Effect of Parinari curatellifolia Peel Flour on the Nutritional, Physical and Antioxidant Properties of Biscuits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of P. curatellifolia Peel Flour
2.2. Preparation of Biscuits
2.3. Thermal Properties of Wheat–P. curatellifolia Composite Flours
2.4. Viscosity of the Composite Flour (Cold and Hot) Pastes
2.5. pH of the Composite Flours
2.6. Colour Attributes of Composite Flours and Biscuits
2.7. Proximate Composition of Biscuits
2.8. Polyphenolic Compounds and Antioxidant Activities of Composite Biscuits
2.8.1. Extraction
2.8.2. Total Phenolic Compounds (TPC)
2.8.3. Total Flavonoids Compounds (TFC)
2.8.4. DPPH (2,2-Diphenyl-1-pycryl-hydrazyl) Free Radical Scavenging Activity
2.8.5. Ferric-Reducing Antioxidant Power (FRAP)
2.9. Physical Properties of the Composite Biscuits
2.9.1. Thickness, Weight, Diameter and Spread Ratio
2.9.2. Texture Measurement
2.10. Statistics
3. Results and Discussion
3.1. Thermal Properties of Composite Flours
3.2. Viscosity and pH of Composite Flours
3.3. Colour Attributes of the Composite Flours and Biscuits
3.4. Nutritional Composition of Biscuits
3.5. Polyphenolic Compounds and Antioxidant Activity of Biscuits
3.6. Physical Properties of Biscuits
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bimbo, F.; Bonanno, A.; Nocella, G.; Viscecchia, R.; Nardone, G.; De Devitiis, B.; Carlucci, D. Consumers’ acceptance and preferences for nutrition-modified and functional dairy products: A systematic review. Appetite 2017, 113, 141–154. [Google Scholar] [CrossRef] [Green Version]
- Irakli, M.; Mygdalia, A.; Chatzopoulou, P.; Katsantonis, D. Impact of the combination of sourdough fermentation and hop extract addition on baking properties, antioxidant capacity and phenolics bioaccessibility of rice bran-enhanced bread. Food Chem. 2019, 285, 231–239. [Google Scholar] [CrossRef]
- Mabogo, F.A.; Mashau, M.E.; Ramashia, S.E. Effect of partial replacement of wheat flour with unripe banana flour on the functional, thermal, and physicochemical characteristics of flour and biscuits. Int. Food Res. J. 2021, 28, 138–147. [Google Scholar]
- Čukelj, N.; Novotni, D.; Sarajlija, H.; Drakula, S.; Voučko, B.; Ćurić, D. Flaxseed and multigrain mixtures in the development of functional biscuits. LWT Food Sci. Technol. 2017, 86, 85–92. [Google Scholar] [CrossRef]
- Baba, M.D.; Manga, T.A.; Daniel, C.; Danrangi, J. Sensory evaluation of toasted bread fortified with banana flour: A preliminary study. Am. J. Food Sci. Nutri. 2015, 2, 9–12. [Google Scholar]
- Dewettinck, K.; Van Bockstaele, F.; Kuhne, B.; Van de Walle, D.; Courtens, T.M.; Gellynck, X. Nutritional Value of Bread: Influence of processing, food interaction and consumer perception. J. Cereal Sci. 2008, 48, 243–257. [Google Scholar] [CrossRef]
- Benhura, C.; Kugara, J.; Muchuweti, M.; Nyagura, S.F.; Matarise, F.; Gombiro, P.E.; Nyandoro, G. Drying kinetics of syrup of Parinari curatellifolia fruit and cereal based product. J. Food Sci. Technol. 2015, 52, 4965–4974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalaba, F.K.; Quinn, C.H.; Dougill, A.J. Contribution of forest provisioning ecosystem services to rural livelihoods in the Miombo woodlands of Zambia. Popul. Environ. 2013, 35, 159–182. [Google Scholar] [CrossRef]
- Oladejo, T.A. Proximate composition and micronutrient potentials of three locally available wild fruits in Nigeria. Afr. J. Agric. Res. 2009, 4, 887–892. [Google Scholar]
- Jamnadass, R.H.; Dawson, I.K.; Franzel, S.; Leakey, R.R.B.; Mithofer, D.; Akinnifesi, F.K. Improving livelihoods and nutrition in sub-Saharan Africa through the promotion of indigenous and exotic fruit production in smallholders’ agroforestry systems, a review. Int. For. Rev. 2011, 13, 338–354. [Google Scholar] [CrossRef]
- Kobori, C.N.; Jorge, N. Characterisation of some seed oils of fruits for utilization of industrial residues. Cienc. E Agrotecnol. 2005, 29, 1008–1014. [Google Scholar] [CrossRef] [Green Version]
- Saka, J.D.K.; Apostolides, Z.; Shoko, T. Headspace volatiles of edible fruit pulp of Parinari curatellifolia growing in Malawi using solid phase microextraction. S. Afr. J. Bot. 2014, 90, 128–130. [Google Scholar]
- Varastegani, B.; Zzaman, W.; Yang, T.A. Investigation on physicochemical and sensory evaluation of cookies substituted with papaya pulp flour. J. Food Qual. 2015, 38, 175–183. [Google Scholar] [CrossRef]
- Parafati, L.; Restuccia, C.; Palmeri, R.; Fallico, B.; Arena, E. Characterization of prickly pear peel flour as a bioactive and functional ingredient in bread preparation. Foods 2020, 9, 1189. [Google Scholar] [CrossRef]
- Obafaye, R.O.; Omoba, O.S. Orange peel flour: A potential source of antioxidant and dietary fiber in pearl-millet biscuit. J. Food Biochem. 2018, 42, e12523. [Google Scholar] [CrossRef]
- Weng, M.; Li, Y.; Wu, L.; Zheng, H.; Lai, P.; Tang, B.; Luo, X. Effects of passion fruit peel flour as a dietary fibre resource on biscuit quality. Food Sci. Technol. Campinas 2021, 41, 65–73. [Google Scholar]
- Aquino, A.C.M.S.; Moes, R.S.; Leao, K.M.M.; Figueiredo, A.V.D.; Castro, A.A. Physical-chemical and sensory characteristics of cookies formulated with acerola (Malpighia emarginata D.C.) residues flour. Rev. Inst. Adolfo Lutz. 2010, 69, 379–386. [Google Scholar]
- Perez, P.M.P.; Germani, R. Making crackers with a high level of dietary fiber using dehydrated eggplant flour (Solanum melongena, L.). Food Sci. Techonol. Campinas 2007, 27, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Elhassaneen, Y.; Ragab, R.; Mashal, R. Improvement of bioactive compounds content and antioxidant properties in crackers with the incorporation of prickly pear and potato peels powder. Int. J. Nutr. Food Sci. 2016, 5, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Bertagnolli, S.M.M.; Silveira, M.L.R.; Fogaça, A.D.O.; Umann, L.; Penna, N.G. Bioactive compounds and acceptance of cookies made with guava peel flour. Food Sci. Technol. Campinas 2014, 34, 303–308. [Google Scholar] [CrossRef] [Green Version]
- Mahloko, L.M.; Silungwe, H.; Mashau, M.E.; Kgatla, T.E. Bioactive compounds, antioxidant activity and physical characteristics of wheat-prickly pear and banana biscuits. Heliyon 2019, 5, e02479. [Google Scholar] [CrossRef] [Green Version]
- Feyera, M. Review on some cereal and legume based composite biscuits. Int. J. Agric. Sci. Food Technol. 2020, 6, 101–109. [Google Scholar]
- Božiková, M.; Hlaváč, P.; Vozárová, V.; Beláň, L. Experimental determination of soft wheat flour thermal parameters. Acta Technol. Agric. 2015, 1, 6–9. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis of AOAC International, 20th ed.; AOAC International: Arlington, VA, USA, 2016. [Google Scholar]
- Moussa-Ayoub, T.E.; El-Samahy, S.K.; Rohn, S.; Kro, L.W. Flavonols, betacyanins content and antioxidant activity of cactus Opuntia macrorhiza fruit. Food Res. Int. 2011, 44, 2169–2174. [Google Scholar] [CrossRef]
- Kapcum, N.; Uriyapongson, J.; Alli, I.; Phimphilai, S. Anthocyanin, phenolic compounds and antioxidant activities in coloured corn cob and coloured rice bran. In. Food Res. J. 2016, 23, 2347. [Google Scholar]
- Shen, Y.; Jin, L.; Xiao, P.; Lu, Y.; Bao, J. Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain colour, size and weight. J. Cereal Sci. 2016, 49, 106–111. [Google Scholar]
- Nsabimana, P.; Power, J.R.; Chew, B.; Mattinson, S.; Baik, B.K. Effects of deep fat frying temperature on antioxidant properties of whole wheat doughnuts. Int. J. Food Sci. Technol. 2018, 53, 665–675. [Google Scholar]
- Radenkors, V.; Klava, D.; Krasnova, I.; Juhnevica-Radenkova, K. Application of enzymatic treatment to improve the concentration of bioactive compounds and antioxidant potential of wheat and rye bran. In Proceedings of the 9th Baltic Conference on Food Science and Technology, Jelgava, Latvia, 8–9 May 2014; pp. 127–132. [Google Scholar]
- McWatters, K.H.; Ouedraogo, J.B.A.; Resurreccion, V.A.; Hung, Y.; Phillips, R.D. Physical and sensory characteristics of sugar cookies containing mixtures of wheat, fonio (Digitaria exilis) and cowpea (Vigna unguiculata) flours. Int. J. Food Sci. Technol. 2018, 38, 403–441. [Google Scholar] [CrossRef]
- Chilungo, S. Physicochemical properties and baking qualities of baked wheat products supplemented with cassava and pigeon pea flours. Master’s Thesis, Michigan State University, East Lansing, MI, USA, 2013. [Google Scholar]
- Ngoma, K.; Mashau, M.E.; Silungwe, H. Physicochemical and functional properties of chemically pretreated Ndou sweet potato flour. Int. J. Food Sci. 2019, 2019, 4158213. [Google Scholar]
- Shinoj, S.; Viswanathan, R.; Sajeev, M.S.; Moorthy, S.N. Gelatinisation and rheological characteristics of minor millet flours. Biosyst. Eng. 2006, 95, 51–59. [Google Scholar]
- Naidoo, K.; Amonsou, E.; Oyeyinka, S. In vitro digestibility and some physicochemical properties of starch from wild and cultivated amadumbe corms. Carbohydr. Polym. 2015, 125, 9–15. [Google Scholar] [CrossRef]
- Noda, T.; Takahata, Y.; Sato, T.; Ikoma, H.; Mochida, H. Physicochemical properties of starches from purple and orange fleshed sweet potato roots at two levels of fertilizer. Starch/Starke 1996, 48, 395–399. [Google Scholar] [CrossRef]
- Nwokocha, L.M.; Aviara, N.A.; Senan, C.; Williams, P.A. A comparative study of some properties of cassava (Manihotesculenta, Crantz) and cocoyam (Colocasia esculenta, Linn) starches. Carbohydr. Polym. 2009, 76, 362–367. [Google Scholar] [CrossRef] [Green Version]
- Chareonthaikij, P.; Uan-On, T.; Prinyawiwatkul, W. Effects of pineapple pomace fibre on physicochemical properties of composite flour and dough, and consumer acceptance of fibre-enriched wheat bread. Int. J. Food Sci. Technol. 2016, 51, 1120–1129. [Google Scholar] [CrossRef]
- Zhou, Y.; Hoover, R.; Liu, Q. Relationship between a-amylase degradation and the structure and physicochemical properties of legume starches. Carbohydr. Polym. 2004, 57, 299–317. [Google Scholar] [CrossRef]
- Singh, S.; Singh, N.; Isono, N.; Noda, T. Relationship of granule size distribution and amylopectin structure with pasting, thermal, and retrogradation properties in wheat starch. J. Agric. Food Chem. 2010, 58, 1180–1188. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.A.; Bolade, M.K.; James, S. Functional properties of weaning food blends from selected sorghum [Sorghum bicolour (L.) Moench] varieties and soybean (Glycine max). Afr. J. Food Sci. 2016, 10, 112–121. [Google Scholar]
- Ogunjobi, M.A.; Ogunwolu, S.O. Physico-chemical and sensory properties of cassava flour biscuits supplemented with cashew apple powder. J. Food Technol. 2010, 8, 24–29. [Google Scholar]
- Eriksson, E.; Koch, K.; Tortoe, C.; Akonor, P.T.; Baidoo, E. Physicochemical, functional and pasting characteristics of three varieties of cassava in wheat composite flours. Brit. J. Appl. Sci. Technol. 2015, 4, 1609–1621. [Google Scholar] [CrossRef]
- Abreu, J.; Quintino, I.; Pascoal, G.; Postingher, B.; Cadena, R.; Teodoro, A. Antioxidant capacity, phenolic compound content and sensory properties of cookies produced from organic grape peel (Vitis labrusca) flour. Int. J. Food Sci. Technol. 2019, 54, 1215–1224. [Google Scholar] [CrossRef]
- Gruenwald, J. Novel botanical ingredients for beverages. Clinical Dermatol. 2015, 27, 210–216. [Google Scholar] [CrossRef]
- Ramashia, S.E.; Gwata, E.T.; Meddows-Taylor, S.; Anyasi, T.A.; Jideani, A.I.O. Some physical and functional properties of finger millet (Eleusine coracana) obtained in sub-Saharan Africa. Food Res. Int. 2018, 104, 113–118. [Google Scholar] [CrossRef]
- Falade, K.O.; Akeem, S.A. Physicochemical properties, protein digestibility and thermal stability of processed African mesquite bean (Prosopis africana) flours and protein isolates. J. Food Meas. Charact. 2020, 14, 481–1496. [Google Scholar] [CrossRef]
- Borrelli, R.C.; Mennella, C.; Barba, F.; Russo, M.; Russo, G.L.; Krome, K.; Erbersdobler, H.F.; Faist, V.; Fogliano, V. Characterization of coloured compounds obtained by enzymatic extraction of bakery products. Food Chem. Toxicol. 2013, 41, 1367–1374. [Google Scholar] [CrossRef]
- Laguna, L.; Paula, V.; Ana, S.; Teresa, S.; Susana, M.F. Balancing texture and other sensory features in reduced fat short-dough biscuits. J. Texture Stud. 2011, 43, 235–245. [Google Scholar] [CrossRef]
- Ho, L.H.; Abdul Latifa, N.W. Nutritional composition, physical properties, and sensory evaluation of cookies prepared from wheat flour and pitaya (Hylocereus undatus) peel flour blends. Cogent Food Agric. 2016, 2, 1136369. [Google Scholar] [CrossRef]
- Zouari, R.; Besbes, S.; Ellouze-Chaabounia, S.; Ghribi-Aydia, D. Cookies from composite wheat–sesame peels flours: Dough quality and effect of Bacillus subtilis SPB1 biosurfactant addition. Food Chem. 2016, 194, 758–769. [Google Scholar] [CrossRef]
- Jung, H.; Sato, T. The comparison between the colour properties of whiteness index and yellowness index on CIELAB. J. Textile Res. 2013, 25, 40–55. [Google Scholar]
- Gurram, S.; Sharma, G.P. Development of orange peel powder fortified wheat bajra based biscuit: Evaluation of sensory, nutritional, and physical characteristics. Int. J. Agric. Sci. 2019, 11, 8990–8995. [Google Scholar]
- Agu, H.O.; Okoli, N.A. Physico-chemical, sensory, and microbiological assessments of wheat-based biscuit improved with beniseed and unripe plantain. Food Sci. Nutr. 2014, 2, 464–469. [Google Scholar] [CrossRef]
- Gondim, J.A.; Moura, M.F.; Dantas, A.S.; Medeiros, R.L.S.; Santos, K.M. Composição centesimal e de minerais em cascas de frutas. Food Sci. Techonol. Campinas 2005, 25, 825–827. [Google Scholar] [CrossRef] [Green Version]
- Chatepa, L.E.C.; Masamba, K.; Jose, M. Proximate composition, physical characteristics and mineral content of fruit, pulp and seeds of Parinari curatellifolia (Maula) from Central Malawi. Afr. J. Food Sci. 2018, 12, 238–245. [Google Scholar]
- Rani, V.; Sangwan, V.; Malik, P. Orange Peel Powder: A potent source of fibre and antioxidants for functional biscuits. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 1319–1325. [Google Scholar] [CrossRef]
- Mawula, R. Regeneration of Threatened Indigenous Fruit Species in Uganda, the Case of Parinari curatellifolia. Master’s Thesis, International Masters Programme at Swedish Biodiversity Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2009. [Google Scholar]
- Ajila, C.M.; Leelavathi, K.; Prasada Rao, U.J.S. Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. J. Cereal Sci. 2008, 48, 319–326. [Google Scholar] [CrossRef]
- Matheis, G.; Whitaker, J.R. A review: Enzymatic cross-linking of proteins applicable to foods. J. Food Biochem. 1987, 11, 309e327. [Google Scholar] [CrossRef]
- Schooneveld-Bergmans, M.E.F.; Dignum, M.J.W.; Grabber, J.H.; Beldman, G.; Voragen, A.G.J. Studies on the oxidative cross-linking of feruloylated arabinoxylans from wheat flour and wheat bran. Carbohydr. Polym. 1999, 38, 309e317. [Google Scholar] [CrossRef]
- Youssef, H.M.K.E.; Mousa, R.M.A. Nutritional assessment of wheat biscuits and fortified wheat biscuits with citrus peels powders. J. Food. Pub Health. 2012, 2, 55–60. [Google Scholar] [CrossRef]
- Pravin, O.; Sanita, T. Quality evaluation of biscuit incorporated with mandarin peel powder. J. Chem. Chem Eng. 2017, 18, 019–030. [Google Scholar]
- Ayo, J.A.; Ayo, V.A.; Igweaka, C.C. Phytochemical, physicochemical and sensory quality of Acha-orange peel flour blend biscuits. J. Prod. Agric. Technol. 2018, 14, 81–90. [Google Scholar]
- Nguimbou, R.M.; Njintang, N.Y.; Makhlouf, H.; Gaiani, C.; Scher, J.; Mbofung, C.M. Effect of cross-section differences and drying temperature on the physicochemical, functional and antioxidant properties of giant taro flour. Food. Bioprocess Technol. 2013, 6, 1809–1819. [Google Scholar] [CrossRef]
- Verardo, V.; Glicerina, V.; Cocci, E.; Frenich, A.G.; Romani, S.; Caboni, M.F. Determination of free and bound phenolic compounds and their antioxidant activity in buckwheat bread loaf, crust and crumb. J. Food Sci. Technol. 2018, 87, 217–224. [Google Scholar] [CrossRef]
- Prithwa, P.; Sauryya, B. Antioxidant profile and sensory evaluation of cookies fortified with juice and peel powder of fresh Pomegranate (Punica granatum). Int. J. Agric. Food Sci. 2015, 5, 85–91. [Google Scholar]
- Manzocco, L.S.; Calligaris, S.; Mastrocola, D.; Nicoli, M.C.; Lerici, C.R. Review on non-enzymatic browning and antioxidant capacity in processed foods. Trends Food Sci. Technol. 2000, 11, 340–346. [Google Scholar] [CrossRef]
- Sharma, P.; Gujral, H.S. Cookie making behaviour of wheat-barley flour blends and effects on antioxidant properties. LWT Food Sci. Technol. 2014, 55, 301–307. [Google Scholar] [CrossRef]
- Fatemeh, S.R.; Saifullah, R.; Abbas, F.M.A.; Azhar, M.E. Total phenolics, flavonoids and antioxidant activity of banana pulp and peel flours: Influence of variety and stage of ripeness. Int. Food Res. J. 2012, 19, 1041. [Google Scholar]
- Chen, X.M.; Kitts, D.D. Correlating changes that occur in chemical properties with the generation of antioxidant capacity in different sugar-amino acid Maillard reaction models. J. Food Sci. 2016, 76, 820–831. [Google Scholar] [CrossRef]
- Aslam, H.K.W.; Raheem, M.I.U.; Ramzan, R.; Shakeel, A.; Shoaib, M.; Sakandar, H.A. Utilization of mango waste material (peel, kernel) to enhance dietary fiber content and antioxidant properties of biscuit. J. Global Innov. Agric. Soc Sci. 2014, 2, 76–81. [Google Scholar] [CrossRef]
- Taylor, T.; Fasina, O.; Bell, L. Physical properties and consumer liking of cookies prepared by replacing sucrose with tagatose. J. Food Sci. 2008, 73, 145–151. [Google Scholar] [CrossRef]
- Mamat, H.; Hill, S. Structural and functional properties of major ingredients of biscuit. Int. Food Res. J. 2018, 25, 462–471. [Google Scholar]
- Nassar, A.G.; AbdEl-Hamied, A.A.; El-Naggar, E.A. Effect of citrus by-products flour incorporation on chemical, rheological and organolepic characteristics of biscuits. World J. Agric. Sci. 2008, 4, 612–616. [Google Scholar]
- Noor Aziah, A.A.; Mohamad Noor, A.Y.; Ho, L.H. Physicochemical and organoleptic properties of cookies incorporated with legume flour. Int. Food Res. J. 2012, 19, 1539–1543. [Google Scholar]
- Kulthe, A.A.; Thorat, S.S.; Lande, S.B. Evaluation of physical and textural properties of cookies prepared from pearl millet flour. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 692–701. [Google Scholar]
- Pareyt, B.; Delcour, J.A. The role of wheat flour, constituents, sugar and fat in low moisture cereal based products: A review on sugar-snap cookies. Crit. Rev. Food Sci. Nutr. 2008, 48, 824–839. [Google Scholar] [CrossRef]
Sample | TO (°C) | TP (°C) | TC (°C) | ΔH (J/g) |
---|---|---|---|---|
Control | 55.28 ± 0.63 a | 61.62 ± 0.21 a | 68.70 ± 0.79 a | 5.66 ± 0.07 d |
BPC1 | 56.33 ± 0.87 b | 62.27 ± 0.36 b | 68.80 ± 0.62 b | 4.65 ± 0.70 c |
BPC2 | 56.38 ± 0.18 b | 62.54 ± 0.05 c | 68.83 ± 0.43 b | 4.63 ± 0.18 c |
BPC3 | 56.56 ± 0.55 c | 62.61 ± 0.40 d | 69.36 ± 0.78 c | 4.52 ± 0.07 b |
BPC4 | 56.77 ± 0.35 d | 62.73 ± 0.14 e | 69.57 ± 0.52 d | 4.45 ± 0.17 a |
Sample | Viscosities (Cp) | pH | |
---|---|---|---|
Cold Paste | Hot Paste | ||
Control | 30. 00 ± 1.00 b | 282. 67 ± 3.12 c | 6.09 ± 0.13 c |
BPC1 | 24.00 ± 1.03 a | 258. 33 ± 2.08 b | 5.71 ± 0.06 b |
BPC2 | 25. 00 ± 1.10 a | 251. 67 ± 2.08 a | 5.48 ± 0.03 a |
BPC3 | 24.00 ± 1.09 a | 240.33 ± 1.53 c | 5.49 ± 0.02 a |
BPC4 | 24. 00 ± 1.00 a | 229.00 ± 3.61 d | 5.45 ± 0.09 a |
Flour | L* | a* | b* | C | H° | ∆E | WI | YI |
---|---|---|---|---|---|---|---|---|
Control | 89.68 ± 0.01 e | 0.67 ± 0.02 a | 09.87 ± 0.01 a | 9.51 ± 0.01 a | 85.92 ± 0.03 e | - | 25.94 ± 0.25 e | 08.88 ± 0.01 a |
BPC1 | 78.40 ± 0.03 d | 3.68 ± 0.02 b | 10.26 ± 0.01 b | 10.90 ± 0.00 b | 70.74 ± 0.05 d | 77.12 ± 0.02 d | 25.50 ± 0.12 d | 08.94 ± 0.00 b |
BPC2 | 75.63 ± 0. 21 c | 4.21 ± 0.02 c | 10.60 ± 0.04 c | 11.41 ± 0.03 c | 68.34 ± 0.11 c | 74.23 ± 0.03 c | 22.42 ± 0.36 c | 08.99 ± 0.03 c |
BPC3 | 72.41 ± 0.01 b | 5.23 ± 0.02 d | 11.81 ± 0.03 d | 12.92 ± 0.03 d | 66.35 ± 0.05 b | 70.68 ± 0.00 b | 21.04 ± 0.32 b | 09.20 ± 0.00 d |
BPC4 | 72.13 ± 0. 01 a | 5.42 ± 0.02 e | 12.39 ± 0.02 e | 13.52 ± 0.02 e | 66.10 ± 0.07 a | 70.29 ± 0.01 a | 16.95 ± 0.03 a | 09.98 ± 0.00 e |
Biscuits | ||||||||
Control | 42.98 ± 0.50 e | 10.76 ± 0.69 a | 24.77 ± 1.13 e | 28.69 ± 0.63 e | 59.71 ± 1.97 e | - | 50.09 ± 3.19 e | 69.84 ± 3.31 a |
BPC1 | 41.25 ± 3.22 d | 11.34 ± 0.62 b | 23.37 ± 0.19 d | 25.79 ± 0.73 c | 58.12 ± 1.02 d | 25.41 ± 0.89 c | 48.24 ± 0.54 d | 73.73 ± 4.12 b |
BPC2 | 32.57 ± 1.73 c | 13.62 ± 0.67 c | 15.47 ± 1.20 c | 27.85 ± 0.42 d | 57.10 ± 1.78 c | 24.94 ± 1.18 b | 41.67 ± 1.63 c | 74.51 ± 1.29 c |
BPC3 | 29.97 ± 1.70 b | 15.13 ± 0.94 d | 14.45 ± 0.49 b | 17.87 ± 1.59 b | 52.90 ± 1.39 b | 15.71 ± 1.44 a | 32.68 ± 2.39 b | 83.87 ± 2.62 d |
BPC4 | 29.13 ± 1.65 a | 21.89 ± 0.39 e | 14.27 ± 1.50 a | 19.18 ± 1.33 a | 53.72 ± 0.64 a | 15.66 ± 0.53 a | 34.15 ± 2.04 a | 102.71 ± 6.12 e |
Samples | Moisture | Ash | Fat | Crude protein | Crude Fibre | Carbohydrates | Energy (kcal) |
---|---|---|---|---|---|---|---|
Control | 3.95 ± 0.00 a | 0.74 ± 0.12 a | 23.52 ± 0.37 d | 2.46 ± 0.11 c | 0.39 ± 0.08 a | 68.94 ± 0.48 d | 497.29 ± 0.00 d |
BPC1 | 3.93 ± 0.02 a | 1.38 ± 0.11 c | 23.12 ± 0.49 c | 2.32 ± 0.05 b | 1.23 ± 0.13 b | 68.12 ± 0.55 c | 489.49 ± 0.03 c |
BPC2 | 4.01 ± 0.00 a | 1.25 ± 0.05 b | 23.03 ± 0.69 c | 2.24 ± 0.06 ab | 1.21 ± 0.37 b | 68.10 ± 0.99 bc | 490.88 ± 0.01 c |
BPC3 | 3.95 ± 0.01 a | 1.30 ± 0.22 c | 22.84 ± 0.12 b | 2.17 ± 0.01 a | 1.72 ± 0.27 c | 67.98 ± 0.41 b | 483.13 ± 0.00 b |
BPC4 | 3.95 ± 0.02 a | 2.23 ± 0.10 d | 21.50 ± 0.19 a | 2.14 ± 0.01 a | 2.95 ± 0.20 d | 66.76 ± 0.36 a | 457.47 ± 0.09 a |
Samples | TFC (mg CE/g) | TPC (mg GAE/g) | DPPH % | FRAP (mg GAE/g) |
---|---|---|---|---|
Control | 0.028 ± 0.01 a | 20.01 ± 0.42 a | 48.70 ± 1.69 a | 108.33 ± 5.80 a |
BPC1 | 0.061 ± 0.05 b | 24.76 ± 0.50 a | 78.74 ± 0.66 b | 142.33 ± 4.04 b |
BPC2 | 0.073 ± 0.05 c | 32.37 ± 3.82 b | 90.21 ± 0.48 c | 161.67 ± 3.51 c |
BPC3 | 0.086 ± 0.03 d | 46.49 ± 2.35 c | 90. 79 ± 0.27 c | 162.67 ± 2.11 d |
BPC4 | 0.104 ± 0.05 e | 48.51 ± 2.58 c | 94.72 ± 0.46 d | 162.67 ± 2.11 d |
Samples | Thickness (mm) | Weight (g) | Diameter (mm) | Spread Ratio | Hardness (g) |
---|---|---|---|---|---|
Control | 1.23 ± 0.06 c | 9.97 ± 0.11 c | 3.57 ± 0.12 a | 2.67 ± 0.12 a | 1188.13 ± 2.01 a |
BPC1 | 1.10 ± 0.10 a | 9.43 ± 0.15 b | 3.63 ± 0.06 b | 3.95 ± 0.31 c | 1758.49 ± 1.20 b |
BPC2 | 1.13 ± 0.06 a | 9.43 ± 0.64 b | 3.63 ± 0.12 b | 3.13 ± 0.12 b | 1764.24 ± 1.43 c |
BPC3 | 1.10 ± 0.10 a | 8.57 ± 0.06 a | 3.73 ± 0.06 c | 3.41 ± 0.31 d | 1995.67 ± 1.05 d |
BPC4 | 1.17 ± 0.06 b | 9.30 ± 0.44 b | 3.97 ± 0.12 d | 3.45 ± 0.13 d | 2432.60 ± 2.08 e |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramashia, S.E.; Mamadisa, F.M.; Mashau, M.E. Effect of Parinari curatellifolia Peel Flour on the Nutritional, Physical and Antioxidant Properties of Biscuits. Processes 2021, 9, 1262. https://doi.org/10.3390/pr9081262
Ramashia SE, Mamadisa FM, Mashau ME. Effect of Parinari curatellifolia Peel Flour on the Nutritional, Physical and Antioxidant Properties of Biscuits. Processes. 2021; 9(8):1262. https://doi.org/10.3390/pr9081262
Chicago/Turabian StyleRamashia, Shonisani Eugenia, Felicia Matshepho Mamadisa, and Mpho Edward Mashau. 2021. "Effect of Parinari curatellifolia Peel Flour on the Nutritional, Physical and Antioxidant Properties of Biscuits" Processes 9, no. 8: 1262. https://doi.org/10.3390/pr9081262
APA StyleRamashia, S. E., Mamadisa, F. M., & Mashau, M. E. (2021). Effect of Parinari curatellifolia Peel Flour on the Nutritional, Physical and Antioxidant Properties of Biscuits. Processes, 9(8), 1262. https://doi.org/10.3390/pr9081262