Development of a Nanocrystal Formulation of a Low Melting Point API Following a Quality by Design Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Wet Media Milling
2.2.2. ATR-FTIR Spectroscopy
2.2.3. Particle Size and Polydispersity Index (PDI) Determination by Dynamic Light Scattering (DLS)
2.2.4. Solidification of Nanosuspensions by SD
2.2.5. Differential Scanning Calorimetry (DSC)
2.2.6. Determination of Redispersibility
2.2.7. Molecular and Solid-State Modeling
Crystal Morphology Modelling
Lattice Energy Frameworks
2.2.8. Optimization of Wet Media Milling by Statistical Design of Experiment (DoE)
3. Results and Discussion
3.1. Wet Media Milling
Diluent/Co-Milling Agent
3.2. Wet Media Milling Process Optimization
3.2.1. Effects of Stabilizer and Mannitol Ratio on Fenofibrate Particle Size
3.2.2. Solidification and Redispersion of FEN Nanosuspension
3.3. Crystal Structure and Morphology
3.4. Statistical Analysis of DoE Results
Design Space Optimization for the Lab Scale Production of Fenofibrate Nanocrystals
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ling, H.; Luoma, J.T.; Hilleman, D. A Review of Currently Available Fenofibrate and Fenofibric Acid Formulations. Cardiol. Res. 2013, 4, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Back, H.M.; Song, B.; Pradhan, S.; Chae, J.W.; Han, N.; Kang, W.; Chang, M.J.; Zheng, J.; Kwon, K.I.; Karlsson, M.O.; et al. A mechanism-based pharmacokinetic model of fenofibrate for explaining increased drug absorption after food consumption. BMC Pharmacol. Toxicol. 2018, 19, 4. [Google Scholar] [CrossRef] [Green Version]
- Noyes, A.A.; Whitney, W.R. The rate of solution of solid substances in their own solutions. J. Am. Chem. Soc. 1897, 19, 930–934. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, I.; Schenck, D.; Bose, S.; Ruegger, C. Optimization of formulation and process parameters for the production of nanosuspension by wet media milling technique: Effect of Vitamin E TPGS and nanocrystal particle size on oral absorption. Eur. J. Pharm. Sci. 2012, 47, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Dudognon, E.; Willart, J.F.; Caron, V.; Capet, F.; Larsson, T.; Descamps, M. Formation of budesonide/α-lactose glass solutions by ball-milling. Solid State Commun. 2006, 138, 68–71. [Google Scholar] [CrossRef]
- Branham, M.L.; Moyo, T.; Govender, T. Preparation and solid-state characterization of ball milled saquinavir mesylate for solubility enhancement. Eur. J. Pharm. Biopharm. 2012, 80, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Eskin, D.; Zhupanska, O.; Hamey, R.; Moudgil, B.; Scarlett, B. Microhydrodynamics of stirred media milling. Powder Technol. 2005, 156, 95–102. [Google Scholar] [CrossRef]
- Lu, G.; Duan, Y.-Y.; Wang, X.-D. Surface tension, viscosity, and rheology of water-based nanofluids: A microscopic interpretation on the molecular level. J. Nanopart. Res. 2014, 16, 2564. [Google Scholar] [CrossRef]
- Peltonen, L.; Hirvonen, J. Pharmaceutical nanocrystals by nanomilling: Critical process parameters, particle fracturing and stabilization methods. J. Pharm. Pharmacol. 2010, 62, 1569–1579. [Google Scholar] [CrossRef] [PubMed]
- Malkin, A.I. Regularities and mechanisms of the Rehbinder’s effect. Colloid J. 2012, 74, 223–238. [Google Scholar] [CrossRef]
- Arpagaus, C. Pharmaceutical Particle Engineering via Nano Spray Drying—Process Parameters and Application Examples on the Laboratory-Scale. Int. J. Med. Nano Res. 2018, 5. [Google Scholar] [CrossRef]
- Górniak, A.; Wojakowska, A.; Karolewicz, B.; Pluta, J. Phase diagram and dissolution studies of the fenofibrate-acetylsalicylic acid system. J. Therm. Anal. Calorim. 2011, 104, 1195–1200. [Google Scholar] [CrossRef] [Green Version]
- Zuo, B.; Sun, Y.; Li, H.; Liu, X.; Zhai, Y.; Sun, J.; He, Z. Preparation and in vitro/in vivo evaluation of fenofibrate nanocrystals. Int. J. Pharm. 2013, 455, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Van Eerdenbrugh, B.; Froyen, L.; Van Humbeeck, J.; Martens, J.A.; Augustijns, P.; Van den Mooter, G. Drying of crystalline drug nanosuspensions-The importance of surface hydrophobicity on dissolution behavior upon redispersion. Eur. J. Pharm. Sci. 2008, 35, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Xia, D.; Shrestha, N.; van de Streek, J.; Mu, H.; Yang, M. Spray drying of fenofibrate loaded nanostructured lipid carriers. Asian J. Pharm. Sci. 2016, 11, 507–515. [Google Scholar] [CrossRef] [Green Version]
- Vogt, M.; Kunath, K.; Dressman, J.B. Dissolution enhancement of fenofibrate by micronization, cogrinding and spray-drying: Comparison with commercial preparations. Eur. J. Pharm. Biopharm. 2008, 68, 283–288. [Google Scholar] [CrossRef]
- Yue, P.F.; Li, Y.; Wan, J.; Yang, M.; Zhu, W.F.; Wang, C.H. Study on formability of solid nanosuspensions during nanodispersion and solidification: I. Novel role of stabilizer/drug property. Int. J. Pharm. 2013, 454, 269–277. [Google Scholar] [CrossRef]
- Rissanou, A.N.; Ouranidis, A.; Karatasos, K. Complexation of single stranded RNA with an ionizable lipid: An all-atom molecular dynamics simulation study. Soft Matter 2020, 16, 6993–7005. [Google Scholar] [CrossRef]
- Gavezzotti, A. Calculations of lattice energies of organic crystals: The PIXEL integration method in comparison with more traditional methods. Z. Krist. 2005, 220, 499–510. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. Sect. B Struct. Sci. 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Fleming, S.; Rohl, A. GDIS: A visualization program for molecular and periodic systems. Zeitschrift fur Krist. 2005, 220, 580–584. [Google Scholar] [CrossRef]
- Gale, J.D.; Rohl, A.L. The General Utility Lattice Program (GULP). Mol. Simul. 2003, 29, 291–341. [Google Scholar] [CrossRef]
- Mayo, S.L.; Olafson, B.D.; Goddard, W.A. DREIDING: A Generic Force Field for Molecular Simulations. J. Phys. Chem. 1990, 94, 8897–8909. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.H.; Koseki, S.; Matsunaga, N.; Nguyen, K.A.; Su, S.; et al. General atomic and molecular electronic structure system. J. Comput. Chem. 1993, 14, 1347–1363. [Google Scholar] [CrossRef]
- Shishkin, O.; Medvediev, V.; Zubatyuk, R. Supramolecular architecture of molecular crystals possessing shearing mechanical properties: Columns versus layers. CrystEngComm 2012, 15, 160–167. [Google Scholar] [CrossRef]
- Bond, A.D. processPIXEL: A program to generate energy-vector models from Gavezzotti’s PIXEL calculations. J. Appl. Crystallogr. 2014, 47, 1777–1780. [Google Scholar] [CrossRef]
- Macrae, C.F.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Shields, G.P.; Taylor, R.; Towler, M.; Van De Streek, J. Mercury: Visualization and analysis of crystal structures. J. Appl. Crystallogr. 2006, 39, 453–457. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Van den Mooter, G. Spray drying formulation of amorphous solid dispersions. Adv. Drug Deliv. Rev. 2016, 100, 27–50. [Google Scholar] [CrossRef]
- Tipduangta, P.; Takieddin, K.; Fábián, L.; Belton, P.; Qi, S. A new low melting-point polymorph of fenofibrate prepared via talc induced heterogeneous nucleation. Cryst. Growth Des. 2015, 15, 5011–5020. [Google Scholar] [CrossRef]
- Ferjani, H. Structural, Hirshfeld Surface Analysis, Morphological Approach, and Spectroscopic Study of New Hybrid Iodobismuthate Containing Tetranuclear 0D Cluster Bi4I16·4(C6H9N2) 2(H2O). Crystals 2020, 10, 397. [Google Scholar] [CrossRef]
- Marquaridt, D.W. Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics 1970, 12, 591–612. [Google Scholar] [CrossRef]
- Ouranidis, A.; Gkampelis, N.; Vardaka, E.; Karagianni, A.; Tsiptsios, D.; Nikolakakis, I.; Kachrimanis, K. Overcoming the solubility barrier of ibuprofen by the rational process design of a nanocrystal formulation. Pharmaceutics 2020, 12, 969. [Google Scholar] [CrossRef]
- Longest, P.W.; Farkas, D.; Hassan, A.; Hindle, M. Computational Fluid Dynamics (CFD) Simulations of Spray Drying: Linking Drying Parameters with Experimental Aerosolization Performance. Pharm. Res. 2020, 37, 101. [Google Scholar] [CrossRef]
- Littringer, E.M.; Mescher, A.; Eckhard, S.; Schröttner, H.; Langes, C.; Fries, M.; Griesser, U.; Walzel, P.; Urbanetz, N.A. Spray drying of Mannitol as a drug carrier—the impact of process parameters on product properties. Dry. Technol. 2012, 30, 114–124. [Google Scholar] [CrossRef]
- Maas, S.G.; Schaldach, G.; Littringer, E.M.; Mescher, A.; Griesser, U.J.; Braun, D.E.; Walzel, P.E.; Urbanetz, N.A. The impact of spray drying outlet temperature on the particle morphology of mannitol. Powder Technol. 2011, 213, 27–35. [Google Scholar] [CrossRef]
- Drechsler, A.; Caspari, A.; Synytska, A. Influence of roughness and capillary size on the zeta potential values obtained by streaming potential measurements. Surf. Interface Anal. 2020, 52, 991–995. [Google Scholar] [CrossRef]
- Ouranidis, A.; Tsiaxerli, A.; Vardaka, E.; Markopoulou, C.K.; Zacharis, C.K.; Nicolaou, I.; Hatzichristou, D.; Haidich, A.-B.; Kostomitsopoulos, N.; Kachrimanis, K. Sildenafil 4.0—Integrated Synthetic Chemistry, Formulation and Analytical Strategies Effecting Immense Therapeutic and Societal Impact in the Fourth Industrial Era. Pharmaceuticals 2021, 14, 365. [Google Scholar] [CrossRef]
Std | Run | Factor A FEN/HPMC (w/w) | Factor B FEN/Mannitol (w/w) | Factor C Inlet Temperature (°C) |
---|---|---|---|---|
8 | 1 | 5.5 | 2 | 0.88 × Tm |
1 | 2 | 2 | 0.5 | 0.88 × Tm |
5 | 3 | 5.5 | 1 | 0.88 × Tm |
4 | 4 | 2 | 1 | 0.88 × Tm |
3 | 5 | 10 | 0.5 | 0.88 × Tm |
18 | 6 | 10 | 2 | 1.12 × Tm |
7 | 7 | 2 | 2 | 0.88 × Tm |
16 | 8 | 2 | 2 | 1.12 × Tm |
17 | 9 | 5.5 | 2 | 1.12 × Tm |
2 | 10 | 5.5 | 0.5 | 0.88 × Tm |
12 | 11 | 10 | 0.5 | 1.12 × Tm |
13 | 12 | 2 | 1 | 1.12 × Tm |
10 | 13 | 2 | 0.5 | 1.12 × Tm |
14 | 14 | 5.5 | 1 | 1.12 × Tm |
15 | 15 | 10 | 1 | 1.12 × Tm |
9 | 16 | 10 | 2 | 0.88 × Tm |
6 | 17 | 10 | 1 | 0.88 × Tm |
11 | 18 | 5.5 | 0.5 | 1.12 × Tm |
Z-Average (nm)/Run Number | |||||||||
---|---|---|---|---|---|---|---|---|---|
Time (min) | 6 and 16 | 15 and 17 | 5 and 11 | 1 and 9 | 3 and 14 | 10 and 18 | 8 and 7 | 4 and 12 | 2 and 13 |
3 | 1220 | 1410 | 1410 | 1250 | 1490 | 1430 | 1280 | 1280 | 1430 |
6 | 744 | 860 | 848 | 754 | 890 | 1060 | 713 | 633 | 1310 |
9 | 855 | 736 | 1020 | 494 | 624 | 752 | 629 | 493 | 773 |
15 | 590 | 894 | 910 | 455 | 525 | 962 | 638 | 417 | 689 |
30 | 495 | 537 | 713 | 413 | 450 | 537 | 548 | 372 | 498 |
45 | 400 | 346 | 616 | 349 | 373 | 497 | 401 | 340 | 413 |
60 | 336 | 352 | 473 | 373 | 320 | 392 | 521 | 361 | 384 |
Run Number | Ζ-Potential (mV) |
---|---|
1–9 | −13.2 |
17–15 | −22.8 |
4–12 | −25.6 |
2–13 | −24.0 |
10–18 | −24.6 |
8–7 | −23.8 |
3–14 | −26.4 |
5–11 | −18.6 |
6–16 | −15.4 |
Spray Dried at 0.90 × Tm (71 °C) | Spray Dried at 1.12 × Tm (91 °C) | ||||||
---|---|---|---|---|---|---|---|
Run | Z-Average (nm) | RDI (%) | ζ-Potential (mV) | Run | Z-Average (nm) | RDI (%) | ζ-Potential (mV) |
1 | 321 | 86.05 | −20.2 | 9 | 10,100 * | 2707 | −11.1 |
16 | 311 | 92.55 | −20.1 | 6 | 10,130 * | 3014 | −18.4 |
17 | 356 | 101.13 | −20.4 | 15 | 13,140 * | 3732 | −20.2 |
3 | 550 | 171.87 | −18.6 | 14 | 644 | 201.2 | −14.8 |
5 | 425 | 97.25 | −19.8 | 11 | 13,410 * | 3068 | −19.8 |
7 | 377 | 72.36 | −19 | 8 | 521 | 100 | −14.8 |
10 | 305 | 77.80 | −16.4 | 18 | 694 | 177 | −16.8 |
2 | 432 | 112.5 | −13.8 | 13 | 730 | 190.1 | −17.2 |
4 | 370 | 102.49 | −16.4 | 12 | 441 | 122.2 | −15.2 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 3.40 × 108 | 6 | 5.66 × 107 | 9.86 | 0.0007 |
A-DSR | 9.87 × 107 | 1 | 9.87 × 107 | 17.19 | 0.0016 |
B-DDR | 3.12 × 106 | 1 | 3.12 × 106 | 0.5424 | 0.4769 |
C-T | 1.34 × 108 | 1 | 1.34 × 108 | 23.41 | 0.0005 |
AB | 2.44 × 106 | 1 | 2.44 × 106 | 0.4251 | 0.5278 |
AC | 1.06 × 108 | 1 | 1.06 × 108 | 18.42 | 0.0013 |
BC | 3.83 × 106 | 1 | 3.83 × 106 | 0.6672 | 0.4314 |
Residual | 6.32 × 107 | 11 | 5.74 × 106 | ||
Cor Total | 4.03 × 108 | 17 |
Factor | Coefficient Estimates | df | Standard Error | 95% CI Low | 95% CI High | VIF |
---|---|---|---|---|---|---|
Intercept | 3137.16 | 1 | 570.61 | 1881.26 | 4393.06 | |
A—DSR | 2886.48 | 1 | 696.14 | 1354.29 | 4418.66 | 1.02 |
B—DDR | 500.94 | 1 | 680.21 | −996.2 | 1998.07 | 1 |
C—T | 2760.77 | 1 | 570.6 | 1504.9 | 4016.65 | 1.02 |
AB | −541.06 | 1 | 829.85 | −2367.55 | 1285.42 | 1.02 |
AC | 2961.58 | 1 | 690 | 1442.89 | 4480.26 | 1 |
BC | 554.87 | 1 | 679.33 | −940.32 | 2050.07 | 1.02 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 90.88 | 6 | 15.15 | 5.28 | 0.0086 |
A-DSR | 41.4 | 1 | 41.4 | 14.44 | 0.0029 |
B-DDR | 0.078 | 1 | 0.078 | 0.0272 | 0.872 |
C-T | 20.67 | 1 | 20.67 | 7.21 | 0.0212 |
AB | 1.99 | 1 | 1.99 | 0.6935 | 0.4227 |
AC | 0.0958 | 1 | 0.0958 | 0.0334 | 0.8583 |
BC | 29.01 | 1 | 29.01 | 10.12 | 0.0088 |
Residual | 31.54 | 11 | 2.87 | ||
Cor Total | 122.43 | 17 |
Factor | Coefficient Estimate | df | Standard Error | 95% CI Low | 95% CI High | VIF |
---|---|---|---|---|---|---|
Intercept | −11.57 | 1 | 0.3766 | −12.40 | −10.74 | |
A | 0.9689 | 1 | 0.4595 | −0.0424 | 1.98 | 1.02 |
B | 0.9543 | 1 | 0.4490 | −0.0339 | 1.94 | 1.00 |
C | 0.3957 | 1 | 0.3766 | −0.4332 | 1.22 | 1.02 |
AB | −0.6684 | 1 | 0.5477 | −1.87 | 0.5371 | 1.02 |
AC | 0.4974 | 1 | 0.4554 | −0.5050 | 1.50 | 1.00 |
BC | −1.12 | 1 | 0.4484 | −2.11 | −0.1381 | 1.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouranidis, A.; Gkampelis, N.; Markopoulou, C.; Nikolakakis, I.; Kachrimanis, K. Development of a Nanocrystal Formulation of a Low Melting Point API Following a Quality by Design Approach. Processes 2021, 9, 954. https://doi.org/10.3390/pr9060954
Ouranidis A, Gkampelis N, Markopoulou C, Nikolakakis I, Kachrimanis K. Development of a Nanocrystal Formulation of a Low Melting Point API Following a Quality by Design Approach. Processes. 2021; 9(6):954. https://doi.org/10.3390/pr9060954
Chicago/Turabian StyleOuranidis, Andreas, Nikos Gkampelis, Catherine Markopoulou, Ioannis Nikolakakis, and Kyriakos Kachrimanis. 2021. "Development of a Nanocrystal Formulation of a Low Melting Point API Following a Quality by Design Approach" Processes 9, no. 6: 954. https://doi.org/10.3390/pr9060954
APA StyleOuranidis, A., Gkampelis, N., Markopoulou, C., Nikolakakis, I., & Kachrimanis, K. (2021). Development of a Nanocrystal Formulation of a Low Melting Point API Following a Quality by Design Approach. Processes, 9(6), 954. https://doi.org/10.3390/pr9060954