Optimization of Photopolymerization Process of Dental Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Samples Preparation
2.2. Hardness Measurements
2.3. Regression Analysis
2.4. Calculation of the Parameters of Photopolymerization Process
3. Results
3.1. Microhardness
3.2. Universal nanohybrid composite Evetric
3.3. Nanohybrid Bulk Fill Composite Filtek One Bulk Fill Restorative
3.4. Universal Nanofilled Flowable Composite G-Aenial Universal Flo
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
№ | Intensity, mW/cm2 | Time, s | Layer Thickness, mm | Hardness, HV | |
---|---|---|---|---|---|
Top | Bottom | ||||
1 | 600 | 20 | 2.09 | 42.05 | 33.64 |
2 | 600 | 40 | 2.33 | 44.07 | 35.26 |
3 | 600 | 60 | 2.81 | 46.56 | 37.25 |
4 | 700 | 20 | 1.97 | 45.00 | 36.00 |
5 | 700 | 40 | 2.19 | 46.97 | 37.58 |
6 | 700 | 60 | 2.62 | 49.36 | 39.48 |
7 | 800 | 20 | 1.88 | 47.57 | 38.05 |
8 | 800 | 40 | 2.08 | 49.49 | 39.59 |
9 * | 800 | 60 | 2.46 | 51.80 | 41.44 |
10 * | 1000 | 20 | 1.78 | 51.53 | 41.22 |
11 * | 1000 | 40 | 2.95 | 53.40 | 42.72 |
12 * | 1000 | 60 | 2.31 | 55.64 | 44.51 |
13 * | 1200 | 20 | 1.76 | 53.96 | 43.17 |
14 * | 1200 | 40 | 1.98 | 55.86 | 44.69 |
15 * | 1200 | 60 | 2.39 | 58.21 | 46.57 |
16 * | 1300 | 20 | 1.85 | 54.61 | 43.69 |
17 * | 1300 | 40 | 2.06 | 56.57 | 45.26 |
18 * | 1300 | 60 | 2.54 | 59.07 | 47.26 |
19 * | 1500 | 20 | 2.07 | 54.82 | 43.85 |
20 * | 1500 | 40 | 2.39 | 56.98 | 45.59 |
21 * | 1500 | 60 | 3.17 | 60.08 | 48.06 |
Appendix B
№ | Intensity, mW/cm2 | Time, s | Layer Thickness, mm | Hardness, HV | Y2/Y1 | |
---|---|---|---|---|---|---|
Top, Y1 | Bottom, Y2 | |||||
1 | 600 | 20 | 3.86 | 56.63 | 45.30 | 0.80 |
2 | 600 | 40 | 4.72 | 59.29 | 48.81 | 0.82 |
3 | 600 | 60 | 8.36 | 53.47 | 46.27 | 0.86 |
4 | 700 | 20 | 4.03 | 57.08 | 46.94 | 0.82 |
5 | 700 | 40 | 4.99 | 59.78 | 49.07 | 0.82 |
6 | 700 | 60 | 9.30 | 53.78 | 46.33 | 0.86 |
7 | 800 | 20 | 4.23 | 57.58 | 47.06 | 0.82 |
8 * | 800 | 40 | 5.31 | 60.35 | 49.31 | 0.82 |
9 | 800 | 60 | 10.58 | 54.08 | 46.20 | 0.85 |
10 | 1000 | 20 | 4.71 | 58.78 | 47.26 | 0.80 |
11 * | 1000 | 40 | 6.16 | 61.72 | 49.66 | 0.80 |
12 | 1000 | 60 | 15.35 | 54.61 | 44.70 | 0.82 |
13 * | 1200 | 20 | 5.34 | 60.34 | 47.38 | 0.78 |
14 * | 1200 | 40 | 7.50 | 63.66 | 49.73 | 0.78 |
15 | 1200 | 60 | 32.66 | 54.75 | 36.13 | 0.66 |
16 * | 1300 | 20 | 5.73 | 61.32 | 47.39 | 0.77 |
17 | 1300 | 40 | 8.51 | 65.03 | 49.57 | 0.76 |
18 | 1300 | 60 | 91.26 | 53.28 | The results have no physical sense | |
19 * | 1500 | 20 | 6.79 | 63.89 | 47.27 | 0.74 |
20 | 1500 | 40 | 12.07 | 69.59 | 48.39 | 0.70 |
21 | 1500 | 60 | The results have no physical sense |
Appendix C
№ | Intensity, mW/cm2 | Time, s | Layer Thickness, mm | Hardness, HV | |
---|---|---|---|---|---|
Top | Bottom | ||||
1 | 600 | 20 | 2.42 | 43.89 | 35.11 |
2 | 600 | 40 | 2.66 | 45.24 | 36.19 |
3 | 600 | 60 | 3.23 | 45.81 | 36.65 |
4 | 700 | 20 | 2.44 | 44.46 | 35.57 |
5 | 700 | 40 | 2.71 | 45.64 | 36.51 |
6 | 700 | 60 | 3.37 | 46.00 | 36.80 |
7 | 800 | 20 | 2.46 | 45.02 | 36.02 |
8 | 800 | 40 | 2.77 | 46.02 | 36.82 |
9 | 800 | 60 | 3.54 | 46.15 | 36.92 |
10 | 1000 | 20 | 2.51 | 46.09 | 36.87 |
11 | 1000 | 40 | 2.91 | 46.68 | 37.35 |
12 | 1000 | 60 | 4.01 | 46.29 | 37.03 |
13 | 1200 | 20 | 2.57 | 47.06 | 37.65 |
14 | 1200 | 40 | 3.11 | 47.16 | 37.73 |
15 | 1200 | 60 | 4.77 | 46.01 | 36.81 |
16 | 1300 | 20 | 2.61 | 47.50 | 38.00 |
17 | 1300 | 40 | 3.24 | 47.29 | 37.84 |
18 | 1300 | 60 | 5.37 | 45.58 | 36.46 |
19 | 1500 | 20 | 2.72 | 48.22 | 38.58 |
20 | 1500 | 40 | 3.61 | 47.19 | 37.75 |
21 | 1500 | 60 | 7.63 | 43.22 | 34.58 |
References
- Georgiev, G.; Panov, V.; Dikova, T. Investigation of light intensity of wireless LED light curing units. J. Technol. Univ. Gabrovo 2020, 60, 40–45. [Google Scholar]
- Sensi, L.G.; Strassler, H.E.; Webley, W. Direct Composite Resins. Inside Dent. 2007, 3, 76. [Google Scholar]
- Anusavice, K.J.; Shen, C.; Rawls, H.R. Phillips’ Science of Dental Materials; Elsevier Saunders: St. Louis, MO, USA, 2012; pp. 291–293. [Google Scholar]
- Van Noort, R.; Barbour, R. Introduction to Dental Materials-E-Book; Elsevier Mosby: Edinburgh, UK, 2013; pp. 73–95. [Google Scholar]
- Dikova, T. Dental Materials Science: Lectures and Laboratory Classes Notes Part II; MU-Varna: Varna, Bulgaria, 2014; p. 150. [Google Scholar]
- Dikova, T.; Milkov, M. Nanomaterials in dental medicine. In Proceedings of the 10th Workshops “Nanoscience & Nanotechnology”, Sofia, Bulgaria, 4–9 November 2009; Balabanova, E., Dragieva, I., Eds.; BAS-NCCNT: Sofia, Bulgaria, 2009; pp. 203–209. [Google Scholar]
- Dikova, T.; Abadzhiev, M. Clinical application of the contemporary nano-materials (part 1–laboratory composites). J. IMAB 2009, 15, 67–70. [Google Scholar]
- Mitra, S.B.; Wu, D.; Holmes, B.N. An application of nanotechnology in advanced dental materials. J. Am. Dent. Assoc 2003, 134, 1382–1390. [Google Scholar] [CrossRef] [Green Version]
- Olmez, A.; Oztas, N.; Bodur, H. The effect of flowable resin composite on microleakage and internal voids in class II composite restorations. Oper. Dent. 2004, 29, 713–719. [Google Scholar] [PubMed]
- Yacizi, A.R.; Ozgunaltay, G.; Dayangac, B. The effect of different types of flowable restorative resins on microleakage of Class V cavities. Oper. Dent. 2003, 28, 773–778. [Google Scholar]
- Scotti, N.; Comba, A.; Gambino, A.; Manzon, E.; Breschi, L.; Paolino, D.; Pasqualini, D.; Berutti, E. Influence of operator experience on non-carious cervical lesion restorations: Clinical evaluation with different adhesive systems. Am. J. Dent. 2016, 29, 33–38. [Google Scholar]
- Miletic, V.; Pongprueksa, P.; De Munck, J.; Brooks, N.R.; Van Meerbeek, B. Curing characteristics of flowable and sculptable bulk-fill composites. Clin. Oral Investig. 2017, 21, 1201–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Son, S.A.; Park, J.K.; Seo, D.G.; Ko, C.C.; Kwon, Y.H. How light attenuation and filler content affect the microhardness and polymerization shrinkage and translucency of bulk-fill composites? Clin. Oral Investig. 2017, 21, 559–565. [Google Scholar] [CrossRef]
- Van Ende, A.; Lise, D.P.; De Munck, J.; Vanhulst, J.; Wevers, M.; Van Meerbeek, B. Strain development in bulk-filled cavities of different depths characterized using a non-destructive acoustic emission approach. Dent. Mater. 2007, 33, e165–e177. [Google Scholar] [CrossRef] [PubMed]
- Fronza, B.M.; Rueggeberg, F.A.; Braga, R.R.; Mogilevych, B.; Soares, L.E.S.; Martin, A.A.; Giannini, M. Monomer conversion, microhardness, internal marginal adaptation, and shrinkage stress of bulk-fill resin composites. Dent. Mater. 2015, 31, 1542–1551. [Google Scholar] [CrossRef] [PubMed]
- Rosatto, C.M.P.; Bicalho, A.A.; Veríssimo, C.; Bragança, G.F.; Rodrigues, M.P.; Tantbirojn, D.; Soares, C.J. Mechanical properties, shrinkage stress, cuspal strain and fracture resistance of molars restored with bulk-fill composites and incremental filling technique. J. Dent. 2015, 43, 1519–1528. [Google Scholar] [CrossRef] [PubMed]
- Tomaszewska, I.M.; Kearns, J.O.; Ilie, N.; Fleming, G.J. Bulk fill restoratives: To cap or not to cap—That is the question? J. Dent. 2015, 43, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Lucey, S.; Lynch, C.D.; Ray, N.J.; Burke, F.M.; Hannigan, A. Effect of pre-heating on the viscosity and microhardness of a resin composite. J. Oral Rehab. 2010, 37, 278–282. [Google Scholar] [CrossRef]
- Poggio, C.; Lombardini, M.; Gaviati, S.; Chiesa, M. Evaluation of Vickers hardness and depth of cure of six composite resins photo-activated with different polymerization modes. J. Conserv. Dent. 2012, 15, 237. [Google Scholar] [CrossRef] [PubMed]
- Torres, C.R.; Caneppele, T.M.; Borges, A.B.; Torres, A.; Araújo, M.A. Influence of pre-cure temperature on Vickers microhardness of resin composite. Int. J. Contemp. Dent. 2011, 2, 41–45. [Google Scholar]
- Saade, E.G.; Bandeca, M.C.; Rastelli, A.N.D.S.; Bagnato, V.S.; Porto-Neto, S.T. Influence of pre-heat treatment and different light-curing units on Vickers hardness of a microhybrid composite resin. Laser Phys. 2009, 19, 1276–1281. [Google Scholar] [CrossRef]
- Osternack, F.H.R.; Caldas, D.B.D.M.; Rached, R.N.; Vieira, S.; Platt, J.A.; Almeida, J.B.D. Impact of refrigeration on the surface hardness of hybrid and microfilled composite resins. Braz. Dent. J. 2009, 20, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Fennis, W.M.; Ray, N.J.; Creugers, N.H.; Kreulen, C.M. Microhardness of resin composite materials light-cured through fiber reinforced composite. Dent. Mater. 2009, 25, 947–951. [Google Scholar] [CrossRef]
- Price, R.B.; Felix, C.A.; Andreou, P. Evaluation of a second-generation LED curing light. J. Can. Dent. Assoc. 2003, 69, 666. [Google Scholar]
- Yap, A.U.; Wong, N.Y.; Siow, K.S. Composite cure and shrinkage associated with high intensity curing light. Oper. Dent. 2003, 28, 357–364. [Google Scholar]
- Bouschlicher, M.R.; Rueggeberg, F.A.; Wilson, B.M. Correlation of bottom-to-top surface microhardness and conversion ratios for a variety of resin composite compositions. Oper. Dent. 2004, 29, 698–704. [Google Scholar]
- Zhu, S.; Platt, J. Curing efficiency of three different curing modes at different distances for four composites. Oper. Dent. 2011, 36, 362–371. [Google Scholar] [CrossRef]
- Aguiark, F.H.; Braceiro, A.; Lima, D.A.N.L.; Ambrosano, G.M.B.; Lovadino, J.R. Effect of Light Curing Modes and Light Curing Time on the Microhardness of a Hybrid Composite Resin. J. Contemp. Dent. Pract. 2007, 8, 1–8. [Google Scholar]
- Spajic, J.; Par, M.; Milat, O.; Demoli, N.; Bjelovucic, R.; Prskalo, K. Effects of curing modes on the microhardness of resin-modified glass ionomer cements. Acta Stomatol. Croat. 2019, 53, 37. [Google Scholar] [CrossRef] [PubMed]
- Alkhudhairy, F.I. The effect of curing intensity on mechanical properties of different bulk-fill composite resins. Clin. Cosmet. Investig. Dent. 2017, 9, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santini, A.; Turner, S. General dental practitioners’ knowledge of polymerisation of resin-based composite restorations and light curing unit technology. Br. Dent. J. 2011, 211, E13. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, G.P. Factors associated with light curing units: A questionnaire survey. Scr. Sci. Med. Dent. 2019, 5, 37–43. [Google Scholar] [CrossRef]
- Dikova, T.D.; Kulinich, S.A.; Iwamori, S.; Yamaguchi, S. Technological parameters optimization in picosecond laser texturing of titanium surfaces. J. Phys. Conf. Ser. 2021, 1859, 012037. [Google Scholar] [CrossRef]
- Maximov, J.T.; Duncheva, G.V.; Anhev, A.P.; Dunchev, V.P.; Capec, J. A cost-effective optimization approach for improving the fatigue strength of diamond-burnished steel components. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 1–13. [Google Scholar] [CrossRef]
- Maximov, J.T.; Duncheva, G.V.; Anchev, A.P.; Dunchev, V.P. Smoothing, deep or mixed diamond burnishing of low-alloy steel components—Optimization procedures. Int. J. Adv. Manuf. Technol. 2020, 106, 1917–1929. [Google Scholar] [CrossRef]
- Malakov, I.; Zaharinov, V.; Tzenov, V. Size ranges optimization. Procedia Eng. 2015, 100, 791–800. [Google Scholar] [CrossRef] [Green Version]
- Malakov, I.; Zaharinov, V. Computer Aided Determination of Criteria Priority for Structural Optimization of Technical Systems. Procedia Eng. 2014, 69, 735–744. [Google Scholar] [CrossRef] [Green Version]
- Objelean, A.C.; Silaghi-Dimitrescu, L.; Furtos, G.; Badea, M.A.; Moldovan, M. The influence of organic-inorganic phase mixures on degradation behavior of some resin composites used in conservative dentistry. J. Optoelectron. Adv. Mater. 2016, 18, 567–575. [Google Scholar]
- Safety Data Sheet, Evetric; Ivoclar Vivadent AG: Schaan, Liechtenstein, 2015; 6p.
- 3M Filtek One Bulk Fill Restorative, Technical Product Profile; 3m.com: St. Paul, MN, USA; Available online: https://multimedia.3m.com/mws/media/1317671O/3m-filtek-one-bulk-fill-restorative-technical-product-profile.pdf (accessed on 2 April 2021).
- 3M Filtek One Bulk Fill Restorative, Safety Data Sheet; 3m.com: St. Paul, MN, USA, 31 July 2020; Available online: https://multimedia.3m.com/mws/mediawebserver?mwsId=SSSSSuUn_zu8l00xm82Bm8_ZPv70k17zHvu9lxtD7SSSSSS-- (accessed on 2 April 2021).
- G-Aenial Universal Flo, Technical Manual; GC: Leuven, Belgium; 20p, Available online: www.gceurope.com; https://cdn.gceurope.com/v1/PID/gaenialuniversalflo/manual/MAN_G-aenial_Universal_Flo_Technical_Manual_en.pdf; (accessed on 2 April 2021).
- Yilmaz, E.Ç.; Sadeler, R.; Oner, V.; Yeşilyurt, M. Investigation of mechancal properties of restorative composites after artificial aging. In Proceedings of the International Energy and Engineering Congress, UEMK 2016 Conference Proceedings, Gaziantep University, Gaziantep, Turkey, 13–14 October 2016; pp. 739–743. [Google Scholar]
Composite | Composition | ||
---|---|---|---|
Component | Amount | Matrix/Filler Ratio, wt% | |
UC Evetric | Matrix: BIS-GMA (Bisphenol A glycydil dimethacrylate) UDMA (Urethane dimethacrylate) Bis-EMA (Bisphenol A polyethethylene glycol dimethacrylate) Fillers: Barium glass, Ytterbium Fluoride (YbF3), Mixed oxides and prepolymers 40 nm–3μm | 3–10% 10–25% 3–10% | 19–20/80–81 |
BC Filtek One Bulk Fill Restorative | Matrix: AUDMA (Aromatic Urethane Dimethacrylate) DDDMA (1,12-Dodecane Dimethycrylate) UDMA (Urethane dimethacrylate) Fillers: Silane Treated Ceramic, Silica, Zirconia and Ytterbium Fluoride | 10–20% <10% 1–10% | 23.5/76.5 |
FC G-aenial Universal Flo | Matrix: UDMA (Urethane dimethacrylate) Bis-EMA (Bisphenol A polyethethylene glycol dimethacrylate) Dimethacrylate component Fillers: Silicon dioxide (16 nm), Strontium glass (200 nm), pigments | 10–20% 5–10% 5–10% | 31/69 |
Governing Factors | |||||
---|---|---|---|---|---|
Levels of the Factors | |||||
Coded | |||||
For the first factor | |||||
−1 | −0.1111 | 1 | |||
For the rest factors | |||||
−1 | 0 | 1 | |||
Natural | |||||
Intensity I [mW/cm2] | 600 | 1000 | 1500 | ||
Time t [s] | 20 | 40 | 60 | ||
Thickness d [mm] | 2 | 3 | 4 |
№ | Composite Type | UC | BC | FC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Governing Factors | ||||||||||||
Coded | Natural | |||||||||||
I, mW/cm2 | t, s | d, mm | ||||||||||
1 | −1 | −1 | −1 | 600 | 20 | 2 | 42.0 | 33.5 | 59.1 | 55.8 | 42.4 | 37.9 |
2 | 1 | −1 | −1 | 1500 | 20 | 2 | 52.4 | 42.9 | 61.7 | 60.2 | 50.0 | 46.3 |
3 | −1 | 1 | −1 | 600 | 60 | 2 | 45.9 | 41.1 | 61.8 | 61.1 | 47.5 | 45.5 |
4 | 1 | 1 | −1 | 1500 | 60 | 2 | 57.8 | 51.3 | 68.4 | 67.5 | 49.9 | 47.7 |
5 | −1 | −1 | 1 | 600 | 20 | 4 | 45.0 | 12.2 | 57.9 | 45.4 | 42.9 | 13.1 |
6 | 1 | −1 | 1 | 1500 | 20 | 4 | 58.9 | 26.1 | 61.7 | 55.3 | 45.0 | 27.0 |
7 | −1 | 1 | 1 | 600 | 60 | 4 | 49.3 | 32.7 | 60.3 | 57.5 | 45.3 | 31.7 |
8 | 1 | 1 | 1 | 1500 | 60 | 4 | 62.7 | 45.0 | 67.2 | 65.3 | 48.1 | 42.6 |
9 | −0.1111 | −1 | −1 | 1000 | 20 | 2 | 54.1 | 42.2 | 62.2 | 60.3 | 47.7 | 42.3 |
10 | −0.1111 | 1 | 1 | 1000 | 60 | 4 | 56.9 | 35.8 | 65.1 | 61.6 | 45.8 | 37.6 |
11 | −1 | 0 | −1 | 600 | 40 | 2 | 42.4 | 38.2 | 63.8 | 60.3 | 45.3 | 43.5 |
12 | 1 | 0 | 1 | 1500 | 40 | 4 | 61.7 | 38.4 | 65.3 | 62.5 | 45.5 | 36.5 |
13 | −1 | −1 | 0 | 600 | 20 | 3 | 44.3 | 22.2 | 59.2 | 51.8 | 46.1 | 29.9 |
14 | 1 | 1 | 0 | 1500 | 60 | 3 | 59.3 | 48.7 | 69.1 | 67.3 | 51.1 | 47.1 |
№ | I mW/cm2 | t s | d mm | HV Top | HV Bottom | Note |
---|---|---|---|---|---|---|
1 | 1500 | 60 | 3.10 | 60.0 | 48.0 | Regimes that meet the requirement of max HV 56 +/−4 on the top surface and HV on the bottom surface ≥ 80%. |
2 | 1500 | 40 | 3.05 | 58.3 | 41.6 | |
3 | 1500 | 20 | 2.35 | 55.3 | 41.6 | |
4 | 1000 | 60 | 2.85 | 57.0 | 43.0 | |
5 | 1000 | 40 | 2.15 | 53.9 | 41.6 | |
6 | 1000 | 20 | Incorrect solution | HV difference between top and bottom surface is larger than 20%. | ||
7 | 600 | 60 | Incorrect solution | HV values on the top surface are lower than the acceptable 56 +/−4. | ||
8 | 600 | 40 | Incorrect solution | |||
9 | 600 | 20 | Incorrect solution |
№ | Intensity, mW/cm2 | Time, s | Layer Thickness, mm |
---|---|---|---|
1 | I > 1000 | 20 | 2 |
2 | 600–1500 | 40 | 2 |
3 | I > 1000 | 20 | 3 |
4 | 600–1500 | 40 | 3 |
5 | I > 1250 | 20 | 4 |
6 | 700–1250 | 40 | 4 |
7 | I < 700 | 60 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dikova, T.; Maximov, J.; Todorov, V.; Georgiev, G.; Panov, V. Optimization of Photopolymerization Process of Dental Composites. Processes 2021, 9, 779. https://doi.org/10.3390/pr9050779
Dikova T, Maximov J, Todorov V, Georgiev G, Panov V. Optimization of Photopolymerization Process of Dental Composites. Processes. 2021; 9(5):779. https://doi.org/10.3390/pr9050779
Chicago/Turabian StyleDikova, Tsanka, Jordan Maximov, Vladimir Todorov, Georgi Georgiev, and Vladimir Panov. 2021. "Optimization of Photopolymerization Process of Dental Composites" Processes 9, no. 5: 779. https://doi.org/10.3390/pr9050779
APA StyleDikova, T., Maximov, J., Todorov, V., Georgiev, G., & Panov, V. (2021). Optimization of Photopolymerization Process of Dental Composites. Processes, 9(5), 779. https://doi.org/10.3390/pr9050779