Analysis of the Physical Properties of Seeds of Selected Viburnum Species for the Needs of Seed Sorting Operations
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Physical Properties
- volume (V), based on an experimentally determined volumetric coefficient of proportionality (k):
- density:
- T/W, T/L, W/L, m/T, m/W, m/L and m/D aspect ratios.
2.3. Statistical Analysis
3. Results and Discussion
3.1. Experimental Material
- 0.2 m s−1 for terminal velocity,
- 0.1 mm for seed thickness,
- 0.2 mm for seed width and length,
- 0.5° for the angle of external friction and
- 1.3 mg for seed mass.
3.2. Relationships between the Physical Properties of Seeds
3.3. Recommendations for Seed Sorting
- fraction III (widest seeds), containing around 33% to around 37% of seeds from the entire batch of a given Viburnum species—from around 8% (V. opulus) to around 38% (V. sargentii) of class 1 seeds, from around 26% (V. sargentii) to around 39% (V. rhytodophyllum) of class 2 seeds, and from around 38% (V. lentago) to around 66% (V. opulus) of class 3 seeds;
- fraction II (medium-wide seeds), containing around 32% to around 38% of seeds from the entire batch of a given Viburnum species—from around 20% (V. opulus) to around 51% (V. rhytodophyllum) of small seeds, from around 23% (V. lentago) to around 51% (V. opulus) of medium-sized seeds, and from around 28% (V. rhytodophyllum) to around 43% (V. lentago) of large seeds;
- fraction I (narrowest seeds), containing around 26% to around 34% of seeds from the entire batch of a given Viburnum species—from around 32% (V. sargentii) to around 72% (V. opulus) of class 1 seeds, from around 17% (V. opulus) to around 41% (V. lentago) of class 2 seeds, and from 0% (V. opulus) to around 27% (V. rhytodophyllum) of class 3 seeds.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Götmark, F.; Götmark, E.; Jensen, A.M. Why be a shrub? A basic model and hypotheses for the adaptive values of a common growth form. Front. Plant Sci. 2016, 7, 1095. [Google Scholar] [CrossRef]
- Zhou, L.; Shen, H.; Chen, L.; Li, H.; Zhang, P.; Zhao, X.; Liu, T.; Liu, S.; Xing, A.; Hu, H.; et al. Species richness and composition of shrub-encroached grasslands in relation to environmental factors in northern China. J. Plant Ecol. 2019, 12, 56–66. [Google Scholar] [CrossRef]
- Boyce, R.L. Invasive shrubs and forest tree regeneration. J. Sustain. For. 2009, 28, 152–217. [Google Scholar] [CrossRef]
- Jaworski, A. Hodowla Lasu. Tom III. Charakterystyka Hodowlana Drzew i Krzewów Leśnych (Silviculture. Volume 3. Breeding Characteristics of Forest Trees and Shrubs); PWRiL: Warszawa, Poland, 2011; pp. 481–511. [Google Scholar]
- Li, H.; Shen, H.; Chen, L.; Liu, T.; Hu, H.; Zhao, X.; Zhou, L.; Zhang, P.; Fang, J. Effects of shrub encroachment on soil organic carbon in global grasslands. Sci. Rep. 2016, 6, 28974. [Google Scholar] [CrossRef] [PubMed]
- Bolstad, P.V.; Elliott, K.J.; Miniat, C.F. Forests, shrubs, and terrain: Top-down and bottom-up controls on forest structure. Ecosphere 2018, 9, e02185. [Google Scholar] [CrossRef]
- Winkworth, R.C.; Donoghue, M.J. Viburnum phylogeny based on combined molecular data: Implications for taxonomy and biogeography. Am. J. Bot. 2005, 92, 653–666. [Google Scholar] [CrossRef]
- Clement, W.L.; Donoghue, M.J. Barcoding success as a function of phylogenetic relatedness in Viburnum, a clade of woody angiosperms. BMC Evol. Biol. 2012, 12, 73. [Google Scholar] [CrossRef] [PubMed]
- Awan, Z.I.; Rehman, H.; Awan, A.A.; Minhas, F.A.; Khan, M.N. Ethnobotanical importance of some highly medicinal plants of District Muzaffarabad, Pakistan with special reference to the species of the genus Viburnum. IOSR J. Pharm. Biol. Sci. 2013, 6, 53–66. [Google Scholar] [CrossRef]
- Spriggs, E.L.; Clement, W.L.; Sweeney, P.W.; Madriñán, S.; Edwards, E.J.; Donoghue, M.J. Temperate radiations and dying embers of a tropical past: The diversification of Viburnum. New Phytol. 2015, 207, 340–354. [Google Scholar] [CrossRef]
- Schmerler, S.B.; Clement, W.L.; Beaulieu, J.M.; Chatelet, D.S.; Sack, L.; Donoghue, M.J.; Edwards, E.J. Evolution of leaf form correlates with tropical−temperate transitions in Viburnum (Adoxaceae). Proc. R. Soc. B 2012, 279, 3905–3913. [Google Scholar] [CrossRef]
- Konarska, A. Comparative micromorphology and anatomy of flowers and floral secretory structures in two Viburnum species. Protoplasma 2017, 254, 523–537. [Google Scholar] [CrossRef]
- Spriggs, E.L.; Schlutius, C.; Eaton, D.A.; Park, B.; Sweeney, P.W.; Edwards, E.J.; Donoghue, M.J. Differences in flowering time maintain species boundaries in a continental radiation of Viburnum. Am. J. Bot. 2019, 106, 833–849. [Google Scholar] [CrossRef]
- Sinnott-Armstrong, M.A.; Lee, C.; Clement, W.L.; Donoghue, M.J. Fruit syndromes in Viburnum: Correlated evolution of color, nutritional content, and morphology in bird-dispersed fleshy fruits. BMC Evol. Biol. 2020, 20, 7. [Google Scholar] [CrossRef] [PubMed]
- Seneta, W.; Dolatowski, J. Dendrologia (Dendrology); Wydawnictwo Naukowe PWN: Warszawa, Poland, 2012; pp. 344–348. [Google Scholar]
- Klingeman, W.E.; White, S.A.; LeBude, A.; Fulcher, A.; Ward Gauthier, N.; Hale, F. Arthropod pests, plant diseases and abiotic disorders and their management on Viburnum species in the Southeastern U.S.: A review. J. Environ. Hort. 2014, 32, 84–102. [Google Scholar] [CrossRef]
- Jacobs, B.; Donoghue, M.J.; Bouman, F.; Huysmans, S.; Smets, E. Evolution and phylogenetic importance of endocarp and seed characters in Viburnum (Adoxaceae). Int. J. Plant Sci. 2008, 169, 409–431. [Google Scholar] [CrossRef]
- Karlsson, L.M.; Hidayati, S.N.; Walck, J.L.; Milberg, P. Complex combination of seed dormancy and seedling development determine emergence of Viburnum tinus (Caprifoliaceae). Ann. Bot. 2005, 95, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Baskin, C.; Chien, C.; Chen, S.; Baskin, J. Germination of Viburnum odoratissimum seeds: A new level of morphophysiological dormancy. Seed Sci. Res. 2008, 18, 179–184. [Google Scholar] [CrossRef]
- Chien, C.-T.; Chen, S.-Y.; Tsai, C.-C.; Baskin, J.M.; Baskin, C.C.; Kuo-Huang, L.-L. Deep simple epicotyl morphophysiological dormancy in seeds of two Viburnum species, with special reference to shoot growth and development inside the seed. Ann. Bot. 2011, 108, 13–22. [Google Scholar] [CrossRef]
- Chaisurisri, K.; Edwards, D.G.W.; El-Kassaby, Y.A. Effects of seed size on seedling attributes in Sitka spruce. New For. 1994, 8, 81–87. [Google Scholar]
- Kaliniewicz, Z.; Tylek, P. Aspects of the process of sorting European black pine seeds. Forests 2019, 10, 966. [Google Scholar] [CrossRef]
- Poorter, L.; Rose, S.A. Light-dependent changes in the relationship between seed mass and seedling traits: A meta-analysis for rain forest tree species. Oecologia 2005, 142, 378–387. [Google Scholar] [CrossRef]
- Norden, N.; Daws, M.I.; Antoine, C.; Gonzalez, M.A.; Garwood, N.C.; Chave, J. The relationship between seed mass and mean time to germination for 1037 tree species across five tropical forests. Funct. Ecol. 2009, 23, 203–210. [Google Scholar] [CrossRef]
- Missanjo, E.; Maya, C.; Kapira, D.; Banda, H.; Kamanga-Thole, G. Effect of seed size and pretreatment methods on germination of Albizia lebbeck. ISRN Bot. 2013, 969026. [Google Scholar] [CrossRef]
- Karki, H.; Bargali, K.; Bargali, S.S. Effect of sowing time on germination and early seedling growth of Quercus floribunda Lindl. J. For. Environ. Sci. 2018, 34, 199–208. [Google Scholar] [CrossRef]
- Kaliniewicz, Z.; Anders, A.; Markowski, P.; Jadwisieńczak, K.; Krzysiak, Z. Analysis of the physical properties of seeds of selected juniper species. Acta Agroph. 2017, 24, 443–454. [Google Scholar]
- Kaliniewicz, Z.; Żuk, Z.; Kusińska, E. Physical properties of seeds of eleven spruce species. Forests 2018, 9, 617. [Google Scholar] [CrossRef]
- Kaliniewicz, Z.; Markowski, P.; Anders, A.; Jadwisieńczak, K.; Żuk, Z.; Krzysiak, Z. Physical properties of seeds of eleven fir species. Forests 2019, 10, 142. [Google Scholar] [CrossRef]
- Kaliniewicz, Z. Variation and correlation between the physical properties of dogwood seeds. Walailak J. Sci. Technol. 2020, 17, 1252–1265. [Google Scholar] [CrossRef]
- Załęski, A. Nasiennictwo Leśnych Drzew i Krzewów Iglastych (Management of Coniferous Forest Trees and Shrubs for Sseed Production); Oficyna Edytorska, Wydawnictwo Świat: Warszawa, Poland, 1995; pp. 117–121. [Google Scholar]
- Kaliniewicz, Z.; Markowski, P.; Anders, A.; Jadwisieńczak, B.; Rawa, T.; Szczechowicz, D. Basic physical properties of Norway spruce (Picea abies (L.) Karst.) seeds. Tech. Sci. 2016, 19, 103–115. [Google Scholar]
- Mohsenin, N.N. Physical Properties of Plant and Animal Materials; Gordon and Breach Science Public: New York, NY, USA, 1986. [Google Scholar]
- Kaliniewicz, Z.; Tylek, P.; Markowski, P.; Anders, A.; Rawa, T.; Zadrożny, M. Determination of shape factors and volume coefficients of seeds from selected coniferous trees. Tech. Sci. 2012, 15, 217–228. [Google Scholar]
- Yücel, C.; Baloch, F.S.; Özkan, H. Genetic analysis of some physical properties of bread wheat grain (Triticum aestivum L. em Thell). Turk. J. Agric. For. 2009, 33, 525–535. [Google Scholar] [CrossRef]
- Kalkan, F.; Kara, M. Handling, frictional and technological properties of wheat as affected by moisture content and cultivar. Powder Tech. 2011, 213, 116–122. [Google Scholar] [CrossRef]
- Kim, K.H.; Shin, S.H.; Park, S.; Park, J.C.; Kang, C.S.; Park, C.S. Relationship between pre-harvest sprouting and functional markers associated with grain weight, TaSUS2-2B, TaGW2-6A, and TaCWI-A1, in Korean wheat cultivars. SABRAO J. Breed. Genet. 2014, 46, 319–328. [Google Scholar]
- Kasraei, M.; Nejadi, J.; Shafiei, S. Relationship between grain physicochemical and mechanical properties of some Iranian wheat cultivars. J. Agric. Sci. Technol. 2015, 17, 635–647. [Google Scholar]
- Lema, M.; Santalla, M.; Rodiño, A.P.; De Ron, A.M. Field performance of natural narrow-leafed lupin from the northwestern Spain. Euphytica 2005, 144, 341–351. [Google Scholar] [CrossRef]
- Carrillo-Gavilán, M.A.; Lalagüe, H.; Vilà, M. Comparing seed removal of 16 pine species differing in invasiveness. Biol. Invasions 2010, 12, 2233–2242. [Google Scholar] [CrossRef]
- Kaliniewicz, Z.; Tylek, P.; Anders, A.; Markowski, P.; Rawa, T.; Ołdakowski, M.; Wąsowski, L. An analysis of the physical properties of seeds of selected deciduous tree species. Balt. For. 2016, 22, 169–174. [Google Scholar]
- Şevik, H.; Topaçoğlu, O. Variation and inheritance pattern in cone and seed characteristics of Scots pine (Pinus sylvestris L.) for evaluation of genetic diversity. J. Environ. Biol. 2015, 36, 1125–1130. [Google Scholar]
- Razaz, M.; Naqinezhad, A.; Otaghvari, A.M.; Colagar, A.H.; Zare, H. A study of Carpinus orientalis Mill. populations based on morphological characteristics in the Hyrcanian forests, n. Iran. Adv. Biores. 2013, 4, 98–104. [Google Scholar]
- Sivacioglu, A.; Ayan, S. Variation in cone and seed characteristic in a clonal seed orchard of Anatolian black pine [Pinus nigra Arnold subsp. paliasiana (Lamb.) Holmboe]. J. Environ. Biol. 2010, 31, 119–123. [Google Scholar]
- Gleiser, G.; Picher, M.C.; Veintimilla, P.; Martinez, J.; Verdú, M. Seed dormancy in relation to seed storage behavior in Acer. Bot. J. Linn. Soc. 2004, 145, 203–208. [Google Scholar] [CrossRef]
- Aguinagalde, I.; Hampe, A.; Mohanty, A.; Martin, J.P.; Duminil, J.; Petit, R.J. Effects of life-history traits and species distribution on genetic structure at maternally inherited markers in European trees and shrubs. J. Biogeogr. 2005, 32, 329–339. [Google Scholar] [CrossRef]
- Balkaya, A.; Özbakir, M.; Karaağaç, O. Pattern of variation for seed characteristics in Turkish populations of Cucurbita moschata Dutch. Afr. J. Agric. Res. 2010, 5, 1068–1076. [Google Scholar]
- Coşkuner, Y.; Karababa, E. Physical properties of coriander seeds (Coriandrum sativum L.). J. Food Eng. 2007, 80, 408–416. [Google Scholar] [CrossRef]
- Tylek, P. Friction and elasticity as separation properties of beech nuts. Sylwan 2006, 5, 51–58. [Google Scholar]
Indicator | Viburnum Species | |||||
---|---|---|---|---|---|---|
V. Dasyanthum | V. Lantana | V. Lentago | V. Opulus | V. Rhytodophyllum | V. Sargentii | |
Geom. mean diameter (mm) | 3.38 ± 0.20 a | 4.20 ± 0.28 d | 3.93 ± 0.18 c | 4.17 ± 0.32 d | 3.41 ± 0.23 a | 3.72 ± 0.21 b |
Sphericity index (%) | 60.74 ± 4.36 d | 57.04 ± 4.70 bc | 58.00 ± 2.70 c | 56.33 ± 3.48 b | 53.94 ± 4.45 a | 57.54 ± 3.13 c |
Volume (mm3) | 20.51 ± 3.59 a | 34.99 ± 7.13 d | 31.28 ± 4.24 c | 34.48 ± 8.19 d | 20.57 ± 4.21 a | 25.45 ± 4.18 b |
Density (g·cm−3) | 0.83 ± 0.19 a | 1.01 ± 0.11 c | 0.98 ± 0.17 c | 0.88 ± 0.13 ab | 1.00 ± 0.28 c | 0.91 ± 0.26 b |
Aspect ratio T/W (–) | 0.33 ± 0.05 b | 0.35 ± 0.04 c | 0.32 ± 0.04 b | 0.25 ± 0.03 a | 0.50 ± 0.09 d | 0.24 ± 0.03 a |
Aspect ratio T/L (–) | 0.27 ± 0.04 c | 0.25 ± 0.04 b | 0.25 ± 0.02 b | 0.21 ± 0.03 a | 0.28 ± 0.05 c | 0.21 ± 0.02 a |
Aspect ratio W/L (–) | 0.82 ± 0.07 d | 0.73 ± 0.09 b | 0.78 ± 0.07 c | 0.85 ± 0.08 e | 0.57 ± 0.08 a | 0.89 ± 0.08 f |
Aspect ratio m/T (g m−1) | 11.12 ± 2.56 a | 18.79 ± 2.74 d | 17.82 ± 2.92 c | 19.17 ± 3.70 d | 11.48 ± 2.62 a | 16.51 ± 4.11 b |
Aspect ratio m/W (g m−1) | 3.65 ± 0.71 a | 6.49 ± 0.88 e | 5.75 ± 1.01 d | 4.69 ± 0.74 c | 5.60 ± 1.26 d | 3.95 ± 0.90 b |
Aspect ratio m/L (g m−1) | 3.00 ± 0.60 a | 4.74 ± 0.70 e | 4.46 ± 0.74 d | 4.00 ± 0.69 c | 3.14 ± 0.60 a | 3.51 ± 0.78 b |
Aspect ratio m/D (g m−1) | 4.94 ± 0.96 a | 8.31 ± 1.01 e | 7.69 ± 1.20 d | 7.10 ± 1.15 c | 5.84 ± 1.11 b | 6.10 ± 1.37 b |
Viburnum Species | Coefficient of Correlation between Seed Mass and | ||||
---|---|---|---|---|---|
Terminal Velocity | Thickness | Width | Length | Angle of External Friction | |
V. dasyanthum | 0.506 * | 0.145 | 0.269 * | 0.129 | −0.181 * |
V. lantana | 0.323 * | 0.528 * | 0.632 * | 0.554 * | −0.201 * |
V. lentago | 0.418 * | 0.318 * | 0.173 | 0.134 | 0.038 |
V. opulus | 0.281 * | 0.428 * | 0.688 * | 0.587 * | −0.227 * |
V. rhytodophyllum | 0.107 | 0.055 | 0.071 | 0.103 | 0.073 |
V. sargentii | 0.428 * | −0.038 | 0.061 | 0.057 | −0.016 |
Attribute | Terminal Velocity | Thickness | Width | Length | Angle of External Friction |
---|---|---|---|---|---|
Thickness | 0.645 * | 1 | |||
Width | −0.206 * | −0.158 * | 1 | ||
Length | 0.208 * | 0.218 * | 0.511 * | 1 | |
Angle of ext. friction | −0.380 * | −0.325 * | 0.449 * | 0.196 * | 1 |
Mass | 0.476 * | 0.385 * | 0.529 * | 0.700 * | 0.032 |
Viburnum Species | Seed Class | Percentage (%) |
---|---|---|
V. dasyanthum | 1 (m < 15 mg) | 24.8 |
2 (m = 15–18 mg) | 35.5 | |
3 (m > 18 mg) | 39.7 | |
V. lantana | 1 (m < 32 mg) | 29.8 |
2 (m = 32–37 mg) | 34.7 | |
3 (m > 37 mg) | 35.5 | |
V. lentago | 1 (m < 27 mg) | 28.8 |
2 (m = 27–32 mg) | 37.3 | |
3 (m > 32 mg) | 33.9 | |
V. opulus | 1 (m < 27 mg) | 32.8 |
2 (m = 27–32 mg) | 33.6 | |
3 (m > 32 mg) | 33.6 | |
V. rhytodophyllum | 1 (m < 18 mg) | 30.6 |
2 (m = 18–21 mg) | 34.7 | |
3 (m > 21 mg) | 34.7 | |
V. sargentii | 1 (m < 20 mg) | 30.3 |
2 (m = 20–25 mg) | 37.7 | |
3 (m > 25 mg) | 32.0 |
Viburnum Species | Seed Fraction | Percentage (%) | Coefficient of Variation (%) of Seed Mass | |
---|---|---|---|---|
Fraction | Total | |||
V. dasyanthum | I (L ≤ 5.30 mm) | 28.9 | 19.7 | 19.8 |
II (L = 5.31–5.80 mm) | 38.0 | 20.9 | ||
III (L > 5.80 mm) | 33.1 | 18.1 | ||
I (W ≤ 4.30 mm) | 26.4 | 24.4 | ||
II (W = 4.31–4.70 mm) | 36.4 | 18.2 | ||
III (W > 4.70 mm) | 37.2 | 16.8 | ||
V. lantana | I (L ≤ 7.00 mm) | 34.7 | 17.4 | 17.5 |
II (L = 7.01–7.80 mm) | 35.5 | 11.7 | ||
III (L > 7.80 mm) | 29.8 | 14.3 | ||
I (W ≤ 5.10 mm) | 29.8 | 14.8 | ||
II (W = 5.11–5.60 mm) | 36.4 | 12.2 | ||
III (W > 5.60 mm) | 33.8 | 15.8 | ||
V. lentago | I (L ≤ 6.70 mm) | 35.6 | 18.6 | 16.5 |
II (L = 6.71–6.90 mm) | 36.4 | 13.9 | ||
III (L > 6.90 mm) | 28.0 | 16.3 | ||
I (W ≤ 5.10 mm) | 33.9 | 16.8 | ||
II (W = 5.11–5.50 mm) | 32.2 | 17.5 | ||
III (W > 5.50 mm) | 33.9 | 14.4 | ||
V. opulus | I (L ≤ 7.10 mm) | 32.0 | 20.0 | 21.3 |
II (L = 7.11–7.70 mm) | 36.9 | 14.6 | ||
III (L > 7.70 mm) | 31.1 | 21.1 | ||
I (W ≤ 6.00 mm) | 29.6 | 15.4 | ||
II (W = 6.01–6.60 mm) | 35.2 | 15.3 | ||
III (W > 6.60 mm) | 35.2 | 18.5 | ||
V. rhytodophyllum | I (L ≤ 6.20 mm) | 31.4 | 20.4 | 17.9 |
II (L = 6.21–6.60 mm) | 37.2 | 18.2 | ||
III (L > 6.60 mm) | 31.4 | 15.3 | ||
I (W ≤ 3.30 mm) | 28.9 | 20.1 | ||
II (W = 3.31–3.80 mm) | 38.0 | 18.3 | ||
III (W > 3.80 mm) | 33.1 | 14.8 | ||
V. sargentii | I (L ≤ 6.30 mm) | 32.0 | 21.6 | 21.5 |
II (L = 6.31–6.70 mm) | 37.7 | 23.8 | ||
III (L > 6.70 mm) | 30.3 | 18.8 | ||
I (W ≤ 5.50 mm) | 32.0 | 24.4 | ||
II (W = 5.51–6.00 mm) | 33.6 | 20.7 | ||
III (W > 6.00 mm) | 34.4 | 19.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaliniewicz, Z.; Choszcz, D.J. Analysis of the Physical Properties of Seeds of Selected Viburnum Species for the Needs of Seed Sorting Operations. Processes 2021, 9, 711. https://doi.org/10.3390/pr9040711
Kaliniewicz Z, Choszcz DJ. Analysis of the Physical Properties of Seeds of Selected Viburnum Species for the Needs of Seed Sorting Operations. Processes. 2021; 9(4):711. https://doi.org/10.3390/pr9040711
Chicago/Turabian StyleKaliniewicz, Zdzisław, and Dariusz J. Choszcz. 2021. "Analysis of the Physical Properties of Seeds of Selected Viburnum Species for the Needs of Seed Sorting Operations" Processes 9, no. 4: 711. https://doi.org/10.3390/pr9040711
APA StyleKaliniewicz, Z., & Choszcz, D. J. (2021). Analysis of the Physical Properties of Seeds of Selected Viburnum Species for the Needs of Seed Sorting Operations. Processes, 9(4), 711. https://doi.org/10.3390/pr9040711