossRef]
- Sunarso, J.; Baumann, S.; Serra, J.M.; Meulenberg, W.A.; Liu, S.; Lin, S.Y.S.; Diniz da Costa, J.C. Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J. Membr. Sci. 2008, 320, 13–41. [Google Scholar] [CrossRef]
- Zeng, P.; Ran, R.; Chen, Z.; Gu, H.; Liu, S. Novel mixed conducting SrSc0.05Co0.95Co0.95O3-δ ceramic membrane for oxygen separation. AIChE J. 2010, 53, 3116–3124. [Google Scholar] [CrossRef]
- Li, C.; Li, W.; Chew, J.; Liu, S.; Zhu, X.; Sunarso, J. Rate determining step in SDC-SSAF dual-phase oxygen permeation membrane. J. Membr. Sci. 2019, 573, 628–638. [Google Scholar] [CrossRef]
- Zhang, C.; Sunarso, J.; Liu, S. Designing CO2-resistant oxygen-selective mixed ionic-electronic conducting membranes: Guidelines, recent advances, and forward directions. Chem. Soc. Rev. 2017, 46, 2941–3005. [Google Scholar] [CrossRef] [PubMed]
- Liang, F.; Luo, H.; Partovi, K.; Ravkina, O.; Cao, Z.; Liu, Y.; Caro, J. A novel CO2-stable dual phase membrane with high oxygen permeability. Chem. Commun. 2014, 19, 2451–2454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Partovi, K.; Bittner, M.; Caro, J. Novel CO2-tolerant Al-containing membranes for high-temperature oxygen separation. J. Mater. Chem. A 2015, 3, 24008–24015. [Google Scholar] [CrossRef] [Green Version]
- Arnold, M.; Wang, H.H.; Feldhoff, A. Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0. 5)(Co0.8Fe0.2)O3-δ membranes. J. Membr. Sci. 2007, 293, 44–52. [Google Scholar] [CrossRef]
- Wang, S.; Shi, L.; Boubeche, M.; Wang, H.Q.; Xie, Z.A.; Tan, W.; He, Y.; Yan, D.; Luo, H.X. The effect of Fe/Co ratio on the structure and oxygen permeability of Ca-containing composite membranes. Inorg. Chem. Front. 2019, 6, 2885–2893. [Google Scholar] [CrossRef]
- Wang, S.; Shi, L.; Xie, Z.A.; He, Y.; Yan, D.; Li, M.R.; Caro, J.; Luo, H.X. High-flux dual-phase percolation membrane for oxygen separation. J. Eur. Ceram. Soc. 2019, 39, 4882–4890. [Google Scholar] [CrossRef] [Green Version]
Materials | CP | PSFA (t = 0.86195) | ||
---|---|---|---|---|
a = b = c (Å) | a (Å) | b (Å) | c (Å) | |
CPFe-PSFA | 5.4100 (3) | 5.4419 (4) | 7.7355 (3) | 5.4848 (4) |
CPCo-PSFA | 5.4099 (3) | 5.4415 (3) | 7.7358 (2) | 5.4842 (3) |
CPNi-PSFA | 5.4099 (4) | 5.4413 (3) | 7.735 (3) | 5.4845 (3) |
CPCu-PSFA | 5.4102 (3) | 5.4416 (2) | 7.7359 (4) | 5.4844 (4) |
CP-PSFA 1 | 5.4131 (3) | 5.4414 (3) | 7.7356 (3) | 5.4844 (4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Shi, L.; Huang, Y.; Zeng, L.; Boubeche, M.; Li, D.; Luo, H. CO2-Tolerant Oxygen Permeation Membranes Containing Transition Metals as Sintering Aids with High Oxygen Permeability. Processes 2021, 9, 528. https://doi.org/10.3390/pr9030528
Wang X, Shi L, Huang Y, Zeng L, Boubeche M, Li D, Luo H. CO2-Tolerant Oxygen Permeation Membranes Containing Transition Metals as Sintering Aids with High Oxygen Permeability. Processes. 2021; 9(3):528. https://doi.org/10.3390/pr9030528
Chicago/Turabian StyleWang, Xiaopeng, Lei Shi, Yanhao Huang, Lingyong Zeng, Mebrouka Boubeche, Dongcheng Li, and Huixia Luo. 2021. "CO2-Tolerant Oxygen Permeation Membranes Containing Transition Metals as Sintering Aids with High Oxygen Permeability" Processes 9, no. 3: 528. https://doi.org/10.3390/pr9030528
APA StyleWang, X., Shi, L., Huang, Y., Zeng, L., Boubeche, M., Li, D., & Luo, H. (2021). CO2-Tolerant Oxygen Permeation Membranes Containing Transition Metals as Sintering Aids with High Oxygen Permeability. Processes, 9(3), 528. https://doi.org/10.3390/pr9030528