Senses along Which the Entropy Sq Is Unique
Abstract
:1. Introduction
2. On Uniqueness
2.1. Santos 1997 Theorem
2.2. The 1997 Connection to Weak Chaos in the Logistic Map
2.3. Connection with Jackson Derivative
2.4. Abe 2000 Theorem
2.5. Beck-Cohen 2003 Superstatistics
2.6. Lattice-Boltzmann Models for Fluids
2.7. Topsoe 2005 Factorizability in Game Theory
2.8. Amari-Ohara-Matsuzoe 2012 Conformally Invariant Geometry
2.9. Enciso–Tempesta 2017 Theorem
2.10. The Shore–Johnson–Axioms Controversy (2005–2019)
2.11. Plastino-Tsallis-Wedemann-Haubold 2022
2.12. Plastino-Plastino 2023 Connection with the Micro-Canonical Ensemble
3. Closely Related Issues
3.1. The Values of the Entropic Indices Might Depend on the Class of States of the System
3.2. Entropic Functional vs. Entropy of a System
4. Summary
Funding
Acknowledgments
Conflicts of Interest
References
- Tsallis, C. Entropy. Encyclopedia 2022, 2, 264–300. [Google Scholar] [CrossRef]
- Boltzmann, L. Weitere Studien über das Wȧrmegleichgewicht unter Gas molekülen [Further Studies on Thermal Equilibrium Between Gas Molecules]. Wien. Ber. 1872, 66, 275. [Google Scholar]
- Boltzmann, L. Uber die Beziehung eines allgemeine mechanischen Satzes zum zweiten Haupsatze der Warmetheorie. Sitzungsberichte K. Akademie Wiss. Wien Math.-Naturwissenschaften 1877, 75, 67–73. [Google Scholar]
- Gibbs, J.W. Elementary Principles in Statistical Mechanics—Developed with Especial Reference to the Rational Foundation of Thermodynamics; C. Scribner’s Sons: New York, NY, USA, 1902. [Google Scholar]
- Gibbs, J.W. The collected works. In Thermodynamics; Yale University Press: New Haven, CT, USA, 1948; Volume 1. [Google Scholar]
- Gibbs, J.W. Elementary Principles in Statistical Mechanics; OX Bow Press: Woodbridge, CT, USA, 1981. [Google Scholar]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Penrose, O. Foundations of Statistical Mechanics: A Deductive Treatment; Pergamon: Oxford, UK, 1970; p. 167. [Google Scholar]
- Gell-Mann, M.; Tsallis, C. (Eds.) Nonextensive Entropy—Interdisciplinary Applications; Oxford University Press: New York, NY, USA, 2004. [Google Scholar]
- Tsallis, C. Nonextensive Statistical Mechanics—Approaching a Complex World, 1st ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Umarov, S.; Tsallis, C. Mathematical Foundations of Nonextensive Statistical Mechanics; World Scientific: Singapore, 2022. [Google Scholar]
- Tsallis, C. Nonextensive Statistical Mechanics—Approaching a Complex World, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Wong, C.Y.; Wilk, G.; Cirto, L.J.L.; Tsallis, C. From QCD-based hard-scattering to nonextensive statistical mechanical descriptions of transverse momentum spectra in high-energy pp and collisions. Phys. Rev. D 2015, 91, 114027. [Google Scholar] [CrossRef]
- Combe, G.; Richefeu, V.; Stasiak, M.; Atman, A.P.F. Experimental validation of nonextensive scaling law in confined granular media. Phys. Rev. Lett. 2015, 115, 238301. [Google Scholar] [CrossRef]
- Wild, R.; Notzold, M.; Simpson, M.; Tran, T.D.; Wester, R. Tunnelling measured in a very slow ion-molecule reaction. Nature 2023, 615, 425. [Google Scholar] [CrossRef]
- Regularly Updated Bibliography. Available online: http://tsallis.cat.cbpf.br/biblio.htm (accessed on 25 April 2023).
- Jizba, P.; Korbel, J.; Zatloukal, V. Tsallis thermostatics as a statistical physics of random chains. Phys. Rev. E 2017, 95, 022103. [Google Scholar] [CrossRef]
- Tsallis, C. What are the numbers that experiments provide? Quim. Nova 1994, 17, 468. [Google Scholar]
- Naudts, J. Estimators, escort probabilities, and phi-exponential families in statistical physics. J. Ineq. Pure Appl. Math. 2004, 5, 102. [Google Scholar]
- Naudts, J. Generalized exponential families and associated entropy functions. Entropy 2008, 10, 131–149. [Google Scholar] [CrossRef]
- Naudts, J. Generalized Thermostatistics; Springer: London, UK, 2011. [Google Scholar]
- Ribeiro, M.; Henriques, T.; Castro, L.; Souto, A.; Antunes, L.; Costa-Santos, C.; Teixeira, A. The entropy universe. Entropy 2021, 23, 222. [Google Scholar] [CrossRef] [PubMed]
- Enciso, A.; Tempesta, P. Uniqueness and characterization theorems for generalized entropies. J. Stat. Mech. 2017, 2017, 123101. [Google Scholar] [CrossRef]
- Renyi, A. On measures of information and entropy. In Proceedings of the Fourth Berkeley Symposium, Davis, CA, USA, 20–30 July 1960; University of California Press: Berkeley, CA, USA; Los Angeles, CA, USA, 1961; Volume 4, p. 547. [Google Scholar]
- Tempesta, P. Formal groups and Z-entropies. Proc. R. Soc. A 2016, 472, 20160143. [Google Scholar] [CrossRef]
- Jensen, H.J.; Pazuki, R.H.; Pruessner, G.; Tempesta, P. Statistical mechanics of exploding phase spaces: Ontic open systems. J. Phys. A Math. Theor. 2018, 51, 375002. [Google Scholar] [CrossRef]
- Sharma, B.D.; Mittal, D.P. New non-additive measures of entropy for discrete probability distributions. J. Math. Sci. 1975, 10, 28. [Google Scholar]
- Landsberg, P.T.; Vedral, V. Distributions and channel capacities in generalized statistical mechanics. Phys. Lett. A 1998, 247, 211. [Google Scholar] [CrossRef]
- Landsberg, P.T. Entropies galore! Braz. J. Phys. 1999, 29, 46–49. [Google Scholar] [CrossRef]
- Rajagopal, A.K.; Abe, S. Implications of form invariance to the structure of nonextensive entropies. Phys. Rev. Lett. 1999, 83, 1711. [Google Scholar] [CrossRef]
- Arimoto, S. Information-theoretical considerations on estimation problems. Inf. Control 1971, 19, 181–194. [Google Scholar] [CrossRef]
- Curado, E.M.F.; Tempesta, P.; Tsallis, C. A new entropy based on a group-theoretical structure. Ann. Phys. 2016, 366, 22–31. [Google Scholar] [CrossRef]
- Borges, E.P.; Roditi, I. A family of non-extensive entropies. Phys. Lett. A 1998, 246, 399–402. [Google Scholar] [CrossRef]
- Abe, S. A note on the q-deformation theoretic aspect of the generalized entropies in nonextensive physics. Phys. Lett. A 1997, 224, 326–330. [Google Scholar] [CrossRef]
- Kaniadakis, G. Non linear kinetics underlying generalized statistics. Physica A 2001, 296, 405. [Google Scholar] [CrossRef]
- Kaniadakis, G.; Lissia, M.; Scarfone, A.M. Deformed logarithms and entropies. Physica A 2004, 340, 41. [Google Scholar] [CrossRef]
- Anteneodo, C.; Plastino, A.R. Maximum entropy approach to stretched exponential probability distributions. J. Phys. A 1999, 32, 1089. [Google Scholar] [CrossRef]
- Hanel, R.; Thurner, S. A comprehensive classification of complex statistical systems and an axiomatic derivation of their entropy and distribution functions. Europhys. Lett. 2011, 93, 20006. [Google Scholar] [CrossRef]
- Hanel, R.; Thurner, S. When do generalised entropies apply? How phase space volume determines entropy. Europhys. Lett. 2011, 96, 50003. [Google Scholar] [CrossRef]
- Tsallis, C.; Cirto, L.J.L. Black hole thermodynamical entropy. Eur. Phys. J. C 2013, 73, 2487. [Google Scholar] [CrossRef]
- Schwammle, V.; Tsallis, C. Two-parameter generalization of the logarithm and exponential functions and Boltzmann-Gibbs-Shannon entropy. J. Math. Phys. 2007, 48, 113301. [Google Scholar] [CrossRef]
- Tempesta, P. Beyond the Shannon-Khinchin formulation: The composability axiom and the universal-group entropy. Ann. Phys. 2016, 365, 180. [Google Scholar] [CrossRef]
- Curado, E.M.F. General aspects of the thermodynamical formalism. Braz. J. Phys. 1999, 29, 36–45. [Google Scholar] [CrossRef]
- Curado, E.M.F.; Nobre, F.D. On the stability of analytic entropic forms. Physica A 2004, 335, 94. [Google Scholar] [CrossRef]
- Curado, E.M.F. (Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150, Rio de Janeiro 22290-180, Brazil). Private communication, 2020. [Google Scholar]
- Tsekouras, G.A.; Tsallis, C. Generalized entropy arising from a distribution of q-indices. Phys. Rev. E 2005, 71, 046144. [Google Scholar] [CrossRef] [PubMed]
- Jacquet, P.; Szpankowski, W. Entropy computations via analytic depoissonization. IEEE Trans. Inf. Theory 1999, 45, 1072. [Google Scholar] [CrossRef]
- Borges, E.P.; da Costa, B.G. Deformed mathematical objects stemming from the q-logarithm function. Axioms 2022, 11, 138. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423, 623–656. [Google Scholar] [CrossRef]
- Shannon, C.E. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Santos, R.J.V. Generalization of Shannon’ s theorem for Tsallis entropy. J. Math. Phys. 1997, 38, 4104. [Google Scholar] [CrossRef]
- Tsallis, C.; Plastino, A.R.; Zheng, W.-M. Power-law sensitivity to initial conditions—New entropic representation. Chaos Solitons Fractals 1997, 8, 885–891. [Google Scholar] [CrossRef]
- Lyra, M.L.; Tsallis, C. Nonextensivity and multifractality in low-dimensional dissipative systems. Phys. Rev. Lett. 1998, 80, 53. [Google Scholar] [CrossRef]
- Tsallis, C.; Borges, E.P. Time evolution of nonadditive entropies: The logistic map. Chaos Solitons Fractals 2023, in press. [Google Scholar] [CrossRef]
- Baldovin, F.; Robledo, A. Nonextensive Pesin identity: Exact renormalization group analytical results for the dynamics at the edge of chaos of the logistic map. Phys. Rev. E 2004, 69, 045202. [Google Scholar] [CrossRef] [PubMed]
- Jackson, F. The Messenger of Mathematics; Forgotten Books: London, UK, 1909. [Google Scholar]
- Jackson, F. On Q-Definite Integrals. Q. J. Pure Appl. Math. 1910, 41, 193. [Google Scholar]
- Khinchin, A.I. Mathematical Foundations of Information Theory, Uspekhi Matem. Nauk 1953, 8, 3. [Google Scholar]
- Khinchin, A.I. Mathematical Foundations of Information Theory; Silverman, R.A.; Friedman, M.D., Translators; Dover: New York, NY, USA, 1957. [Google Scholar]
- Abe, S. Axioms and uniqueness theorem for Tsallis entropy. Phys. Lett. A 2000, 271, 74. [Google Scholar] [CrossRef]
- Plastino, A.R.; Plastino, A. Generalized entropies. In Condensed Matter Theories; Ludeña, E.V., Vashista, P., Bishop, R.F., Eds.; Nova Science Publishers: New York, NY, USA, 1996; Volume 11, p. 327. [Google Scholar]
- Plastino, A.R.; Plastino, A. Tsallis entropy and Jaynes’ information theory formalism. Braz. J. Phys. 1999, 29, 50. [Google Scholar] [CrossRef]
- Jizba, P.; Korbel, J. When Shannon and Khinchin meet Shore and Johnson: Equivalence of information theory and statistical inference axiomatics. Phys. Rev. E 2020, 101, 042126. [Google Scholar] [CrossRef]
- Shore, J.E.; Johnson, R.W. Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Inf. Theory 1980, 26, 26–37. [Google Scholar] [CrossRef]
- Shore, J.E.; Johnson, R.W. Properties of cross-entropy minimization. IEEE Trans. Inf. Theory 1981, 27, 472–482. [Google Scholar] [CrossRef]
- Shore, J.E.; Johnson, R.W. Comments on and correction to “Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy” (Jan 80 26–37). IEEE Trans. Inf. Theory 1983, 29, 942–943. [Google Scholar]
- Uffink, J. Can the maximum entropy principle be explained as a consistency requirement? Hist. Phil. Mod. Phys. 1995, 26, 223. [Google Scholar] [CrossRef]
- Wilk, G.; Wlodarczyk, Z. Interpretation of the nonextensivity parameter q in some applications of Tsallis statistics and Lévy distributions. Phys. Rev. Lett. 2000, 84, 2770. [Google Scholar] [CrossRef] [PubMed]
- Beck, C. Dynamical foundations of nonextensive statistical mechanics. Phys. Rev. Lett. 2001, 87, 180601. [Google Scholar] [CrossRef]
- Beck, C.; Cohen, E.G.D. Superstatistics. Physica A 2003, 322, 267. [Google Scholar] [CrossRef]
- Beck, C. Superstatistics: Theory and Applications. In Nonadditive Entropy and Nonextensive Statistical Mechanics; Sugiyama, M., Ed.; Continuum Mechanics and Thermodynamics; Springer: Heidelberg, Germany, 2004; Volume 16, p. 293. [Google Scholar]
- Cohen, E.G.D. Superstatistics. Physica D 2004, 193, 35. [Google Scholar] [CrossRef]
- Cohen, E.G.D. Boltzmann and Einstein: Statistics and Dynamics—An Unsolved Problem. Pramana 2005, 64, 635–643. [Google Scholar] [CrossRef]
- Tsallis, C.; Souza, A.M.C. Constructing a statistical mechanics for Beck-Cohen superstatistics. Phys. Rev. E 2003, 67, 026106. [Google Scholar] [CrossRef]
- Souza, A.M.C.; Tsallis, C. Stability of the entropy for superstatistics. Phys. Lett. A 2003, 319, 273. [Google Scholar] [CrossRef]
- Souza, A.M.C.; Tsallis, C. Stability analysis of the entropy for superstatistics. Physica A 2004, 342, 132. [Google Scholar] [CrossRef]
- Hanel, R.; Thurner, S.; Gell-Mann, M. Generalized entropies and the transformation group of superstatistics. Proc. Natl. Acad. Sci. USA 2011, 110, 3539108. [Google Scholar] [CrossRef]
- Hanel, R.; Thurner, S.; Gell-Mann, M. Generalized entropies and logarithms and their duality relations. Proc. Natl. Acad. Sci. USA 2012, 109, 19151–19154. [Google Scholar] [CrossRef] [PubMed]
- Boghosian, B.M.; Love, P.J.; Coveney, P.V.; Karlin, I.V.; Succi, S.; Yepez, J. Galilean-invariant lattice-Boltzmann models with H-theorem. Phys. Rev. E 2003, 68, 025103. [Google Scholar] [CrossRef] [PubMed]
- Boghosian, B.M.; Love, P.; Yepez, J.; Coveney, P.V. Galilean-invariant multi-speed entropic lattice Boltzmann models. Physica D 2004, 193, 169. [Google Scholar] [CrossRef]
- Topsoe, F. Entropy and equilibrium via games of complexity. Physica A 2004, 340, 11–31. [Google Scholar] [CrossRef]
- Topsoe, F. Factorization and escorting in the game-theoretical approach to non-extensive entropy measures. Physica A 2006, 365, 91–95. [Google Scholar] [CrossRef]
- Amari, S.; Ohara, A.; Matsuzoe, H. Geometry of deformed exponential families: Invariant, dually-flat and conformal geometries. Physica A 2012, 391, 4308–4319. [Google Scholar] [CrossRef]
- Tsallis, C. Nonextensive statistics: Theoretical, experimental and computational evidences and connections. Braz. J. Phys. 1999, 29, 1–35. [Google Scholar] [CrossRef]
- Tsallis, C. Talk at the IMS Winter School. In Nonextensive Generalization of Boltzmann-Gibbs Statistical Mechanics and Its Applications; Institute for Molecular Science: Okazaki, Japan, 1999. [Google Scholar]
- Tsallis, C. Nonextensive Statistical Mechanics and Thermodynamics: Historical Background and Present Status. In Nonextensive Statistical Mechanics and Its Applications; Abe, S., Okamoto, Y., Eds.; Series Lecture Notes in Physics; Springer: Heidelberg, Germany, 2001. [Google Scholar]
- Hotta, M.; Joichi, I. Composability and generalized entropy. Phys. Lett. A 1999, 262, 302. [Google Scholar] [CrossRef]
- Kaniadakis, G. Statistical mechanics in the context of special relativity. Phys. Rev. E 2002, 66, 056125. [Google Scholar] [CrossRef]
- Kaniadakis, G. Statistical mechanics in the context of special relativity. II. Phys. Rev. E 2005, 72, 036108. [Google Scholar] [CrossRef] [PubMed]
- Abe, S.; Bagci, G.B. Necessity of q-expectation value in nonextensive statistical mechanics. Phys. Rev. E 2005, 71, 016139. [Google Scholar] [CrossRef] [PubMed]
- Abe, S. Generalized molecular chaos hypothesis and H-theorem: Problem of constraints and amendment of nonextensive statistical mechanics. Phys. Rev. E 2009, 79, 041116. [Google Scholar] [CrossRef]
- Presse, S.; Ghosh, K.; Lee, J.; Dill, K.A. Nonadditive entropies yield probability distributions with biases not warranted by the data. Phys. Rev. Lett. 2013, 111, 180604. [Google Scholar] [CrossRef]
- Presse, S.; Ghosh, K.; Lee, J.; Dill, K.A. Principles of maximum entropy and maximum caliber in statistical physics. Rev. Mod. Phys. 2013, 85, 1115–1141. [Google Scholar] [CrossRef]
- Presse, S. Nonadditive entropy maximization is inconsistent with Bayesian updating. Phys. Rev. E 2014, 90, 052149. [Google Scholar] [CrossRef] [PubMed]
- Tsallis, C. Conceptual inadequacy of the Shore and Johnson axioms for wide classes of complex systems. Entropy 2015, 17, 2853–2861. [Google Scholar] [CrossRef]
- Presse, S.; Ghosh, K.; Lee, J.; Dill, K.A. Reply to C. Tsallis’ “Conceptual inadequacy of the Shore and Johnson axioms for wide classes of complex systems”. Entropy 2015, 17, 5043–5046. [Google Scholar] [CrossRef]
- Jizba, P.; Korbel, J. Maximum entropy principle in statistical inference: Case for non-Shannonian entropies. Phys. Rev. Lett. 2019, 122, 120601. [Google Scholar] [CrossRef]
- Plastino, A.R.; Tsallis, C.; Wedemann, R.S.; Haubold, H.J. Entropy optimization, generalized logarithms, and duality relations. Entropy 2022, 24, 1723. [Google Scholar] [CrossRef]
- Plastino, A.; Plastino, A.R. From Gibbs microcanonical ensemble to Tsallis generalized canonical distribution. Phys. Lett. A 1994, 193, 140–143. [Google Scholar] [CrossRef]
- Plastino, A.R.; Plastino, A. Brief review on the connection between the micro-canonical ensemble and the Sq-canonical probability distribution. Entropy 2023, 25, 591. [Google Scholar] [CrossRef]
- Niven, W.D. (Ed.) The Scientific Papers of James Clerk Maxwell; Cambridge University Press: Cambridge, UK, 1890; Volume II. [Google Scholar] [CrossRef]
- Maxwell, J.C. On Boltzmann’s theorem on the average distribution of energy in a system of material points. Trans. Camb. Philos. Soc. 1879, XII, 547–570. [Google Scholar]
- Biro, T.S.; Barnafoldi, G.G.; Van, P. New entropy formula with fluctuating reservoir. Physica A 2015, 417, 215–220. [Google Scholar] [CrossRef]
- Calabrese, P.; Cardy, J. Entanglement entropy and quantum field theory. J. Stat. Mech. 2004, 2004, P06002. [Google Scholar] [CrossRef]
- Caruso, F.; Tsallis, C. Nonadditive entropy reconciles the area law in quantum systems with classical thermodynamics. Phys. Rev. E 2008, 78, 021102. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.M.C.; Rapcan, P.; Tsallis, C. Area-law-like systems with entangled states can preserve ergodicity. Eur. Phys. J. Spec. Top. 2020, 229, 759–772. [Google Scholar] [CrossRef]
- Barrow, J.D. The area of a rough black hole. Phys. Lett. B 2020, 808, 135643. [Google Scholar] [CrossRef] [PubMed]
- Jizba, P.; Lambiase, G. Tsallis cosmology and its applications in dark matter physics with focus on IceCube high-energy neutrino data. Eur. Phys. J. C 2022, 82, 1123. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsallis, C. Senses along Which the Entropy Sq Is Unique. Entropy 2023, 25, 743. https://doi.org/10.3390/e25050743
Tsallis C. Senses along Which the Entropy Sq Is Unique. Entropy. 2023; 25(5):743. https://doi.org/10.3390/e25050743
Chicago/Turabian StyleTsallis, Constantino. 2023. "Senses along Which the Entropy Sq Is Unique" Entropy 25, no. 5: 743. https://doi.org/10.3390/e25050743
APA StyleTsallis, C. (2023). Senses along Which the Entropy Sq Is Unique. Entropy, 25(5), 743. https://doi.org/10.3390/e25050743