Replacement of the Mouse LD50 Assay for Determination of the Potency of AbobotulinumtoxinA with a Cell-Based Method in Both Powder and Liquid Formulations
Abstract
:1. Introduction
2. Results
2.1. Assay Specificity and Demonstration of Toxin Uptake
2.2. Assay Linearity, Accuracy, Repeatability, and Intermediate Precision of the BoCell® Assay
2.3. Comparability Assessment of Data from the LD50 Assay and BoCell® Assay Using Release and Stability Samples
3. Discussion
4. Materials and Methods
4.1. BoNT-A Preparations
4.2. BoCell® Assay Methodology
4.3. Validation of the BoCell® Assay to Determine its Capability as a Release Test
4.4. Comparability Assessment of Data from the LD50 Assay and the BoCell® Assay Using Release and Stability Samples
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fonfria, E.; Maignel, J.; Lezmi, S.; Martin, V.; Splevins, A.; Shubber, S.; Kalinichev, M.; Foster, K.; Picaut, P.; Krupp, J. The expanding therapeutic utility of botulinum neurotoxins. Toxins 2018, 10, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cocco, A.; Albanese, A. Recent developments in clinical trials of botulinum neurotoxins. Toxicon 2018, 147, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Montal, M. Botulinum neurotoxin: A marvel of protein design. Annu. Rev. Biochem. 2010, 79, 591–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirazzini, M.; Rossetto, O.; Eleopra, R.; Montecucco, C. Botulinum neurotoxins: Biology, pharmacology, and toxicology. Pharmacol. Rev. 2017, 69, 200–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samizadeh, S.; De Boulle, K. Botulinum neurotoxin formulations: Overcoming the confusion. Clin. Cosmet. Investig. Dermatol. 2018, 11, 273–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Field, M.; Splevins, A.; Picaut, P.; van der Schans, M.; Langenberg, J.; Noort, D.; Snyder, D.; Foster, K. AbobotulinumtoxinA (Dysport®), OnabotulinumtoxinA (Botox®), and IncobotulinumtoxinA (Xeomin®) neurotoxin content and potential implications for duration of response in patients. Toxins 2018, 10, 535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, A.; Manca, M.; Tugnoli, V.; Alberto, L. Pharmacological differences and clinical implications of various botulinum toxin preparations: A critical appraisal. Funct. Neurol. 2018, 33, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.E.; Song, E.J.; Choi, G.S.; Lew, B.L.; Sim, W.Y.; Kang, H. The efficacy and safety of liquid-type botulinum toxin type A for the management of moderate to severe glabellar frown lines. Plast. Reconstr. Surg. 2015, 135, 732–741. [Google Scholar] [CrossRef] [PubMed]
- International Council for Harmonisation Harmonised Tripartite Guideline Specifications. Test Procedures and Acceptance Criteria for Biotechnological/Biological Products Q6b. Available online: https://database.ich.org/sites/default/files/Q6B%20Guideline.pdf (accessed on 23 November 2022).
- Pellett, S. Progress in cell based assays for botulinum neurotoxin detection. Curr. Top. Microbiol. Immunol. 2013, 364, 257–285. [Google Scholar] [PubMed] [Green Version]
- Adler, S.; Bicker, G.; Bigalke, H.; Bishop, C.; Blümel, J.; Dressler, D.; Fitzgerald, J.; Gessler, F.; Heuschen, H.; Kegel, B.; et al. The current scientific and legal status of alternative methods to the LD50 test for botulinum neurotoxin potency testing. The report and recommendations of a ZEBET Expert Meeting. Altern. Lab. Anim. 2010, 38, 315–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Berg, L.; Stern, D.; Pauly, D.; Mahrhold, S.; Weisemann, J.; Jentsch, L.; Hansbauer, E.-M.; Müller, C.; Avondet, M.A.; Rummel, A.; et al. Functional detection of botulinum neurotoxin serotypes A to F by monoclonal neoepitope-specific antibodies and suspension array technology. Sci. Rep. 2019, 9, 5531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behrensdorf-Nicol, H.A.; Wild, E.; Bonifas, U.; Klimek, J.; Hanschmann, K.M.; Krämer, B.; Kegel, B. In vitro potency determination of botulinum neurotoxin serotype A based on its receptor-binding and proteolytic characteristics. Toxicol. In Vitro 2018, 53, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Pickett, A. Commentary: A cell line for detection of botulinum neurotoxin type B. Front. Pharmacol. 2018, 9, 1056. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Tepp, W.H.; Johnson, E.A.; Chapman, E.R. Using fluorescent sensors to detect botulinum neurotoxin activity in vitro and in living cells. Proc. Natl. Acad. Sci. USA 2004, 101, 14701–14706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atapattu, D.; Olivares, H.A.; Piazza, T.M.; Crawford, D.; Zeytin, N.; Tucker, W. Performance and mouse bioassay comparability of the BoCell™ A cell-based assay. Toxins 2013, 68, 105. [Google Scholar] [CrossRef]
- Piazza, T.M.; Geurs, T.L.; Hendricksen, S.F.; Zeytin, F.N.; Tucker, W.C. Development of a cell-based relative potency assay for botulinum neurotoxin-based drug products. In Proceedings of the 2nd Annual US BioPharmaceutical Emerging Best Practices Association (BEPBA) Bioassay Conference, San Diego, CA, USA, 7–9 March 2018. [Google Scholar]
- BioSentinel. Assays for Botulinum Neurotoxin Detection and Quantification. Available online: https://biosentinelpharma.com/files/BioSentinel_Brochure_2017-09.pdf (accessed on 23 November 2022).
- International Council for Harmonisation Harmonised Tripartite Guideline Specifications. Validation of Analytical Procedures: Text and Methodology Q2(R1). Available online: https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf (accessed on 23 November 2022).
- US Food and Drug Administration. Analytical Procedures and Methods Validation for Drugs and Biologics [Guidance Document]. Available online: https://www.fda.gov/files/drugs/published/Analytical-Procedures-and-Methods-Validation-for-Drugs-and-Biologics.pdf (accessed on 23 November 2022).
- Singh, A.K.; Stanker, L.H.; Sharma, S.K. Botulinum neurotoxin: Where are we with detection technologies? Crit. Rev. Microbiol. 2013, 39, 43–56. [Google Scholar] [CrossRef]
- National Institutes of Health. Report on the ICCVAM-NICEATM/ECVAM Scientific Workshop on Alternative Methods to Refine, Reduce or Replace the Mouse LD50 Assay for Botulinum Toxin Testing. Available online: https://ntp.niehs.nih.gov/iccvam/docs/biologics-docs/bontwkshprept.pdf (accessed on 23 November 2022).
- Fernández-Salas, E.; Wang, J.; Molina, Y.; Nelson, J.B.; Jacky, B.P.S.; Aoki, K.R. Botulinum neurotoxin serotype A specific cell-based potency assay to replace the mouse bioassay. PLoS ONE 2012, 7, e49516. [Google Scholar] [CrossRef] [Green Version]
- Merz Pharma GmbH & Co. KGaA. Alternative Test Method for Botulinum Neurotoxin Now Approved in Europe [Press Release]. Available online: https://www.merz.com//wp-content/uploads/2015/12/20151211PM-BfArM-Zulassung-alternative-Testmethode_EN_v.pdf (accessed on 23 November 2022).
- Morgan, B.J.T. Analysis of Quantal Response Data; Chapman and Hall: London, UK, 1992; Chapter 7. [Google Scholar]
Parameter | Acceptance Criteria | Results for the BoCell® Assay | |||
---|---|---|---|---|---|
Powder Formulation | Liquid Formulation | Powder Formulation | Liquid Formulation | ||
Specificity | No response when placebo tested vs. reference standard | No response when placebo tested vs. reference standard | No response seen with placebo | No response seen with placebo | |
Linearity | r2 ≥ 0.90 | r2 ≥ 0.97 CI of the slope for linear regression must include 1 CI for the Y-intercept must include 0 | r2 = 0.98 | r2 = 0.98 CI for slope = 0.99 to 1.13 CI for Y-intercept = −7.51 to 6.45 | |
Range | Acceptable accuracy, precision, and linearity over the relative potency range of 50–130% | Acceptable accuracy, precision, and linearity over the relative potency range of 50–130% | Accurate, precise, and linear response observed in the range of 50–130% | Accurate, precise, and linear response observed in the range of 50–130% | |
Accuracy | Recovery for estimated potency of 84–116% of target potency over the interval of 50–130% relative potency | Recovery for estimated potency of 85–115% of target potency over the interval of 50–130% relative potency | Recovery of 90–103% | Recovery of 106–108% | |
Precision–repeatability | %CV ≤ 15% | %CV ≤ 15% | %CV = 3.6% with 500 U/vial %CV = 3.3% with 125 U/vial | %CV = 4% | |
Intermediate precision | ≤10% difference between operator means | N/A | 1.6% difference with 500 U/vial | N/A | |
%CV ≤ 15% | At each of three potency levels (50%, 100%, and 130%), %CV ≤ 15% | %CV = 8.3% with 500 U/vial | Potency level | %CV | |
50% | 4% | ||||
100% | 3% | ||||
130% | 5% |
Sample ID | Assay Plate No. | Sample Potency Results Ratio vs. Reference Standard | Unweighted Mean (n = 3) | Individual Assay %CV | Repeatability %CV |
---|---|---|---|---|---|
500 U/vial | 1 | 0.895 | 0.913 | 7.7 | 3.6 |
2 | 0.853 | ||||
3 | 0.991 | ||||
1 | 0.993 | 0.983 | 4.4 | ||
2 | 1.021 | ||||
3 | 0.936 | ||||
1 | 0.850 | 0.960 | 10.3 | ||
2 | 1.042 | ||||
3 | 0.987 | ||||
1 | 1.011 | 0.994 | 8.0 | ||
2 | 0.906 | ||||
3 | 1.064 | ||||
1 | 1.080 | 0.949 | 11.9 | ||
2 | 0.879 | ||||
3 | 0.889 | ||||
1 | 0.975 | 0.913 | 6.2 | ||
2 | 0.865 | ||||
3 | 0.898 | ||||
125 U/vial | 1 | 0.990 | 0.981 | 5.6 | 3.3 |
2 | 0.923 | ||||
3 | 1.031 | ||||
1 | 0.902 | 0.972 | 7.1 | ||
2 | 1.040 | ||||
3 | 0.975 | ||||
1 | 0.949 | 0.921 | 2.7 | ||
2 | 0.900 | ||||
3 | 0.914 | ||||
1 | 1.059 | 0.903 | 19.6 1 | ||
2 | 0.711 | ||||
3 | 0.940 | ||||
1 | 0.989 | 0.957 | 6.1 | ||
2 | 0.890 | ||||
3 | 0.993 | ||||
1 | 0.968 | 0.970 | 3.0 | ||
2 | 0.941 | ||||
3 | 1.000 |
Sample ID | Assay Plate No. | Sample Potency Results Ratio vs. Reference Standard | Unweighted Mean (n = 3) | Individual Assay %CV | Repeatability %CV |
---|---|---|---|---|---|
Analyst 1 | 1 | 0.895 | 0.913 | 7.7 | 10.4 |
2 | 0.853 | ||||
3 | 0.991 | ||||
1 | 0.993 | 0.983 | 4.4 | ||
2 | 1.021 | ||||
3 | 0.936 | ||||
1 | 0.850 | 0.960 | 10.3 | ||
2 | 1.042 | ||||
3 | 0.987 | ||||
1 | 1.011 | 0.994 | 8.0 | ||
2 | 0.906 | ||||
3 | 1.064 | ||||
1 | 1.080 | 0.949 | 11.9 | ||
2 | 0.879 | ||||
3 | 0.889 | ||||
1 | 0.975 | 0.913 | 6.2 | ||
2 | 0.865 | ||||
3 | 0.898 | ||||
1 | 0.717 | 0.714 | 4.1 | ||
2 | 0.683 | ||||
3 | 0.741 | ||||
Analyst 2 | 1 | 0.858 | 0.870 | 7.1 | 5.0 |
2 | 0.815 | ||||
3 | 0.937 | ||||
1 | 0.959 | 0.941 | 1.7 | ||
2 | 0.932 | ||||
3 | 0.932 | ||||
1 | 0.894 | 0.843 | 9.8 | ||
2 | 0.748 | ||||
3 | 0.888 | ||||
1 | 0.939 | 0.916 | 5.7 | ||
2 | 0.953 | ||||
3 | 0.856 | ||||
1 | 0.953 | 0.948 | 3.2 | ||
2 | 0.976 | ||||
3 | 0.916 | ||||
Analyst 1 mean | 0.9180 | ||||
Analyst 2 mean | 0.9036 | ||||
Average | 0.912 | ||||
SD | 0.076 | ||||
%CV | 8.3 |
Test Level | Run No. | Weighted Combination Reportable Result (% Rel. Pot.) | Result Expressed as % Recovery | Overall Mean % Recovery (Accuracy) | %CV (Intermediate Precision) |
---|---|---|---|---|---|
50% | 4 | 51 | 102 | 107 | 4 |
5 | 56 | 112 | |||
6 | 51 | 102 | |||
13 | 54 | 108 | |||
14 | 54 | 108 | |||
15 | 56 | 112 | |||
100% | 1 | 108 | 108 | 3 | |
2 | 114 | ||||
3 | 105 | ||||
10 | 109 | ||||
11 | 105 | ||||
12 | 105 | ||||
130% | 7 | 132 | 102 | 106 | 5 |
8 | 143 | 110 | |||
9 | 144 | 111 | |||
16 | 135 | 104 | |||
17 | 145 | 112 | |||
18 | 129 | 99 |
Batch | Purpose of Batch | CNT52120 BAS Batch | CBA, U/mL | LD50, U/mL | Ratio, % |
---|---|---|---|---|---|
L17564 | PPQ and stability | L04793 | 202 | 201 | 100 |
L18325 | PPQ and stability | K02858 | 229 | 219 | 105 |
L19836 | PPQ and stability | K02858 | 201 | 221 | 91 |
L20499 | PPQ and stability | L04793 | 177 | 209 | 85 |
N14521 | Potency comparability | L10613 | 187 | 224 | 83 |
N15416 | Potency comparability | L10613 | 260 | 232 | 112 |
N15791 | Potency comparability | L10613 | 245 | 214 | 114 |
N16407 | Potency comparability | L04793 | 186 | 190 | 98 |
N16906 | Potency comparability | L04793 | 193 | 216 | 89 |
N17823 | Potency comparability | L04793 | 189 | 172 | 110 |
N17580 | Potency comparability | L04793 | 217 | 178 | 122 |
Mean | 208 | 207 | 101 |
Batch | Purpose of Batch | CNT52120 BAS Batch | CBA, U/mL | LD50, U/mL | Ratio, % |
---|---|---|---|---|---|
L17564 INV | PPQ and stability | L04793 | 189 | 189 | 100 |
L18325 INV | PPQ and stability | K02858 | 192 | 204 | 94 |
L18325 UPR | 178 | 187 | 95 | ||
L19836 INV | PPQ and stability | K02858 | 174 | 197 | 88 |
L19836 UPR | 144 | 177 | 81 | ||
L20499 INV | PPQ and stability | L04793 | 187 | 200 | 94 |
L20499 UPR | 161 | 171 | 94 | ||
L13489 | Stability | K02858 | 198 | 194 | 102 |
N15416 | Potency comparability | L10613 | 218 | 206 | 106 |
N15791 | Potency comparability | L10613 | 172 | 170 | 101 |
N16407 | Potency comparability | L04793 | 145 | 179 | 81 |
N16906 | Potency comparability | L04793 | 159 | 184 | 86 |
N17823 | Potency comparability | L04793 | 186 | 160 | 116 |
N17580 | Potency comparability | L04793 | 188 | 200 | 94 |
Mean | 178 | 187 | 95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonfria, E.; Marks, E.; Foulkes, L.-M.; Schofield, R.; Higazi, D.; Coward, S.; Kippen, A. Replacement of the Mouse LD50 Assay for Determination of the Potency of AbobotulinumtoxinA with a Cell-Based Method in Both Powder and Liquid Formulations. Toxins 2023, 15, 314. https://doi.org/10.3390/toxins15050314
Fonfria E, Marks E, Foulkes L-M, Schofield R, Higazi D, Coward S, Kippen A. Replacement of the Mouse LD50 Assay for Determination of the Potency of AbobotulinumtoxinA with a Cell-Based Method in Both Powder and Liquid Formulations. Toxins. 2023; 15(5):314. https://doi.org/10.3390/toxins15050314
Chicago/Turabian StyleFonfria, Elena, Elizabeth Marks, Lisa-Marie Foulkes, Rebecca Schofield, Daniel Higazi, Sam Coward, and Alistair Kippen. 2023. "Replacement of the Mouse LD50 Assay for Determination of the Potency of AbobotulinumtoxinA with a Cell-Based Method in Both Powder and Liquid Formulations" Toxins 15, no. 5: 314. https://doi.org/10.3390/toxins15050314
APA StyleFonfria, E., Marks, E., Foulkes, L.-M., Schofield, R., Higazi, D., Coward, S., & Kippen, A. (2023). Replacement of the Mouse LD50 Assay for Determination of the Potency of AbobotulinumtoxinA with a Cell-Based Method in Both Powder and Liquid Formulations. Toxins, 15(5), 314. https://doi.org/10.3390/toxins15050314