Anti-Smog Building and Civil Engineering Structures
Abstract
:1. Introduction
- carbon dioxide (CO2) one of the causes of the greenhouse effect;
- carbon monoxide (CO);
- sulphur dioxide and nitrogen dioxide (SO2 and NO2), causing acidification, phosphorus, and eutrophication;
- mercury and lead, bioaccumulating;
- crude oil;
- DDT and other pesticides;
- radiation [2].
- nervous system (headache, central nervous system disorders);
- the respiratory system (chronic lung disease, lung cancer, asthma);
- the cardiovascular system (ischaemic heart disease, heart attack);
- the digestive system (liver disorders);
- reproductive system (disorders of internal organs);
- the immune system (allergies).
2. Smog
- restricting the use of renewable resources to the limit of their recovery;
- reducing the consumption of non-renewable resources to a level that allows them to be gradually replaced by suitable substitutes;
- the progressive elimination of hazardous and toxic substances from economic processes;
- keeping emissions of pollutants within the limits set by the assimilative capacity of the environment;
- restoration and permanent protection of biological diversity at landscape, ecosystem, species, and gene levels;
- socialisation of decision-making processes concerning the local natural environment [19].
3. Building with Nano Additives
3.1. Construction Works
3.1.1. Façades
3.1.2. Plasters
3.1.3. Paints
3.1.4. Organic Coatings
3.2. Road Surfaces
3.2.1. Concrete Asphalt
3.2.2. Paving Blocks
3.3. Acoustic Screens
3.4. Roof Tiles
4. Building with Vegetation
4.1. Pollution-Reducing Façades
- construction;
- the degree of independence from the façade plane.
4.2. Green Roofs/Inverted Green Roofs
- extensive roofs;
- intensive roofs.
4.3. Anti-Smog Towers
5. Concrete with Activated Carbon
6. Results
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ukaogo, P.O.; Ewuzie, U.; Onwuka, C.V. Environmental pollution: Causes, effects, and the remedies. In Microorganisms for Sustainable Environment and Health; Chowdhary, A., Raj, A., Verma, D., Akhter, Y., Eds.; Elsevier: London, UK, 2020. [Google Scholar]
- Cheremisinoff, N.P. Pollution Control Handbook for Oil and Gas Engineering—General Description; John Wiley & Sons: New York, NJ, USA, 2016. [Google Scholar]
- Saraf, A.K.; Bora, A.K.; Das, J.; Rawat, V.; Sharma, K.; Jain, S.K. Winter fog over the Indo-Gangetic Plains: Mapping and modelling using remote sensing and GIS. Nat. Hazards 2011, 58, 199–220. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Pub. Health 2020, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, R.P.H.; Lee, H.F.; Hart, M.A. The human dimension of visibility degradation in a compact city. Nat. Hazards 2016, 82, 1683–1702. [Google Scholar] [CrossRef]
- Lotko, W.; Lisowska, A.; Łodygowski, K. Koncepcja zastosowania dodatku węglowodorów syntetycznych do paliw celem ograniczenia emisji wybranych toksycznych składników spalin w aglomeracji wrocławskiej. Autobusy Tech. Eksploat. Syst. Transp. 2016, 6, 255–259. [Google Scholar]
- Smog—Definicja i Informacje o Zjawisku. Available online: https://airly.org/pl/smog-definicja-skutki-i-przyczyny/ (accessed on 19 July 2021).
- Li, H.C. Smog and Air Pollution: Journalistic Criticism and Environmental Accountability in China. J. Rural Stud. 2019, in press. [Google Scholar] [CrossRef]
- Kumar, S.; Narwal, D.; Sethi, A. Smog: Anthropogenic pollution. Int. J. Adv. Res. Sci. Eng. 2017, 6, 1. [Google Scholar]
- Haagen-Smit, A.J. Chemistry and Physiology of Los Angeles Smog. Ind. Eng. Chem. 1952, 44, 1342–1346. [Google Scholar] [CrossRef]
- Mishra, S. Is smog innocuous? Air pollution and cardiovascular disease. Indian Heart J. 2017, 69, 425–429. [Google Scholar] [CrossRef]
- Science behind Smog and Its Ominous Implications. Available online: https://www.downtoearth.org.in/blog/air/science-behind-smog-and-its-ominous-implications-60080 (accessed on 19 July 2021).
- Smog. Available online: https://smogtok.com/indexOld.html#!/smog (accessed on 19 July 2021).
- Rani, B.; Singh, U.; Chuhan, A.; Sharma, D.; Maheshwari, R.K. Photochemical Smog Pollution and Its Mitigation Measures. J. Adv. Sci. Res. 2011, 2, 28–33. [Google Scholar]
- Czerwińska, J.; Wielgosiński, G.; Szymańska, O. Is the Polish smog a new type of smog? Ecol. Chem. Eng. S 2019, 26, 465–474. [Google Scholar] [CrossRef] [Green Version]
- Tayanç, M.; Göçmen, G. Measurement and Analysis of Photochemical Smog over İstanbul, Turkey. In Air Pollution Modeling and Its Application, 13th ed.; Gryning, S.E., Batchvarova, E., Eds.; Springer: Boston, MA, USA, 2000; pp. 737–738. [Google Scholar] [CrossRef]
- Tucki, K.; Orynycz, O.; Wasiak, A.; Swięc, A.; Mieszkalski, L.; Wichłacz, J. Low Emissions Resulting from Combustion of Forest Biomass in a Small Scale Heating Device. Energies 2020, 13, 5495. [Google Scholar] [CrossRef]
- Munsif, R.; Zubair, M.; Aziz, A.; Zafar, M.N. Industrial Air Emission Pollution: Potential Sources and Sustainable Mitigation. In Environmental Emissions; Viskup, R., Ed.; IntechOpen: London, UK, 2021. [Google Scholar]
- Ruggerio, C.A. Sustainability and sustainable development: A review of principles and definitions. Sci. Total Environ. 2021, 786. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S. Nanoparticles Types, Classification, Characterization, Fabrication Methods and Drug Delivery Applications. In Natural Polymer Drug Delivery Systems; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Stanaszek-Tomal, E.; Kozak, A. Mineral and organic coatings modified nano-tio2 addition as elements of sustainable building. In Energy Efficient, Sustainable Building Materials and Products, 1st ed.; Hager, I., Ed.; Cracow University of Technology: Kraków, Poland, 2019. [Google Scholar]
- Bellardita, M.; Di Paola, A.; Megna, B.; Palmisano, L. Determination of the crystallinity of TiO2 photocatalysts. J. Photochem. Photobiol. A Chem. 2018, 367, 312–320. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Ding, S.; Yu, X.; Han, B.; Ou, J. Multifunctional cementitious composites modified with nano-titanium dioxide: A review. Compos. Part A Appl. Sci. Manuf. 2018, 111, 115–137. [Google Scholar] [CrossRef]
- Palmisano, G.; Yurdakal, S.; Augugliaro, V.; Loddo, V.; Palmisano, L. Photocatalytic Selective Oxidation of 4-Methoxybenzyl Alcohol to Aldehyde in Aqueous Suspension of Home-Prepared Titanium Dioxide. Adv. Synth. Catal. 2007, 349, 964–970. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Moon, G.-h.; Kim, B.; Tachikawa, T.; Majima, T.; Hong, S.; Cho, K.; Kim, W.; Choi, W. Crystal phase-dependent generation of mobile OH radicals on TiO2: Revisiting the photocatalytic oxidation mechanism of anatase and rutile. Appl. Catal. B Environ. 2021, 286. [Google Scholar] [CrossRef]
- Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2000, 1, 1–21. [Google Scholar] [CrossRef]
- Cassar, L.; Beeldens, A.; Pimpinelli, N.; Guerrini, G. Photocatalysis of cementitious materials. In Proceedings of the International RILEM Symposium on Photocatalysis, Environment and Construction Materials, Rome, Italy, 8 October 2007; pp. 131–145. [Google Scholar]
- Zhong, L.; Haghighat, F. Photocatalytic air cleaners and materials technologies–Abilities and limitations. Build. Environ. 2015, 91, 191–203. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; JohnWiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Sikkema, J.K. Photocatalytic Degradation of NOx by Concrete Pavement Containing TiO2. Ph.D. Dissertation, Graduate Theses and Dissertations. Iowa State University, Ames, IA, USA, 2013. [Google Scholar]
- Hamidi, F.; Aslani, F. TiO2-based photocatalytic cementitious composites: Materials, properties, influential parameters, and assessment techniques. Nanomaterials 2019, 9, 1444. [Google Scholar] [CrossRef] [Green Version]
- Jayapalan, A.R.; Lee, B.-Y.; Kurtis, K.E. Can nanotechnology be ‘green’? Comparing efficacy of nano and microparticles in cementitious materials. Cem. Concr. Compos. 2013, 36, 16–24. [Google Scholar] [CrossRef]
- Andaloro, A.; Mazzucchelli, E.S.; Lucchini, A.; Pedeferri, M.P. Photocatalytic self-cleaning coatings for building facade maintenance. Performance analysis through a case-study application. J. Facade Des. Eng. 2016, 4, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Topçu, I.B.; Akkan, E.; Uygunoğlu, T.; Çalişkan, K. Self-Cleaning Concretes: An Overview. J. Cem. Based Compos. 2020, 2, 6–12. [Google Scholar]
- Jackiewicz-Rek, W. Betony inne niż wszystkie. Przegląd Bud. 2020, 2, 22–31. [Google Scholar]
- Guranowska-Gruszecka, K.; Chudzińska, A. Urban theories of the emergence, development and endurance of commercial streets. Space 2020, 41, 101–140. [Google Scholar] [CrossRef]
- Chilmon, K.; Jackiewicz-Rek, W. Beton fotokatalityczny a możliwość oczyszczania powietrza. Bud. Technol. Archit. 2019, 2, 66–69. [Google Scholar]
- Broniewicz, P. Architektoniczne metody walki z zanieczyszczeniem powietrza. Środowisko Mieszk. 2018, 23, 141–148. [Google Scholar] [CrossRef] [Green Version]
- La Russa, M.F.; Rovella, N.; Alvarez de Buergo, M.; Belfiore, C.M.; Pezzino, A.; Crisci, G.M.; Ruffolo, S.A. Nano-TiO2 coatings for cultural heritage protection: The role of the binder on hydrophobic and self-cleaning efficacy. Prog. Org. Coat. 2016, 91, 1–8. [Google Scholar] [CrossRef]
- Staub de Melo, J.; Trichęs, G.; Gleize, P.; Villena, J. Development and evaluation of the efficiency of photocatalytic pavement blocks in the laboratory and after one year in the field. Constr. Build. Mater. 2012, 37, 310–319. [Google Scholar] [CrossRef]
- Mexico City’s Manuel Gea Gonzalez Hospital Has an Ornate Double Skin That Filters Air Pollution. Available online: https://inhabitat.com/mexico-citys-manuel-gea-gonzalez-hospital-has-an-ornate-double-skin-that-filters-air-pollution/prosolve-torre-de-especialidaes1/ (accessed on 15 July 2021).
- Toro, C.; Jobson, B.; Haselbach, L.; Shen, S.; Chung, S.; Chung, S. Photoactive roadways: Determination of CO, NO and VOC uptake coefficients and photolabile side product yields on TiO2 treated asphalt and concrete. Atmos. Environ. 2016, 139, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Witkowski, H.; Tryfon-Bojarska, A.; Jackiewicz-Rek, W.; Chilmon, K.; Szerszeń, K.; Jarosławski, J.; Gąsiewski, A. Wykorzystanie betonu fotokatalitycznego z cementem Tiocem® do redukcji stężenia Nox na projekcie Generation Park w Warszawie. In Proceedings of the XVIII Konferencja Naukowo-Techniczna Reologia w Technologii Betonu, Warszawa, Polska, 14 May 2019. [Google Scholar]
- Projekt Realizowany w Ramach Wspólnego Przedsięwzięcia RID, Finansowany ze środków Narodowego Centrum Badań i Rozwoju oraz Generalnej Dyrekcji Dróg Krajowych i Autostrad, Ochrona Przed hałasem Drogowym Zadanie 8. Innowacyjne Metody i środki w Kompleksowej Ochronie Otoczenia Drogi Przed hałasem z Oceną ich skuteczności i Uwarunkowań Stosowania, Projekt RID–I/76. 2018. Available online: https://www.gov.pl/web/gddkia/rid (accessed on 19 August 2021).
- Hadnadjev, K.M.; Ranogajec, J.; Snezana, P.; Markov, S.; Ducman, V.; Marinkovic-Neducin, R. Design of self-cleaning TiO2 coating on clay roofing tiles. Philos. Mag. 2010, 90, 2989–3002. [Google Scholar] [CrossRef]
- Ranogajec, J.; Radeka, M. Self-Cleaning Surface of Clay Roofing Tiles. In Self-Cleaning Materials and Surfaces; Daoud, W.A., Ed.; Wiley John and Sons: London, UK, 2013. [Google Scholar] [CrossRef]
- Hopkins, G.; Goodwin, C. Living Architecture: Green Roofs and Walls, 1st ed.; CSIRO Publishing: Melbourne, Australia, 2011; ISBN 9780643103078. [Google Scholar]
- Brković Dodig, M.; Radic, M.; Auer, T. Green Facades and Living Walls—A Review Establishing the Classification of Construction Types and Mapping the Benefits. Sustainability 2019, 11, 4579. [Google Scholar] [CrossRef] [Green Version]
- Blanco, I.; Schettini, E.; Scarascia, G.; Vox, G. Thermal behaviour of green façades in summer. J. Agric. Eng. 2018, 49, 183–190. [Google Scholar] [CrossRef]
- Manso, M.; Castro-Gomes, J.P. Green wall systems: A review of their characteristics. Renew. Sustain. Energy Rev. 2015, 41, 863–871. [Google Scholar] [CrossRef]
- Wong, N.H.; Kwang Tan, A.Y.; Chen, Y.; Wong, N.C. Thermal evaluation of vertical greenery systems for building walls. Build. Environ. 2010, 45, 663–672. [Google Scholar] [CrossRef]
- Perini, K.; Ottelé, M.; Haas, E.M.; Raiteri, R. Vertical greening systems, a process tree for green façades and living walls. Urban Ecosyst. 2013, 16, 265–277. [Google Scholar] [CrossRef]
- Feng, H.; Hewage, K. Lifecycle assessment of living walls: Air purification and energy performance. J. Clean. Prod. 2014, 69, 91–99. [Google Scholar] [CrossRef]
- Chakre, O. Choice of eco-friendly trees in urban environment to mitigate airborne particulate pollution. J. Hum. Ecol. 2006, 20, 135–138. [Google Scholar] [CrossRef]
- Flannery, J.A.; Smith, K.M. Bosco Verticale. In Eco-Landscape Design; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- High-Rise Forests in Italy Are Fighting Air Pollution. Available online: https://www.theverge.com/2017/8/9/16112758/milan-vertical-forest-stefano-boeri-video (accessed on 7 July 2021).
- Tao Zhu Yin Yuan Apartment Building/Vincent Callebaut Architectures. Available online: https://www.archdaily.com/955926/tao-zhu-yin-yuan-vincent-callebaut-architectures (accessed on 7 July 2021).
- Is Building a ‘Forest City’ to Fight Air Pollution/Mental Floss. Available online: https://www.mentalfloss.com/article/502326/China (accessed on 15 July 2021).
- Europe’s Largest Green Wall “Will Absorb Eight Tonnes of Pollution Annually” in London. Available online: https://www.dezeen.com/2019/11/11/citicape-house-green-wall-architecture-sheppard-robson/ (accessed on 15 July 2021).
- Thuring, C.E.; Dunnett, N.P. Persistence, loss and gain: Characterizing mature green roof vegetation by functional composition. Landsc. Urban Plan. 2019, 185, 228–236. [Google Scholar] [CrossRef]
- Tabatabaee, S.; Mahdiyar, A.; Durdyev, S.; Ismail, S. An Assessment Model of Benefits, Opportunities, Costs, and Risks of Green Roof Installation: A Multi Criteria Decision Making Approach. J. Clean. Prod. 2019, 238, 117956. [Google Scholar] [CrossRef]
- Liu, H.; Kong, F.; Yin, H.; Middel, A.; Zheng, X.; Huang, J.; Xu, H.; Wang, D.; Wen, Z. Impacts of green roofs on water, temperature, and air quality. Build. Environ. 2021, 196. [Google Scholar] [CrossRef]
- Drozd, W. Problems and benefits of using green roofs in Poland. IOP Conf. Ser. Earth Environ. Sci. 2019, 214, 012076. [Google Scholar] [CrossRef]
- Zheng, T. Smog Free Tower: Studio Roosegaarde, Beijing, September 2016—Present. Technol. Archit. Des. 2017, 1, 253–254. [Google Scholar] [CrossRef]
- Guttikunda, S.; Jawahar, J. Can We Vacuum Our Air Pollution Problem Using Smog Towers? Atmosphere 2020, 11, 922. [Google Scholar] [CrossRef]
- Breathing Lungs for Delhi: Aũra Towers and Drones by Studio Symbiosis. Available online: https://www.stirworld.com/see-features-breathing-lungs-for-delhi-aura-towers-and-drones-by-studio-symbiosis (accessed on 15 July 2021).
- Beware China’s ’Anti-Smog Tower’ and other Plans to Pull Pollution from the Air. Available online: https://theconversation.com/beware-chinas-anti-smog-tower-and-other-plans-to-pull-pollution-from-the-air-90596 (accessed on 15 July 2021).
- Horgnies, M.; Florence, S.; Dubois-Brugger, I.; Gartner, E.M. NOx de-pollution using activated charcoal concrete -from laboratory experiments to tests with prototype garages. In Proceedings of the 4th International Conference on Environmental Pollution and Remediation, Prague, Czeh Republic, 11–13 August 2014. [Google Scholar]
- Zhang, W.J.; Bagreev, A.; Rasouli, F. Reaction of NO2 with activated charcoal at ambient temperature. Ind. Eng. Chem. Res. 2008, 47, 4358–4362. [Google Scholar] [CrossRef]
- Mejdi, J.; Meriem, B.; Limousy, L.; Bennici, S. Adsorption/Reduction of Nitrogen Dioxide on Activated Carbons: Textural Properties versus Surface Chemistry—A Review. Chem. Eng. J. 2018, 347. [Google Scholar] [CrossRef]
- Horgnies, M.; Dubois-Brugger, I.; Gartner, E.M. NOx de-pollution by hardened concrete and the influence ofactivated charcoal additions. Cem. Concr. Res. 2012, 4. [Google Scholar] [CrossRef]
- Ignarro, L.J.; Fukuto, J.M.; Griscavage, J.M.; Rogers, N.E.; Byrns, R.E. Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: Comparison with enzymatically formed nitric oxide from L-arginine. Proc. Nat. Acad. Sci. USA 1993, 90, 8103–8107. [Google Scholar] [CrossRef] [Green Version]
- Horgnies, M.; Dubois-Brugger, I.; Stora, E. An innovative de-polluting concrete doped with activated carbon to enhance air quality. In Proceedings of the 10th International Concrete Sustainability Conference, NRMCA0, Miami, FL, USA, 4–7 October 2015. [Google Scholar]
- Baroghel-Bouny, V. Water vapour sorption experiments on hardened cementitious materials Part I: Essential tool for analysis of hygral behaviour and its relation to pore structure. Cem. Concr. Res. 2007, 37, 414–437. [Google Scholar] [CrossRef]
- Ridnour, L.A.; Sim, J.E.; Hayward, M.A.; Wink, D.A.; Martin, S.M.; Buettner, G.R.; Spitz, D.R. A Spectrophotometric Method for the Direct Detection and Quantitation of Nitric Oxide, Nitrite, and Nitrate in Cell Culture Media. Anal. Biochem. 2000, 281, 223–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sager, U.; Schmidt, W.; Schmidt, F.; Suhartiningsih, S. Catalytic reduction of nitrogen oxides via nanoscopic oxide catalysts within activated carbons at room temperature. Adsorption 2013, 19, 1027–1033. [Google Scholar] [CrossRef]
- Levasseur, B.; Ebrahim Amani, M.; Burress, J.; Bandosz, T. Interactions of NO2 at ambient temperature with cerium–zirconium mixed oxides supported on SBA-15. J. Hazard. Mater. 2011, 197, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Kellert, S.R.; Heerwagen, J.; Mador, M. Biophilic Design. The Theory, Science and Practice of Bringing Buildings to Life; John Wiley & Sons: New York, NY, USA, 2011. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanaszek-Tomal, E. Anti-Smog Building and Civil Engineering Structures. Processes 2021, 9, 1446. https://doi.org/10.3390/pr9081446
Stanaszek-Tomal E. Anti-Smog Building and Civil Engineering Structures. Processes. 2021; 9(8):1446. https://doi.org/10.3390/pr9081446
Chicago/Turabian StyleStanaszek-Tomal, Elżbieta. 2021. "Anti-Smog Building and Civil Engineering Structures" Processes 9, no. 8: 1446. https://doi.org/10.3390/pr9081446
APA StyleStanaszek-Tomal, E. (2021). Anti-Smog Building and Civil Engineering Structures. Processes, 9(8), 1446. https://doi.org/10.3390/pr9081446