Dried Leaves Powder of Adiantum capillus-veneris as an Efficient Biosorbent for Hazardous Crystal Violet Dye from Water Resources
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Adsorbent
2.1.2. Adsorbate
2.1.3. Chemicals
2.1.4. Instruments
2.2. Methods
2.2.1. Preparation of Adsorbent
2.2.2. Determination of Wavelength Maximum of Crystal Violet
3. Results and Discussion
3.1. SEM and FTIR Spectra of Adiantum capillus-veneris Plant
3.2. Determination of Adsorption Efficiency of Various Parts of Adiantum capillus-veneris Plant
3.3. Determination of Adsorption Efficiency of Adiantum capillus-veneris Plant Leaves Prepared Using Direct Sunlight, Room Temperature, and Oven at 150 °C for Drying
3.4. Optimization of Initial Dye Concentration
3.5. Selection of Adsorbent Dosage
3.6. Determination of Contact Time for Adsorption
3.7. Determination of the Effect of pH on Dye Adsorption
3.8. Comparison of Adsorption Efficiency of Adiantum capillus-veneris Plant Leaves with Animal Charcoal and Silica Gel
3.9. Comparison of Adsorption Performance of Adiantum capillus-veneris Plant Leaves in Water Collected from Different Sources
3.10. Effect of Ionic Strength on Adsorption Efficiency of the Leaves Powder of Adiantum capillus-veneris
3.11. Adsorption Isotherms
3.11.1. Langmuir Adsorption Isotherm
3.11.2. Freundlich Adsorption Isotherm
3.12. Kinetic Study of the Crystal Violet Adsorption
3.12.1. Pseudo-First-Order Kinetic Model
3.12.2. Pseudo-Second-Order Kinetic Model
3.13. Mechanism of Adsorption of Crystal Violet Dye on Leaves Powder of Adiantum capillus-veneris
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dey, P.; Mahapatra, B.; Juyal, V.; Pramanick, B.; Negi, M.; Paul, J.; Singh, S. Flax processing waste–a low-cost, potential biosorbent for treatment of heavy metal, dye and organic matter contaminated industrial wastewater. Ind. Crop Prod. 2021, 174, 114195. [Google Scholar] [CrossRef]
- Sintakindi, A.; Ankamwar, B. Fungal biosorption as an alternative for the treatment of dyes in waste waters: A review. Environ. Technol. Rev. 2021, 10, 26–43. [Google Scholar] [CrossRef]
- Chatla, A.; Almanassra, I.W.; Kochkodan, V.; Laoui, T.; Alawadhi, H.; Atieh, M.A. Efficient removal of eriochrome black T (EBT) dye and chromium (Cr) by hydrotalcite-derived Mg-Ca-Al mixed metal oxide composite. Catalysts 2022, 12, 1247. [Google Scholar] [CrossRef]
- Ali, N.S.; Jabbar, N.M.; Alardhi, S.M.; Majdi, H.S.; Albayati, T.M. Adsorption of methyl violet dye onto a prepared bio-adsorbent from date seeds: Isotherm, kinetics, and thermodynamic studies. Heliyon 2022, 8, e10276. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, S.; Karthik, K.; Veerabagu, U.; Hari, A.; Swaminathan, K.; Al-Kheraif, A.A.; Whangchai, K. Bi-model cationic dye adsorption by native and surface-modified Trichoderma asperellum BPL MBT1 biomass: From fermentation waste to value-added biosorbent. Chemosphere 2021, 277, 130311. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Liu, Y.; Zhang, Q.; Sun, S.; Zhou, X.; Xu, Y. A novel natural lignocellulosic biosorbent of sunflower stem-pith for textile cationic dyes adsorption. J. Clean. Prod. 2022, 331, 129878. [Google Scholar] [CrossRef]
- Bilal, M.; Ihsanullah, I.; Shah, M.U.H.; Reddy, A.V.B.; Aminabhavi, T.M. Recent advances in the removal of dyes from wastewater using low-cost adsorbents. J. Environ. Manag. 2022, 321, 115981. [Google Scholar] [CrossRef]
- Isik, B.; Ugraskan, V.; Cankurtaran, O. Effective biosorption of methylene blue dye from aqueous solution using wild macrofungus (Lactarius piperatus). Sep. Sci. Technol. 2022, 57, 854–871. [Google Scholar] [CrossRef]
- Kumar, R.; Ahmad, R. Biosorption of hazardous crystal violet dye from aqueous solution onto treated ginger waste (TGW). Desalination 2011, 265, 112–118. [Google Scholar] [CrossRef]
- Ali, H.; Muhammad, S.K. Biosorption of crystal violet from water on leaf biomass of Calotropis procera. J. Environ. Sci. Technol 2008, 1, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Putri, K.N.A.; Keereerak, A.; Chinpa, W. Novel cellulose-based biosorbent from lemongrass leaf combined with cellulose acetate for adsorption of crystal violet. Int. J. Biol. Macromol. 2020, 156, 762–772. [Google Scholar] [CrossRef] [PubMed]
- Lim, L.B.; Priyantha, N.; Mansor, N.H.M. Artocarpus altilis (breadfruit) skin as a potential low-cost biosorbent for the removal of crystal violet dye: Equilibrium, thermodynamics and kinetics studies. Environ. Earth Sci. 2015, 73, 3239–3247. [Google Scholar] [CrossRef]
- Rammel, R.; Zatiti, S.; El Jamal, M. Biosorption of crystal violet by chaetophora elegans alga. J. Univ. Chem. Technol. Metall. 2011, 46, 283–292. [Google Scholar]
- Grassi, P.; Reis, C.; Drumm, F.C.; Georgin, J.; Tonato, D.; Escudero, L.B.; Kuhn, R.; Jahn, S.L.; Dotto, G.L. Biosorption of crystal violet dye using inactive biomass of the fungus Diaporthe schini. Water Sci. Technol. 2019, 79, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Shakoor, S.; Nasar, A. Utilization of Cucumis sativus peel as an eco-friendly biosorbent for the confiscation of crystal violet dye from artificially contaminated wastewater. Anal. Chem. Lett. 2019, 9, 1–19. [Google Scholar] [CrossRef]
- Elsherif, K.; El-Dali, A.; Alkarewi, A.; Ewlad-Ahmed, A.; Treban, A. Adsorption of crystal violet dye onto olive leaves powder: Equilibrium and kinetic studies. Chem. Int. 2021, 7, 79–89. [Google Scholar]
- Lin, Y.; He, X.; Han, G.; Tian, Q.; Hu, W. Removal of Crystal Violet from aqueous solution using powdered mycelial biomass of Ceriporia lacerata P2. J. Environ. Sci. 2011, 23, 2055–2062. [Google Scholar] [CrossRef]
- Kulkarni, M.R.; Revanth, T.; Acharya, A.; Bhat, P. Removal of Crystal Violet dye from aqueous solution using water hyacinth: Equilibrium, kinetics and thermodynamics study. Resour. -Effic. Technol. 2017, 3, 71–77. [Google Scholar] [CrossRef]
- Kumar, M.R.; King, P.; Wolde, Z.; Mulu, M. Application of optimization response surface for the biosorption of crystal violet dye from textile wastewater onto Clerodendrum fragrans leaves. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Essekri, A.; Aarab, N.; Hsini, A.; Ajmal, Z.; Laabd, M.; El Ouardi, M.; Ait Addi, A.; Lakhmiri, R.; Albourine, A. Enhanced adsorptive removal of crystal violet dye from aqueous media using citric acid modified red-seaweed: Experimental study combined with RSM process optimization. J. Dispers. Sci. Technol. 2022, 43, 1359–1372. [Google Scholar] [CrossRef]
- Ashour, M.; Alprol, A.E.; Khedawy, M.; Abualnaja, K.M.; Mansour, A.T. Equilibrium and Kinetic Modeling of Crystal Violet Dye Adsorption by a Marine Diatom, Skeletonema costatum. Materials 2022, 15, 6375. [Google Scholar] [CrossRef]
- Rezazadeh, M.; Baghdadi, M.; Mehrdadi, N.; Ali Abdoli, M. Adsorption of crystal violet dye by agricultural rice bran waste: Isotherms, kinetics, modeling and influencing factors. Environ. Eng. Res. 2021, 26, 200128. [Google Scholar] [CrossRef]
- Silveira, M.B.; Pavan, F.A.; Gelos, N.F.; Lima, E.C.; Dias, S.L.P. Punica granatum shell preparation, characterization, and use for Crystal Violet removal from aqueous solution. Clean Soil Air Water 2014, 42, 939–946. [Google Scholar] [CrossRef]
- Yadav, M.; Thakore, S.; Jadeja, R. Removal of organic dyes using Fucus vesiculosus seaweed bioadsorbent an ecofriendly approach: Equilibrium, kinetics and thermodynamic studies. Environ. Chem. Ecotoxicol. 2022, 4, 67–77. [Google Scholar] [CrossRef]
- Ruscasso, F.; Bezus, B.; Garmendia, G.; Vero, S.; Curutchet, G.; Cavello, I.; Cavalitto, S. Debaryomyces hansenii F39A as biosorbent for textile dye removal. Rev. Argent. Microbiol. 2021, 53, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Karaman, C.; Karaman, O.; Show, P.-L.; Karimi-Maleh, H.; Zare, N. Congo red dye removal from aqueous environment by cationic surfactant modified-biomass derived carbon: Equilibrium, kinetic, and thermodynamic modeling, and forecasting via artificial neural network approach. Chemosphere 2022, 290, 133346. [Google Scholar] [CrossRef]
- Gul, S.; Kanwal, M.; Qazi, R.A.; Gul, H.; Khattak, R.; Khan, M.S.; Khitab, F.; Krauklis, A.E. Efficient removal of Methyl Red dye by using bark of Hopbush. Water 2022, 14, 2831. [Google Scholar] [CrossRef]
- Omidi, S.; Sedaghat, S.; Tahvildari, K.; Derakhshi, P.; Motiee, F. Biosynthesis of silver nanocomposite with Tarragon leaf extract and assessment of antibacterial activity. J. Nanostructure Chem. 2018, 8, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Hadi, I.; Hussein, H.M. Antimicrobial Activity and spectral chemical analysis of methanolic leaves extract of Adiantum capillus-veneris using GC-MS and FT-IR spectroscopy. Int. J. Pharmacogn. Phytochem. Res. 2016, 8, 369–385. [Google Scholar]
- Tripathi, N. Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. J. Appl. Chem. 2013, 5, 91–108. [Google Scholar] [CrossRef]
- Loulidi, I.; Boukhlifi, F.; Ouchabi, M.; Amar, A.; Jabri, M.; Kali, A.; Chraibi, S.; Hadey, C.; Aziz, F. Adsorption of crystal violet onto an agricultural waste residue: Kinetics, isotherm, thermodynamics, and mechanism of adsorption. Sci. World J. 2020, 2020, 5873521. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, A.; Bano, S.; Fahim, A.; Parveen, R.; Khurshid, S. Efficient removal of crystal violet and eosin B from aqueous solution using Syzygium cumini leaves: A comparative study of acidic and basic dyes on a single adsorbent. Korean J. Chem. Eng. 2015, 32, 882–895. [Google Scholar] [CrossRef]
- Chakraborty, S.; Chowdhury, S.; Saha, P.D. Adsorption of crystal violet from aqueous solution onto NaOH-modified rice husk. Carbohydr. Polym. 2011, 86, 1533–1541. [Google Scholar] [CrossRef]
- Cheruiyot, G.K.; Wanyonyi, W.C.; Kiplimo, J.J.; Maina, E.N. Adsorption of toxic crystal violet dye using coffee husks: Equilibrium, kinetics and thermodynamics study. Sci. Afr. 2019, 5, e00116. [Google Scholar] [CrossRef]
- Alshabanat, M.; Alsenani, G.; Almufarij, R. Removal of crystal violet dye from aqueous solutions onto date palm fiber by adsorption technique. J. Chem. 2013, 2013, 210239. [Google Scholar] [CrossRef] [Green Version]
- Mosoarca, G.; Vancea, C.; Popa, S.; Boran, S. Optimization of crystal violet adsorption on common lilac tree leaf powder as natural adsorbent material. Glob. NEST J. 2022, 24, 87–96. [Google Scholar]
- Sultana, S.; Islam, K.; Hasan, M.A.; Khan, H.J.; Khan, M.A.R.; Deb, A.; Al Raihan, M.; Rahman, M.W. Adsorption of crystal violet dye by coconut husk powder: Isotherm, kinetics and thermodynamics perspectives. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100651. [Google Scholar] [CrossRef]
- Smitha, T.; Santhi, T.; Prasad, A.L.; Manonmani, S. Cucumis sativus used as adsorbent for the removal of dyes from aqueous solution. Arab. J. Chem. 2017, 10, S244–S251. [Google Scholar] [CrossRef] [Green Version]
- Shoukat, S.; Bhatti, H.N.; Iqbal, M.; Noreen, S. Mango stone biocomposite preparation and application for crystal violet adsorption: A mechanistic study. Microporous Mesoporous Mater. 2017, 239, 180–189. [Google Scholar] [CrossRef]
- Ahmad, R. Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). J. Hazard. Mater. 2009, 171, 767–773. [Google Scholar] [CrossRef]
- Wang, X.S.; Liu, X.; Wen, L.; Zhou, Y.; Jiang, Y.; Li, Z. Comparison of basic dye crystal violet removal from aqueous solution by low-cost biosorbents. Sep. Sci. Technol. 2008, 43, 3712–3731. [Google Scholar] [CrossRef]
- Santhi, T.; Manonmani, S.; Smitha, T. Removal of malachite green from aqueous solution by activated carbon prepared from the epicarp of Ricinus communis by adsorption. J. Hazard. Mater. 2010, 179, 178–186. [Google Scholar] [CrossRef]
- Nasuha, N.; Zurainan, H.; Maarof, H.; Zubir, N.; Amri, N. Effect of Cationic and Anionic Dye Adsorption from Aqueous Solution by Using Chemically Modified Papaya Seed. In Proceedings of the International Conference on Environment Science and Engineering, Bali Island, Indonesia, 1–3 April 2011; pp. 50–54. [Google Scholar]
- Aboelenin, R.M.; Kheder, S.; Farag, H.K.; El Nabarawy, T. Removal of cationic neutral red dye from aqueous solutions using natural and modified rice straw. Egypt. J. Chem. 2017, 60, 577–589. [Google Scholar] [CrossRef] [Green Version]
- Gul, S.; Gul, H.; Gul, M.; Khattak, R.; Rukh, G.; Khan, M.S.; Aouissi, H.A. Enhanced adsorption of Rhodamine B on biomass of Cypress/False Cypress (Chamaecyparis lawsoniana) fruit: Optimization and kinetic study. Water 2022, 14, 2987. [Google Scholar] [CrossRef]
- Karimulla, S.; Ravindhranath, K. Removal of Brilliant Green dye from polluted waters using bio-sorbents derived from some plant materials. Asian J. Res. Chem. 2012, 5, 1350–1359. [Google Scholar]
- Nandi, B.K.; Goswami, A.; Purkait, M.K. Adsorption characteristics of brilliant green dye on kaolin. J. Hazard. Mater. 2009, 161, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V. Application of low-cost adsorbents for dye removal–a review. J. Environ. Manag. 2009, 90, 2313–2342. [Google Scholar] [CrossRef] [PubMed]
- Corbett, J.F. Pseudo first-order kinetics. J. Chem. Educ. 1972, 49, 663. [Google Scholar] [CrossRef]
- Ho, Y.-S. Review of second-order models for adsorption systems. J. Hazard. Mater. 2006, 136, 681–689. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, T.; Noreen, U.; Ali, R.; Ullah, A.; Naeem, A.; Aslam, M. Adsorptive removal of Congo red from aqueous phase using graphene–tin oxide composite as a novel adsorbent. Int. J. Environ. Sci.Technol. 2022, 19, 10275–10290. [Google Scholar] [CrossRef]
- Ullah, T.; Gul, H.; Khitab, F.; Khattak, R.; Ali, Y.; Rasool, S.; Khan, M.S.; Zekker, I. Adsorption of Remazol Brilliant Violet-5R from aqueous solution using sugarcane bagasse as biosorbent: Kinetic and thermodynamic studies. Water 2022, 14, 3014. [Google Scholar] [CrossRef]
- Tay, C.-I.; Ong, S.-T. Guava leaves as adsorbent for the removal of emerging pollutant: Ciprofloxacin from aqueous solution. J. Phys. Sci. 2019, 30, 137–156. [Google Scholar] [CrossRef]
Adsorbent | Contact Time (min) | pH | Initial Concentration (mg/L) | Adsorbent Dosage (g) | % Removal | Reference |
---|---|---|---|---|---|---|
Agriculture wastes residue | 90 | 6 | 30 | 0.2 | 82 | [31] |
Lilac leaf powder | 30 | 10 | 50 | 2.5 | 90.70 | [36] |
Coconut Husk | 60 | 12 | 50 | 0.6 | 81 | [37] |
Cucumis sativus | 90 | 7 | 50 | 0.2 | 72.27 | [38] |
Mango stone composite | 30 | 8 | 400 | 0.05 | ----- | [39] |
Coniferous pinus bark powder | 120 | 8 | 15 | 1 | 87 | [40] |
Leaves powder of Adiantum capillus-veneris plant | 90 | 3 | 30 | 0.06 | 91.26 | Our work |
Langmuir Isotherm | Freundlich Isotherm | |||||
---|---|---|---|---|---|---|
Qmax (mg/g) | KL (L/g) | R2 | KF (mg/g) | 1/n | R2 | |
18.51 | 0.025 | 0.917 | 0.715 | 0.696 | 0.940 |
Pseudo-First Order Kinetic Model | Pseudo-Second Order Kinetic Model | ||||
---|---|---|---|---|---|
k1 | Qe | R2 | k2 | Qe | R2 |
0.01 min−1 | 1.08 | 0.534 | 0.364 | 8.62 | 0.999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gul, S.; Gul, S.; Gul, H.; Khitab, F.; Khattak, R.; Khan, M.S.; Ullah, R.; Ullah, R.; Wasil, Z.; Krauklis, A.E.; et al. Dried Leaves Powder of Adiantum capillus-veneris as an Efficient Biosorbent for Hazardous Crystal Violet Dye from Water Resources. Separations 2023, 10, 165. https://doi.org/10.3390/separations10030165
Gul S, Gul S, Gul H, Khitab F, Khattak R, Khan MS, Ullah R, Ullah R, Wasil Z, Krauklis AE, et al. Dried Leaves Powder of Adiantum capillus-veneris as an Efficient Biosorbent for Hazardous Crystal Violet Dye from Water Resources. Separations. 2023; 10(3):165. https://doi.org/10.3390/separations10030165
Chicago/Turabian StyleGul, Salma, Shehla Gul, Hajera Gul, Fatima Khitab, Rozina Khattak, Muhammad Sufaid Khan, Rizwan Ullah, Rooh Ullah, Zahida Wasil, Andrey E. Krauklis, and et al. 2023. "Dried Leaves Powder of Adiantum capillus-veneris as an Efficient Biosorbent for Hazardous Crystal Violet Dye from Water Resources" Separations 10, no. 3: 165. https://doi.org/10.3390/separations10030165
APA StyleGul, S., Gul, S., Gul, H., Khitab, F., Khattak, R., Khan, M. S., Ullah, R., Ullah, R., Wasil, Z., Krauklis, A. E., & Zekker, I. (2023). Dried Leaves Powder of Adiantum capillus-veneris as an Efficient Biosorbent for Hazardous Crystal Violet Dye from Water Resources. Separations, 10(3), 165. https://doi.org/10.3390/separations10030165