Characterization of Bacillus Species from Market Foods in Beijing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Bacterial Isolation and Identification
2.3. Antimicrobial Susceptibility Tests
2.4. Genome Sequencing and Bioinformatics Analysis
2.5. Hemolysis Test and Detection of Bacterially Produced Inhibitory Compounds
3. Results
3.1. Sample Collection and Bacterial Composition
3.2. Antimicrobial Susceptibility of Bacillus Isolates
3.3. The Antimicrobial Resistance and Virulence Genes of Bacillus Isolates
3.4. The Hemolytic Ability and Antibacterial Effect of Bacillus Isolates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bennett, S.D.; Sodha, S.V.; Ayers, T.L.; Lynch, M.F.; Gould, L.H.; Tauxe, R.V. Produce-associated foodborne disease outbreaks, USA, 1998–2013. Epidemiol. Infect. 2018, 146, 1397–1406. [Google Scholar] [CrossRef] [Green Version]
- Schlinkmann, K.M.; Razum, O.; Werber, D. Characteristics of foodborne outbreaks in which use of analytical epidemiological studies contributed to identification of suspected vehicles, European Union, 2007 to 2011. Epidemiol. Infect. 2017, 145, 1231–1238. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Pires, S.M.; Liu, Z.; Ma, X.; Liang, J.; Jiang, Y.; Chen, J.; Liang, J.; Wang, S.; Wang, L.; et al. Surveillance of foodborne disease outbreaks in China, 2003–2017. Food Control 2020, 118, 107359. [Google Scholar] [CrossRef]
- World Health Organization. Food Safety. Available online: https://www.who.int/news-room/fact-sheets/detail/food-safety (accessed on 30 April 2020).
- Mughini-Gras, L.; Schaapveld, M.; Kramers, J.; Mooij, S.; Neefjes-Borst, E.A.; Van Pelt, W.; Neefjes, J. Increased colon cancer risk after severe Salmonella infection. PLoS ONE 2018, 13, e0189721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Y.; Feng, T.; Xu, J.; Xue, C. Recent advances of molecularly imprinted polymer-based sensors in the detection of food safety hazard factors. Biosens. Bioelectron. 2019, 141, 111447. [Google Scholar] [CrossRef] [PubMed]
- Fung, F.; Wang, H.-S.; Menon, S. Food safety in the 21st century. Biomed. J. 2018, 41, 88–95. [Google Scholar] [CrossRef]
- Rajkovic, A.; Jovanovic, J.; Monteiro, S.; Decleer, M.; Andjelkovic, M.; Foubert, A.; Beloglazova, N.; Tsilla, V.; Sas, B.; Madder, A.; et al. Detection of toxins involved in foodborne diseases caused by Gram-positive bacteria. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1605–1657. [Google Scholar] [CrossRef] [PubMed]
- Bottone, E.J. Bacillus cereus, a Volatile Human Pathogen. Clin. Microbiol. Rev. 2010, 23, 382–398. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, W.L. Roles of Bacillus endospores in the environment. Cell. Mol. Life Sci. 2002, 59, 410–416. [Google Scholar] [CrossRef]
- Drobniewski, F.A. Bacillus cereus and related species. Clin. Microbiol. Rev. 1993, 6, 324–338. [Google Scholar] [CrossRef]
- Kotiranta, A.; Lounatmaa, K.; Haapasalo, M. Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect. 2000, 2, 189–198. [Google Scholar] [CrossRef]
- Vidic, J.; Chaix, C.; Manzano, M.; Heyndrickx, M. Food Sensing: Detection of Bacillus cereus Spores in Dairy Products. Biosensors 2020, 10, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholson, W.L.; Munakata, N.; Horneck, G.; Melosh, H.J.; Setlow, P. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 2000, 64, 548–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bader, J.; Albin, A.; Stahl, U. Spore-forming bacteria and their utilisation as probiotics. Benef. Microbes 2012, 3, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Elshaghabee, F.M.F.; Rokana, N.; Gulhane, R.D.; Sharma, C.; Panwar, H. Bacillus as potential probiotics: Status, concerns, and future perspectives. Front. Microbiol. 2017, 8, 1490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefevre, M.; Racedo, S.M.; Ripert, G.; Housez, B.; Cazaubiel, M.; Maudet, C.; Jüsten, P.; Marteau, P.; Urdaci, M.C. Probiotic strain Bacillus subtilis CU1 stimulates immune system of elderly during common infectious disease period: A randomized, double-blind placebo-controlled study. Immun. Ageing 2015, 12, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Shobharani, P.; Padmaja, R.J.; Halami, P.M. Diversity in the antibacterial potential of probiotic cultures Bacillus licheniformis MCC2514 and Bacillus licheniformis MCC2512. Res. Microbiol. 2015, 166, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Ripert, G.; Racedo, S.M.; Elie, A.-M.; Jacquot, C.; Bressollier, P.; Urdaci, M.C. Secreted Compounds of the Probiotic Bacillus clausii strain O/C inhibit the cytotoxic effects induced by Clostridium difficile and Bacillus cereus toxins. Antimicrob. Agents Chemother. 2016, 60, 3445–3454. [Google Scholar] [CrossRef] [Green Version]
- Terlabie, N.N.; Sakyi-Dawson, E.; Amoa-Awua, W.K. The comparative ability of four isolates of Bacillus subtilis to ferment soybeans into dawadawa. Int. J. Food Microbiol. 2006, 106, 145–152. [Google Scholar] [CrossRef]
- Cochrane, S.A.; Vederas, J.C. Lipopeptides from Bacillus and Paenibacillus spp.: A gold mine of antibiotic candidates. Med. Res. Rev. 2016, 36, 4–31. [Google Scholar] [CrossRef]
- Zhao, H.; Shao, D.; Jiang, C.; Shi, J.; Li, Q.; Huang, Q.; Rajoka, M.S.R.; Yang, H.; Jin, M. Biological activity of lipopeptides from Bacillus. Appl. Microbiol. Biotechnol. 2017, 101, 5951–5960. [Google Scholar] [CrossRef] [PubMed]
- Bareia, T.; Pollak, S.; Eldar, A. Self-sensing in Bacillus subtilis quorum-sensing systems. Nat. Microbiol. 2018, 3, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Jennings-Antipov, L.D.; Song, L.; Collier, R.J. Interactions of anthrax lethal factor with protective antigen defined by site-directed spin labeling. Proc. Natl. Acad. Sci. USA 2011, 108, 1868–1873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toh, M.; Moffitt, M.C.; Henrichsen, L.; Raftery, M.; Barrow, K.; Cox, J.M.; Marquis, C.P.; Neilan, B.A. Cereulide, the emetic toxin of Bacillus cereus, is putatively a product of nonribosomal peptide synthesis. J. Appl. Microbiol. 2004, 97, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.A.; Hakulinen, P.; Honkalampi-Hämäläinen, U.; Hoornstra, D.; Lhuguenot, J.-C.; Mäki-Paakkanen, J.; Savolainen, M.; Severin, I.; Stammati, A.-L.; Turco, L.; et al. Toxicological profile of cereulide, the Bacillus cereus emetic toxin, in functional assays with human, animal and bacterial cells. Toxicon 2007, 49, 351–367. [Google Scholar] [CrossRef] [PubMed]
- Rouzeau-Szynalski, K.; Stollewerk, K.; Messelhäusser, U.; Ehling-Schulz, M. Why be serious about emetic Bacillus cereus: Cereulide production and industrial challenges. Food Microbiol. 2020, 85, 103279. [Google Scholar] [CrossRef] [PubMed]
- Tran, S.-L.; Guillemet, E.; Ngo-Camus, M.; Clybouw, C.; Puhar, A.; Moris, A.; Gohar, M.; Lereclus, D.; Ramarao, N. Haemolysin II is a Bacillus cereus virulence factor that induces apoptosis of macrophages. Cell. Microbiol. 2010, 13, 92–108. [Google Scholar] [CrossRef] [PubMed]
- Jeßberger, N.; Dietrich, R.; Bock, S.; Didier, A.; Märtlbauer, E. Bacillus cereus enterotoxins act as major virulence factors and exhibit distinct cytotoxicity to different human cell lines. Toxicon 2014, 77, 49–57. [Google Scholar] [CrossRef]
- Dietrich, R.; Jessberger, N.; Ehling-Schulz, M.; Märtlbauer, E.; Granum, P.E. The food poisoning toxins of Bacillus cereus. Toxins 2021, 13, 98. [Google Scholar] [CrossRef]
- Berendonk, T.U.; Manaia, C.M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Buergmann, H.; Sørum, H.; Norström, M.; Pons, M.-N.; et al. Tackling antibiotic resistance: The environmental framework. Nat. Rev. Microbiol. 2015, 13, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Cabello, F.C.; Godfrey, H.P.; Buschmann, A.H.; Dölz, H.J. Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. Lancet Infect. Dis. 2016, 16, e127–e133. [Google Scholar] [CrossRef]
- Friedman, N.; Temkin, E.; Carmeli, Y. The negative impact of antibiotic resistance. Clin. Microbiol. Infect. 2016, 22, 416–422. [Google Scholar] [CrossRef]
- Nolte, O. Antimicrobial resistance in the 21st century: A multifaceted challenge. Protein Pept. Lett. 2014, 21, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Glasset, B.; Herbin, S.; Guillier, L.; Cadel-Six, S.; Vignaud, M.-L.; Grout, J.; Pairaud, S.; Michel, V.; Hennekinne, J.-A.; RamaRao, N.; et al. Bacillus cereus-induced food-borne outbreaks in France, 2007 to 2014: Epidemiology and genetic characterisation. Eurosurveillance 2016, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J. 2017, 15, e05077. [Google Scholar] [CrossRef] [Green Version]
- Anderson Borge, G.I.; Skeie, M.; Sørhaug, T.; Langsrud, T.; Granum, P.E. Growth and toxin profiles of Bacillus cereus isolated from different food sources. Int. J. Food Microbiol. 2001, 69, 237–246. [Google Scholar] [CrossRef]
- Liu, X.-Y.; Hu, Q.; Xu, F.; Ding, S.-Y.; Zhu, K. Characterization of Bacillus cereus in dairy products in China. Toxins 2020, 12, 454. [Google Scholar] [CrossRef]
- Jessberger, N.; Dietrich, R.; Granum, P.E.; Märtlbauer, E. The Bacillus cereus food infection as multifactorial process. Toxins 2020, 12, 701. [Google Scholar] [CrossRef] [PubMed]
- Bennett, S.D.; Walsh, K.A.; Gould, L.H. Foodborne disease outbreaks caused by Bacillus cereus, Clostridium perfringens, and Staphylococcus aureus--United States, 1998-2008. Clin. Infect. Dis. 2013, 57, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Lane, D.J. 16S/23S rRNA Sequencing. Nucleic Acid Techniques in Bacterial Systematic; Wiley: Chichester, UK; New York, NY, USA, 1991; pp. 115–175. [Google Scholar]
- Akhtar, S.; Sarker, M.R.; Hossain, A. Microbiological food safety: A dilemma of developing societies. Crit. Rev. Microbiol. 2012, 40, 348–359. [Google Scholar] [CrossRef]
- Shimojima, Y.; Kodo, Y.; Soeda, K.; Koike, H.; Kanda, M.; Hayashi, H.; Nishino, Y.; Fukui, R.; Kuroda, S.; Hirai, A.; et al. Prevalence of Cereulide-producing Bacillus cereus in pasteurized milk. Shokuhin Eiseigaku Zasshi 2020, 61, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Wang, S.; Ding, S.; Shen, J.; Zhu, K. Toxins and mobile antimicrobial resistance genes in Bacillus probiotics constitute a potential risk for One Health. J. Hazard. Mater. 2020, 382, 121266. [Google Scholar] [CrossRef] [PubMed]
- Ohki, R.; Tateno, K.; Takizawa, T.; Aiso, T.; Murata, M. Transcriptional termination control of a novel ABC transporter gene involved in antibiotic resistance in Bacillus subtilis. J. Bacteriol. 2005, 187, 5946–5954. [Google Scholar] [CrossRef] [Green Version]
- Park, K.M.; Jeong, M.; Park, K.J.; Koo, M. Prevalence, enterotoxin genes, and antibiotic resistance of Bacillus cereus Isolated from raw vegetables in Korea. J. Food Prot. 2018, 81, 1590–1597. [Google Scholar] [CrossRef]
- Fiedler, G.; Schneider, C.; Igbinosa, E.O.; Kabisch, J.; Brinks, E.; Becker, B.; Stoll, D.A.; Cho, G.-S.; Huch, M.; Franz, C.M.A.P. Antibiotics resistance and toxin profiles of Bacillus cereus-group isolates from fresh vegetables from German retail markets. BMC Microbiol. 2019, 19, 250. [Google Scholar] [CrossRef] [PubMed]
- Enosi Tuipulotu, D.; Mathur, A.; Ngo, C.; Man, S.M. Bacillus cereus: Epidemiology, virulence factors, and host–pathogen interactions. Trends Microbiol. 2021, 29, 458–471. [Google Scholar] [CrossRef]
- Yu, S.; Yu, P.; Wang, J.; Li, C.; Guo, H.; Liu, C.; Kong, L.; Yu, L.; Wu, S.; Lei, T.; et al. A Study on prevalence and characterization of Bacillus cereus in Ready-to-Eat foods in China. Front. Microbiol. 2020, 10, 3043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, K.; Hölzel, C.S.; Cui, Y.; Mayer, R.; Wang, Y.; Dietrich, R.; Didier, A.; Bassitta, R.; Märtlbauer, E.; Ding, S. Probiotic Bacillus cereus strains, a potential risk for public health in China. Front. Microbiol. 2016, 7, 718. [Google Scholar] [CrossRef]
- Abdeen, E.E.-S.; Hussien, H.; Hadad, G.A.E.; Mousa, W.S. Prevalence of virulence determinants among Bacillus cereus isolated from milk products with potential public health concern. Pak. J. Biol. Sci. 2020, 23, 206–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forghani, F.; Kim, J.-B.; Oh, D.-H. Enterotoxigenic profiling of emetic toxin- and enterotoxin-producing Bacillus cereus, isolated from food, environmental, and clinical samples by multiplex PCR. J. Food Sci. 2014, 79, M2288–M2293. [Google Scholar] [CrossRef]
Sample Source | No. of Samples | No. of Isolates |
---|---|---|
Beijing specialty food | 31 | 11 |
Dairy products | 29 | 18 |
Rice products | 15 | 8 |
Probiotics | 11 | 9 |
Fermented food | 9 | 8 |
Raw or cooked meat | 7 | 1 |
Soybean milk | 2 | 0 |
Snacks | 2 | 0 |
Total | 106 | 55 |
Antibiotics | Fraction of Resistant Isolates | |||
---|---|---|---|---|
B. cereus | B. licheniformis | B. subtilis | B. pumilus | |
AMP | 29/29 | 3/9 | 1/7 | 0 |
CRO | 29/29 | 3/9 | 1/7 | 5/5 |
GEN | 2/29 | 0 | 0 | 0 |
STR | 15/29 | 7/9 | 7/7 | 0 |
KAN | 1/29 | 1/9 | 0 | 0 |
ERY | 2/29 | 7/9 | 0 | 0 |
TET | 2/29 | 0 | 0 | 0 |
FFC | 29/29 | 9/9 | 7/7 | 5/5 |
CIP | 2/29 | 0 | 0 | 0 |
VAN | 0 | 0 | 0 | 0 |
RIP | 0 | 0 | 0 | 0 |
LZD | 6/29 | 1/9 | 3/7 | 0 |
LIN | 29/29 | 9/9 | 7/7 | 5/5 |
TIA | 23/29 | 9/9 | 4/7 | 4/5 |
CHL | 1/29 | 2/9 | 0 | 0 |
AMC | 29/29 | 0 | 0 | 0 |
Strains | Species | Sources | ARGs | VGs |
---|---|---|---|---|
CAU475 | B. cereus | Dairy products | fosB, van | clo, entFM, hlyⅢ, inhA2, nheA, nheB, nheC, nprA, PLC, sph |
CAU476 | B. cereus | Dairy products | fosB, tetA, van | clo, cytK, entFM, entS, hlyⅢ, inhA2, nheA, nheB, nheC, nprA, PLC, sph |
CAU479 | B. cereus | Dairy products | fosB, van | clo, cytK, entFM, entS, hlyⅢ, inhA2, nheA, nheB, nheC, nprA, PLC, sph |
CAU480 | B. cereus | Dairy products | aac, cat, fosB, van | clo, entFM, entS, hlyⅢ, inhA2, nheA, nheB, nheC, nprA, PLC, sph |
CAU481 | B. cereus | Dairy products | fosB, van | clo, cytK, entFM, entS, hlyⅢ, inhA2, nheA, nheB, nheC, nprA, PLC, sph |
CAU482 | B. cereus | Dairy products | fosB, van | clo, entFM, entS, hlyⅢ, inhA2, nheA, nheB, nheC, nprA, PLC, sph |
CAU484 | B. cereus | Dairy products | fosB, van | cesH, entFM, entS, hlyⅢ, inhA2, nheA, nheB, nheC, nprA, PLC, sph |
CAU486 | B. cereus | Dairy products | fosB, van | cesH, entFM, entS, hlyⅢ, inhA2, nheA, nheB, nheC, nprA, PLC, sph |
CAU504 | B. cereus | Rice products | fosB, van | clo, entFM, entS, hblA, hblC, hblD, hlbB, hlyIII, inhA2, nheA, nheB, nheC, nprA, PLC, sph |
CAU505 | B. cereus | Rice products | fosB, van | clo, cytK, entFM, entS, hlyIII, inhA2, nheA, nheB, nheC, nprA, PLC, sph |
CAU506 | B. cereus | Rice products | fosB, tetL, van | clo, cytK, entFM, entS, hlyIII, inhA2, nheA, nheB, nheC, nprA, PLC, sph |
CAU495 | B. licheniformis | Fermented vegetable | ermD | -- |
CAU511 | B. licheniformis | Probiotics | ermD | -- |
CAU514 | B. licheniformis | Probiotics | ermD | -- |
CAU516 | B. licheniformis | Probiotics | ermD | -- |
CAU498 | B. pumilus | Fermented vegetable | aadK, mphK, tetL | -- |
CAU500 | B. pumilus | Fermented vegetable | cat | -- |
CAU501 | B. subtilis | Ham | aadK, mphK, tetL | -- |
CAU502 | B. subtilis | Rice products | aadK, mphK, tetL | -- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Q.; Fang, Y.; Zhu, J.; Xu, W.; Zhu, K. Characterization of Bacillus Species from Market Foods in Beijing, China. Processes 2021, 9, 866. https://doi.org/10.3390/pr9050866
Hu Q, Fang Y, Zhu J, Xu W, Zhu K. Characterization of Bacillus Species from Market Foods in Beijing, China. Processes. 2021; 9(5):866. https://doi.org/10.3390/pr9050866
Chicago/Turabian StyleHu, Qiao, Yuwen Fang, Jiajia Zhu, Wenjiao Xu, and Kui Zhu. 2021. "Characterization of Bacillus Species from Market Foods in Beijing, China" Processes 9, no. 5: 866. https://doi.org/10.3390/pr9050866
APA StyleHu, Q., Fang, Y., Zhu, J., Xu, W., & Zhu, K. (2021). Characterization of Bacillus Species from Market Foods in Beijing, China. Processes, 9(5), 866. https://doi.org/10.3390/pr9050866