Effects of Frying Processes on the Nutritional and Sensory Characteristics of Different Mackerel Products
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Fried Mackerel without Batter, Marinade, and Spice
4.1.1. Effect of Frying on Fatty Acid Profile of Fried Mackerel without Batter, Marinade, and Spice
4.1.2. Effect of Frying on Amino Acid Profile of Fried Mackerel without Batter, Marinade, and Spice
4.1.3. Effect of Frying on Proximate of Fried Mackerel without Batter, Marinade, and Spice
4.1.4. Effect of Frying on Sensory Evaluation of Fried Mackerel without Batter, Marinade, and Spice
4.2. Fried Mackerel with Marinade and Spice
4.3. Fried Mackerel with Batter
4.4. Minced Mackerel Products
4.4.1. Nugget
4.4.2. Burger
4.4.3. Croquette
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Froese, R.; Coro, G.; Kleisner, K.; Demirel, N. Revisiting safe biological limits in fisheries. Fish Fish. 2016, 17, 193–209. [Google Scholar] [CrossRef]
- Lee, D.; Son, S.; Kim, W.; Park, J.; Joo, H.; Lee, S. Spatio-Temporal Variability of the Habitat Suitability Index for Chub Mackerel (Scomber japonicus) in the East/Japan Sea and the South Sea of South Korea. Remote Sens. 2018, 10, 938. [Google Scholar] [CrossRef] [Green Version]
- Shulgina, L.V.; Davletshina, T.A.; Pavlovsky, A.M.; Solodova, E.A.; Pavel, K.G. Composition of lipids and fatty acids in muscle tissue of chub mackerel Scomber japonicus. Izv. TINRO 2019, 196, 193–203. [Google Scholar] [CrossRef]
- Huang, T.L.; Zandi, P.P.; Tucker, K.L.; Fitzpatrick, A.L.; Kuller, L.H.; Fried, L.P.; Burke, G.L.; Carlson, M.C. Benefits of fatty fish on dementia risk are stronger for those without APOE epsilon4. Neurology 2005, 65, 1409–1414. [Google Scholar] [CrossRef]
- Ziaiifar, A.M.; Achir, N.; Courtois, F.; Trezzani, I.; Trystram, G. Review of mechanisms, conditions, and factors involved in the oil uptake phenomenon during the deepfat frying process. Int. J. Food Sci. Technol. 2008, 43, 1410–1423. [Google Scholar] [CrossRef]
- Moreira, R.G. Vacuum frying versus conventional frying—An overview. EUR J LIPID SCI TECH 2014, 116, 723–734. [Google Scholar] [CrossRef]
- Shyu, S.L.; Hwang, L.S. Effects of processing conditions on the quality of vacuum fried apple chips. Food Res. Int. 2001, 34, 133–142. [Google Scholar] [CrossRef]
- Dueik, V.; Moreno, M.C.; Bouchon, P. Microstructural approach to understand oil absorption during vacuum and atmospheric frying. J. Food Eng. 2012, 111, 528–536. [Google Scholar] [CrossRef]
- Negara, B.F.S.P.; Lee, M.-J.; Tirtawijaya, G.; Cho, W.-H.; Sohn, J.-H.; Kim, J.-S.; Choi, J.-S. Application of Deep, Vacuum, and Air Frying Methods to Fry Chub Mackerel (Scomber japonicus). Processes 2021, 9, 1225. [Google Scholar] [CrossRef]
- Albertos, I.; Martin-Diana, A.B.; Jaime, I.; Diez, A.M.; Rico, D. Protective role of vacuum vs. atmospheric frying on PUFA balance and lipid oxidation. Innov. Food Sci. 2016, 36, 336–342. [Google Scholar]
- Ferreira, F.S.; Sampaio, G.R.; Keller, L.M.; Sawaya, A.C.H.F.; Chavez, D.W.H.; Torres, E.A.F.S.; Saldanha, T. Impact of Air Frying on Cholesterol and Fatty Acids Oxidation in Sardines: Protective Effects of Aromatic Herbs. J. Food Sci. 2017, 82, 2823–2831. [Google Scholar] [CrossRef] [PubMed]
- Ans, V.G.; Mattos, E.S.; Jorge, N. Quality assessment of frying oils used in restaurants and similar. Ciênc. Tecnol. Alim. 1999, 19, 413–419. [Google Scholar] [CrossRef]
- Corissin, M.S.; Jorge, N. Oxidative changes in oils from cottonseed, sunflower and palm oil used for frying frozen cassava. Alim. Nutr. 2005, 17, 25–34. [Google Scholar]
- Sébédio, J.L.; Ratnayake, W.M.N.; Ackman, R.G.; Prevost, J. Stability of polyunsaturated omega-3 fatty acids during deep fat frying of Atlantic mackerel (Scomber scombrus L.). Food Res. Int. 1993, 26, 163–172. [Google Scholar] [CrossRef]
- Okogeri, O.; Obelebe, E.A. Nutritional Properties of Atlantic Mackerel and Salmon as Affected by Traditional Cooking Methods. IOSR j. Biotechnol. Biochem. 2019, 5, 23–27. [Google Scholar]
- Kim, M.J.; Park, J.; Luo, L.; Min, J.; Kim, J.H.; Yang, H.D.; Kho, Y.; Kang, G.J.; Chung, M.S.; Shin, S.; et al. Effect of washing, soaking, and cooking methods on perfluorinated compounds in mackerel (Scomber japonicus). Food Sci. Nutr. 2020, 8, 4399–4408. [Google Scholar] [CrossRef]
- Ikegami, S.; Murata, Y.; Chokki, A.; Kunisaki, N. Plain or Without-batter Frying of Fat-rich Fish. J. Home Econ. Jpn. 1973, 24, 376–383. [Google Scholar]
- Laly, S.J.; Venketeswarlu, G. Effect of Culinary Oil on Changes in Lipid Quality and Physical Properties of Fried Indian Mackerel (Rastrelliger kanagurta) Steaks. Fish Technol. 2016, 53, 211–219. [Google Scholar]
- Chand, B.K.; Dora, K.C.; Sarkar, S.; Maragal, M.M. Changes during frying of mackerel at different temperature. Fish Technol. 2001, 38, 87–91. [Google Scholar]
- Nurjanah, N.; Nurilmala, M.; Hidayat, T.; Azri, R.Y.I. Fatty Acid Composition and Cholesterol Indian Mackerel (Rastrelliger kanagurta) Due Frying Process. Int. J. Mater. Chem. Phys. 2016, 2, 54–61. [Google Scholar]
- Nurjanah, N.; Nurilmala, M.; Hidayat, T.; Ginanjar, T.M.G. Amino Acid and Taurine Changes of Indian Mackarel Due to Frying Process. Int. J. Chem. Biomol. Sci. 2015, 1, 163–166. [Google Scholar]
- Ismail, A.; Ikram, E.H.K. Effects of cooking practices (boiling and frying) on the protein and amino acids contents of four selected fishes. Nutr. Food Sci. 2004, 34, 54–59. [Google Scholar] [CrossRef]
- Gall, K.L.; Otwell, W.S.; Koburger, J.A.; Appledorf, H. Effects of Four Cooking Methods on the Proximate, Mineral and Fatty Acid Composition of Fish Fillets. J. Food Sci. 1983, 48, 1068–1074. [Google Scholar] [CrossRef]
- Lee, E.H.; Chung, S.H.; Cho, S.Y.; Cha, Y.J.; Kim, S.K. Storage stability of intermediate moisture deep-fried mackerel. Korean J. Food Sci. Technol. 1983, 15, 353–358. [Google Scholar]
- Tirtawijaya, G.; Lee, M.-J.; Negara, B.F.S.P.; Cho, W.-H.; Sohn, J.-H.; Kim, J.-S.; Choi, J.-S. Effects of Vacuum Frying on the Preparation of Ready-to-Heat Batter-Fried and Sauced Chub Mackerel (Scomber japonicus). Foods 2021, 10, 1962. [Google Scholar] [CrossRef]
- Tolasa, S.; Lee, C.M.; Calki, S. Lipid oxidation and omega-3 fatty acid retention in salmon and mackerel nuggets during frozen storage. J. Aquat. Food Prod. Technol. 2011, 20, 172–182. [Google Scholar] [CrossRef]
- Chen, C.L.; Li, P.Y.; Hu, W.H.; Lan, M.H.; Chen, M.J.; Chen, H.H. Using HPMC to improve crust crispness in microwave-reheated battered mackerel nuggets: Water barrier effect of HPMC. Food Hydrocoll. 2008, 22, 1337–1344. [Google Scholar] [CrossRef]
- Lee, K.H.; Joaquin, H.; Lee, C.M. Improvement of Moistness and Texture of High Omega-3 Fatty Acid Mackerel Nuggets by Inclusion of Moisture-Releasing Ingredients. J. Food Sci. 2007, 72, S119–S124. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef]
- Hsieh, R.J.; Kinsella, J.E. Oxidation of polyunsaturated fatty acids: Mechanisms, products, and inhibition with emphasis on fish. Adv. Food Nutr. Res. 1989, 33, 233–341. [Google Scholar]
- Saldanha, T.; Bragagnolo, N. Relation between types of packaging, frozen storage and grilling on cholesterol and fatty acids oxidation in Atlantic hake fillets (Merluccius hubbsi). Food Chem 2008, 106, 619–627. [Google Scholar] [CrossRef]
- Asokapandian, S.; Swamy, G.J.; Hajjul, H. Deep fat frying of foods: A critical review on process and product parameters. Crit. Rev. Food Sci. Nutr. 2019. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhanga, M.; Adhikaric, B. Recent developments in frying technologies applied to fresh foods. Trends Food Sci. Technol. 2020, 98, 68–81. [Google Scholar] [CrossRef]
- Sanchez-Muniz, F.J.; Viejo, J.M.; Medina, R. Deep-frying of sardines in different culinary fats, changes in the fatty acid composition of Sardines and frying fats. J. Agric. Food Chem. 1992, 40, 2252–2256. [Google Scholar] [CrossRef]
- Castrillon, A.M.; Navarro, P.; Alvarez-Pontes, E. Changes in chemical composition and nutritional quality of fried Sardine (Clupea pilchardus) produced by frozen storage and microwave reheating. J. Sci. Food Agric. 1997, 75, 125–132. [Google Scholar] [CrossRef]
- García-Arias, M.T.; Álvarez-Pontes, E.; García-Linares, M.C.; García-Fernández, M.C.; Sánchez-Muniz, F.J. Cooking-freezing-reheating (CFR) of sardine (Sardina pilchardus) fillets: Effect of different cooking and reheating procedures on the proximate and fatty acid compositions. Food Chem. 2003, 83, 349–356. [Google Scholar] [CrossRef]
- Sikorski, Z.E. Chemical and Functional Properties of Food Proteins; Technomic Publishing Co. Inc.: Lancaster, PA, USA, 2001; pp. 191–215. [Google Scholar]
- Rakowska, M.; Werner, J.; Szkilladziowa, W.; Nadolna, I.; Zielinska, Z. Comments on effect of heat treatment on the nutritive value of protein and the availability of amino acids in meat-vegetable canned foods. Zesz Probl. Postepow Nauk Roln. 1975, 167, 217–224. [Google Scholar]
- Zaitsev, V.; Kizevetter, I.; Lagunov, L.; Makarova, L.; Minder, L.; Podsevalov, V. In Siah Curing and Processing; Mir Publicationa: Moscow, Russia, 1969; 722p. [Google Scholar]
- Wu, D.; Li, X.K.; Zhang, J.X.; Chen, W.R.; Lu, P.; Tang, Y.M.; Li, L.S. Efficient PFOA degradation by persulfate-assisted photocatalytic ozonation. Sep Purif Technol. 2018, 207, 255–261. [Google Scholar] [CrossRef]
- Luo, L.; Kim, M.; Park, J.; Yang, H.; Kho, Y.; Chung, M.; Moon, B. Reduction of perfluorinated compound content in fish cake and swimming crab by different cooking methods. Appl. Biol. Chem. 2019, 62, 44–54. [Google Scholar] [CrossRef] [Green Version]
- Oduro, F.A.; Choi, N.D.; Ryu, H.S. Effects of cooking conditions on the protein quality of chub Mackerel Scomber japonicus. Fish Aquat. Sci. 2011, 14, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Man, Y.; Atan, M. Some quality parameters of intermediate moisture, deep-fried mackerel (Scomberomorus commersoni, Lacepede). Pertanika 1984, 7, 115–119. [Google Scholar]
- Man, Y.B.C.; Bakar, J.; Mokri, A.A.K. Effect of packaging films on storage stability of intermediate-moisture deep-fried mackerel. Int. J. Food Sci. Technol. 1995, 30, 175–181. [Google Scholar] [CrossRef]
- Fatimah, S.S.; Pratama, R.I.; Liviawati, J.E. Addition of carrageenan fluor on preference level of mackerel nugget. World News Nat. Sci. 2019, 22, 180–189. [Google Scholar]
- Suderman, D.R. Selecting flavorings and seasonings for batter and breading systems. Cereal Food World 1993, 39, 689–694. [Google Scholar]
- Olewinik, M.; Kulp, K. Factors influencing wheat flour performance in batter system. Cereal Food World 1993, 39, 679–684. [Google Scholar]
- Balasubramaniam, V.M.; Chinnan, M.S.; Mallikarjunan, P.; Phillips, R.D. The effect of edible film on oil uptake and moisture retention of a deep-fat fried poultry product. J. Food Process Eng. 1997, 20, 17–29. [Google Scholar] [CrossRef]
- Sahin, S.; Sumnu, G.; Altunakar, B. Effects of batters containing different gum types on the quality of deep-fat fried chicken nuggets. J. Sci. Food Agric. 2005, 85, 2375–2379. [Google Scholar] [CrossRef]
- Quadros, D.A.; Rocha, I.F.O.; Ferreira, S.M.R.; Bolini, H.M.A. Low-sodium fish burgers: Sensory profile and drivers of liking. LWT Food Sci. Technol. 2015, 63, 236–242. [Google Scholar] [CrossRef]
- Ozogul, Y.; Uçar, Y. The Effects of Natural Extracts on the Quality Changes of Frozen Chub Mackerel (Scomber japonicus) Burgers. Food Bioprocess Technol. 2013, 6, 1550–1560. [Google Scholar] [CrossRef]
- Uçak, İ.; Özogul, Y.; Durmuş, M. The effects of rosemary extract combination with vacuum packing on the quality changes of Atlantic mackerel fish burgers. Int. J. Food Sci. Technol. 2011, 46, 1157–1163. [Google Scholar] [CrossRef]
- Alfaro, A.T.; Costa, C.S.; da Lanes, G.F.C.; Torres, L.; Soares, G.J.D.; Prentice, C.H. Processing parameters and acceptability of ham prepared from king weakfish (Macrodon ancylodon) surimi. Alimentos e Nutriçao 2004, 15, 259e265. [Google Scholar]
- Soto-Jover, S.; Boluda-Aguilar, M.; Esnoz-Nicuesa, A.; Iguaz-Gainza, A.; Lopez-Gomez, A. Texture, Oil Adsorption abd Safety of the european Style Crocuettes Manufactured at Industrial Scale. Food Eng. Rev. 2015, 8, 181–200. [Google Scholar] [CrossRef]
- Fuchs, R.H.B.; Ribeiro, R.P.; Matsushita, M.; Tanamati, A.A.C.; Canan, C.; Bona, E.; Marques, L.L.M.; Droval, A.A. Chemical, sensory and microbiological stability of freeze-dried Nile tilapia croquette mixtures. CyTA-J. Food 2015, 13, 556–562. [Google Scholar] [CrossRef] [Green Version]
- Çankırılıgil, E.C.; Berik, N. Effects of deep-frying to sardine croquettes’ chemical composition. EgeJFAS 2017, 34, 293–302. [Google Scholar] [CrossRef]
Species | Frying Methods | Optimum Condition | Filet Size | Results | Ref. |
---|---|---|---|---|---|
Atlantic Mackerel * | Deep fry | 180 °C for 7 min in canola oil | 3 × 3 cm | Maintaining fatty acid content | [14] |
Atlantic Mackerel | Deep fry | 180 °C for 5 min in soybean oil | - | Increasing protein and fat | [15] |
Chub Mackerel * | Deep fry | 165 °C for 3 min in sunflower oil | 5 × 5 cm | Increasing the score of overall acceptance | [9] |
Chub Mackerel | Deep fry | 160 °C for 3 min | - | Reducing perfluorinated compounds (PFCs) | [16] |
Chub mackerel | Deep fry | 180 °C for 90 s in soybean oil | - | Improving the taste of fried mackerel | [17] |
Chub Mackerel | Vacuum fry | 95 °C for 7 min at 80 mmHg in sunflower oil | 5 × 5 cm | Lowering the oxidation of lipids and proteins | [9] |
Chub Mackerel | Air fry | 160 °C for 15 min | 5 × 5 cm | Increasing the score of overall acceptance | [9] |
Indian Mackerel * | Deep fry | 180 °C for 5 min in sunflower oil | 2.8 cm in length | Decreasing fatty acids | [18] |
Indian Mackerel | Deep fry | 160 °C for 5 min in groundnut oil | 5 cm in length | Increasing heat rate penetration | [19] |
Indian Mackerel | Deep fry | 180 °C for 5 min | - | Decreasing fatty acid content | [20] |
Indian Mackerel | Deep fry | 180 °C for 5 min | - | Decreasing amino acid content | [21] |
Indian Mackerel | Deep fry | 160 °C for 6 min in palm oil | 500 g/pieces | Changing the nutritional composition | [22] |
Spanish Mackerel * | Deep fry | 177 °C for 3 min in soybean oil | - | Changing the nutritional composition | [23] |
Species | Frying Methods | Marinating/Spicing | Optimum Condition | Filet Size | Results | Ref. |
---|---|---|---|---|---|---|
Chub Mackerel * | Deep Fry | Mackerel marinated with 6% of sodium chloride | 180 °C for 10 min in soybean oil | - | Lowering trypsin inhibitor level | [42] |
Spanish Mackerel * | Deep Fry | Mackerel marinated with polyethylene glycol (PEG) 200, sorbic acid, and butylated hydroxy anisole (BHA) and seasoned with turmeric powder, garlic, shallot, red chilies, ginger, wheat flour, table salt (NaCl), and monosodium glutamate (MSG) | 190 °C for 4 min in corn oil | 4 × 0.75 × 3 cm | Affecting the color of fried mackerel | [43] |
Spanish Mackerel * | Deep fry | Mackerel spiced with shallot, red chilies, turmeric powder, ginger, garlic, salt, and MSG | 191 °C for 3 min in palm olein | 4 × 0.75 × 3 cm | Increasing proximate composition | [44] |
Species | Frying Methods | Batter Composition | Optimum Condition | Filet Size | Results | Ref. |
---|---|---|---|---|---|---|
Chub Mackerel * | Deep fry | Wheat flour, water, NaCl, potassium sorbate, and red pepper | 170 °C for 3 min in soybean oil | 2 × 2 cm | Maintaining physicochemical and nutritional properties | [24] |
Chub Mackerel | Deep fry | Soft flour, rice flour, corn starch, roasted rice flour, refined salt, garlic powder, ground pepper, baking powder, and sugar | 190 °C for 5 min 30 s in sunflower oil | 3 × 5 cm | Changing physicochemical properties | [25] |
Chub Mackerel | Vacuum fry | Soft flour, rice flour, corn starch, roasted rice flour, refined salt, garlic powder, ground pepper, baking powder, and sugar | 95 °C for 7 min 42 s at 80 mmHg in sunflower oil | 3 × 5 cm | Maintaining sensory, chemical, microbial, and nutritional properties |
Species | Minced Mackerel Products | Frying Methods | Optimum Condition | Oil Used | Results | Ref. |
---|---|---|---|---|---|---|
Atlantic Mackerel * | Nugget | Deep fry | 160 °C for 1 min | Soybean oil | Lowering lipid oxidation | [26] |
Atlantic Mackerel | Burger | Vacuum fry | 107 °C for 2 min at 80 mmHg | Sunflower oil | Maintaining nutrition with low oxidation | [10] |
Horse Mackerel * | Nugget | Deep fry | 180 °C for 2 min | Hydrogenated oil | Increasing the color and crust crispness | [27] |
King Mackerel * | Nugget | Deep fry | 160 °C for 2 min | - | Improving moistness and softness | [28] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negara, B.F.S.P.; Tirtawijaya, G.; Cho, W.-H.; Harwanto, D.; Sohn, J.-H.; Kim, J.-S.; Choi, J.-S. Effects of Frying Processes on the Nutritional and Sensory Characteristics of Different Mackerel Products. Processes 2021, 9, 1645. https://doi.org/10.3390/pr9091645
Negara BFSP, Tirtawijaya G, Cho W-H, Harwanto D, Sohn J-H, Kim J-S, Choi J-S. Effects of Frying Processes on the Nutritional and Sensory Characteristics of Different Mackerel Products. Processes. 2021; 9(9):1645. https://doi.org/10.3390/pr9091645
Chicago/Turabian StyleNegara, Bertoka Fajar Surya Perwira, Gabriel Tirtawijaya, Woo-Hee Cho, Dicky Harwanto, Jae-Hak Sohn, Jin-Soo Kim, and Jae-Suk Choi. 2021. "Effects of Frying Processes on the Nutritional and Sensory Characteristics of Different Mackerel Products" Processes 9, no. 9: 1645. https://doi.org/10.3390/pr9091645