Quantitation of Copper Tripeptide in Cosmetics via Fabric Phase Sorptive Extraction Combined with Zwitterionic Hydrophilic Interaction Liquid Chromatography and UV/Vis Detection
Abstract
:1. Introduction
2. Equipment
2.1. Chemical and Reagents
2.2. Equipment
2.3. Stock and Working Standard Solutions
2.4. Sample Preparation
2.5. Method Validation
3. Results and Discussion
3.1. Optimization of the Chromatographic Conditions
3.1.1. Fabric Phase Sorptive Extraction
3.1.2. Eco-Friendly Aspects of Fabric Phase Sorptive Extraction
3.2. Statistical Analysis of Data
3.2.1. Selectivity
3.2.2. Robustness
3.2.3. Linearity Data
3.2.4. Accuracy and Precision
3.3. Recovery Evaluation
3.4. Application for the Analysis of Actual Cream Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gupta, M.; Gupta, A. Photodamaged skin and quality of life: Reasons for therapy. J. Dermatol. Treat. 1996, 7, 261–264. [Google Scholar] [CrossRef]
- Draelos, Z.D. Cosmeceuticals: Efficacy and Influence on Skin Tone. Dermatol. Clin. 2014, 32, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Ledwoń, P.; Errante, F.; Papini, A.M.; Rovero, P.; Latajka, R. Peptides as Active Ingredients: A Challenge for Cosmeceutical Industry. Chem. Biodivers. 2021, 18, e2000833. [Google Scholar] [CrossRef] [PubMed]
- Algermissen, E. Wound healing: An overview. BDJ Stud. 2023, 30, 24–26. [Google Scholar] [CrossRef]
- Ngoc, L.T.N.; Moon, J.-Y.; Lee, Y.-C. Insights into Bioactive Peptides in Cosmetics. Cosmetics 2023, 10, 111. [Google Scholar] [CrossRef]
- Fields, K.; Falla, T.J.; Rodan, K.; Bush, L. Bioactive peptides: Signaling the future. J. Cosmet. Dermatol. 2009, 8, 8–13. [Google Scholar] [CrossRef]
- Veiga, E. Anti-aging peptides for advanced skincare: Focus on nanodelivery systems. J. Drug Deliv. Sci. Technol. 2023, 89, 105087. [Google Scholar] [CrossRef]
- Pickart, L.; Vasquez-Soltero, J.M.; Margolina, A. GHK and DNA: Resetting the human genome to health. BioMed Res. Int. 2014, 2014, 151479. [Google Scholar] [CrossRef]
- Tapiero, H.; Townsend, D.M.; Tew, K.D. Trace elements in human physiology and pathology. Copper. Biomed. Pharmacother. 2003, 57, 386–398. [Google Scholar] [CrossRef]
- Finkley, M.B.; Appa, Y.; Bhandarkar, S. Copper Peptide and Skin. In Cosmeceuticals and Active Cosmetics: Drugs vs. Cosmetics; Elsner, P., Maibach, H.I., Eds.; Marcel Dekker: New York, NY, USA, 2005; pp. 549–563. [Google Scholar]
- Schagen, S.K. Topical Peptide Treatments with Effective Anti-Aging Results. Cosmetics 2017, 4, 16. [Google Scholar] [CrossRef]
- Pickart, L.; Margolina, A. Regenerative and Protective Actions of the GHK-Cu Peptide in the Light of the New Gene Data. Int. J. Mol. Sci. 2018, 19, 1987. [Google Scholar] [CrossRef] [PubMed]
- Mazurowska, L.; Mojski, M. Biological Activities of Selected Peptides: Skin Penetration Ability of Copper Complexes with Peptides. J. Cosmet. Sci. 2008, 59, 59–69. [Google Scholar] [PubMed]
- Wegrowski, Y.; Maquart, F.X.; Borel, J.P. Stimulation of sulfated glycosaminoglycan synthesis by the tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+. Life Sci. 1992, 51, 1049–1056. [Google Scholar] [CrossRef] [PubMed]
- Pesáková, V.; Novotná, J.; Adam, M. Effect of the tripeptide glycyl-L-histidyl-L-lysine on the proliferation and synthetic activity of chick embryo chondrocytes. Biomaterials 1995, 16, 911–915. [Google Scholar] [CrossRef] [PubMed]
- Dymek, M.; Olechowska, K.; Hąc-Wydro, K.; Sikora, E. Liposomes as Carriers of GHK-Cu Tripeptide for Cosmetic Application. Pharmaceutics 2023, 15, 2485. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, Z.; Liu, Z.; Hong, M.; Huang, Y. Synergy of GHK-Cu and hyaluronic acid on collagen IV upregulation via fibroblast and ex-vivo skin tests. J. Cosmet. Dermatol. 2023, 22, 2598–2604. [Google Scholar] [CrossRef]
- Pickart, L.; Margolina, A. Skin Regenerative and Anti-Cancer Actions of Copper Peptides. Cosmetics 2018, 5, 29. [Google Scholar] [CrossRef]
- Pickart, L.; Vasquez-Soltero, J.M.; Margolina, A. The Human Tripeptide GHK-Cu in Prevention of Oxidative Stress and Degenerative Conditions of Aging: Implications for Cognitive Health. Oxidative Med. Cell. Longev. 2012, 2012, 324832. [Google Scholar] [CrossRef]
- Baig, M.H.; Ahmad, K.; Rabbani, G.; Choi, I. Use of Peptides for the Management of Alzheimer’s Disease: Diagnosis and Inhibition. Front. Aging Neurosci. 2018, 10, 21. [Google Scholar] [CrossRef]
- Xu, X.; Pan, Y.; King, F. Extending the applicability of pulsed glow discharge mass spectrometry to GHK-Cu determination. Int. J. Mass Spectrom. 2020, 449, 116274. [Google Scholar] [CrossRef]
- Badenhorst, T.; Svirskis, D.; Wu, Z. Physicochemical characterization of native glycyl-l-histidyl-l-lysine tripeptide for wound healing and anti-aging: A preformulation study for dermal delivery. Pharm. Dev. Technol. 2016, 21, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Papagianni, P.; Varvaresou, A.; Papageorgiou, S.; Panderi, I. Development and validation of an ion-pair RP-HPLC method for the determination of oligopeptide-20 in cosmeceuticals. J. Pharm. Biomed. Anal. 2011, 56, 645–649. [Google Scholar] [CrossRef] [PubMed]
- Fountain, K.J.; Xu, J.; Diehl, D.M.; Morrison, D. Influence of stationary phase chemistry and mobile-phase composition on retention, selectivity, and MS response in hydrophilic interaction chromatography. J. Sep. Sci. 2010, 33, 740–751. [Google Scholar] [CrossRef] [PubMed]
- Al Musaimi, O.; Jaradat, D.M.M. Advances in Therapeutic Peptides Separation and Purification. Separations 2024, 11, 233. [Google Scholar] [CrossRef]
- Hemström, P.; Irgum, K. Hydrophilic interaction chromatography. J. Sep. Sci. 2006, 29, 1784–1821. [Google Scholar] [CrossRef]
- D’Atri, V.; Fekete, S.; Clarke, A.; Veuthey, J.-L.; Guillarme, D. Recent Advances in Chromatography for Pharmaceutical Analysis. Anal. Chem. 2019, 91, 210–239. [Google Scholar] [CrossRef]
- Pedrali, A.; Bleve, M.; Capra, P.; Jonsson, T.; Massolini, G.; Perugini, P.; Marrubini, G. Determination of N-acetylglucosamine in cosmetic formulations and skin test samples by hydrophilic interaction liquid chromatography and UV detection. J. Pharm. Biomed. Anal. 2015, 107, 125–130. [Google Scholar] [CrossRef]
- Chirita, R.I.; Chaimbault, P.; Archambault, J.C.; Robert, I.; Elfakir, C. Development of a LC–MS/MS method to monitor palmitoyl peptides content in anti-wrinkle cosmetics. Anal. Chim. Acta 2009, 641, 95–100. [Google Scholar] [CrossRef]
- Doulou, E.; Kalomiraki, M.; Parla, A.; Thermos, K.; Chaniotakis, N.A.; Panderi, I. Hydrophilic Interaction Liquid Chromatography Coupled with Fluorescence Detection (HILIC-FL) for the Quantitation of Octreotide in Injection Forms. Analytica 2021, 2, 121–129. [Google Scholar] [CrossRef]
- Hernandez-Hernandez, O.; Quintanilla-Lopez, J.E.; Lebron-Aguilar, R.; Sanz, M.L.; Moreno, F.J. Characterization of post-translationally modified peptides by hydrophilic interaction and reverse phase liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry. J. Chromatogr. A 2016, 1428, 202–211. [Google Scholar] [CrossRef]
- Raikou, V.; Kalogria, E.; Varvaresou, A.; Tsirivas, E.; Panderi, I. Quantitation of Acetyl Hexapeptide-8 in Cosmetics by Hydrophilic Interaction Liquid Chromatography Coupled to Photo Diode Array Detection. Separations 2021, 8, 125. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, P.G.; Krynitsky, A.J.; Rader, J.I. Rapid and simultaneous determination of hexapeptides (Ac-EEMQRR-amide and H2N-EEMQRR-amide) in anti-wrinkle cosmetics by hydrophilic interaction liquid chromatography-solid phase extraction preparation and hydrophilic interaction liquid chromatography with tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 7956–7963. [Google Scholar] [CrossRef] [PubMed]
- Giannakou, M.; Varvaresou, A.; Kiriazopoulos, E.; Papageorgiou, S.; Kavvalou, E.; Tsirivas, E.; Panderi, I. Quantification of oligopeptide-20 and oligopeptide-24 in cosmetic creams using hydrophilic interaction liquid chromatography with electrospray ionization mass spectrometry. SCS Plus 2018, 1, 159–167. [Google Scholar] [CrossRef]
- Tengattini, S.; Orlandi, G.; Perteghella, S.; Bari, E.; Amadio, M.; Calleri, E.; Massolini, G.; Torre, M.L.; Temporini, C. Chromatographic profiling of silk sericin for biomedical and cosmetic use by complementary hydrophylic, reversed phase and size exclusion chromatographic methods. J. Pharm. Biomed. Anal. 2020, 186, 113291. [Google Scholar] [CrossRef]
- Kabir, A.; Mesa, R.; Jurmain, J.; Furton, K.G. Fabric Phase Sorptive Extraction Explained. Separations 2017, 4, 21. [Google Scholar] [CrossRef]
- Weissman, S.A.; Anderson, N.G. Design of Experiments (DoE) and Process Optimization. A Review of Recent Publications. Org. Process Res. Dev. 2015, 19, 1605–1633. [Google Scholar] [CrossRef]
- López-Lorente, Á.I.; Pena-Pereira, F.; Pedersen-Bjergaard, S.; Zuin, V.G.; Ozkan, S.A.; Psillakis, E. The ten principles of green sample preparation. TrAC Trends Anal. Chem. 2022, 148, 116530. [Google Scholar] [CrossRef]
- Kabir, A.; Furton, K.G. Fabric Phase Sorptive Extractors (FPSE). United States Patent Application Publication. US 2014/0274660 A1, 18 September 2014. [Google Scholar]
- ICH Guideline Q2(R2) Validation of Analytical Procedures, Final Version, 1 November 2023. Available online: https://database.ich.org/sites/default/files/ICH_Q2%28R2%29_Guideline_2023_1130.pdf (accessed on 22 September 2024).
- Panderi, I.; Malamos, Y.; Machairas, G.; Zaharaki, S. Investigation of the retention mechanism of cephalosporins by zwitterionic hydrophilic interaction liquid chromatography. Chromatographia 2016, 79, 995–1002. [Google Scholar] [CrossRef]
- Kabir, A.; Samanidou, V. Fabric Phase Sorptive Extraction: A Paradigm Shift Approach in Analytical and Bioanalytical Sample Preparation. Molecules 2021, 26, 865. [Google Scholar] [CrossRef]
- European Pharmacopoeia (Ph. Eur.) 11th Edition, 2.2.46. Chromatographic Separation Techniques, Implemented Date 1 January 2023. Available online: https://www.edqm.eu/en/-/general-chapter-2.2.46.-chromatographic-separation-techniques-now-published-in-ph.-eur.-11th-edition (accessed on 10 September 2024).
- British Pharmacopoeia; Her Majesty’s Stationery Office: London, UK, 2004; Volume II, pp. 1428–1429.
Factor Codes | Name (Unit) | Levels | |
---|---|---|---|
Low (−1) | High (+1) | ||
A | Extraction volume (mL) | 0.5 | 2 |
B | Extraction time (min) | 5 | 30 |
C | 40 mM ammonium acetate aqueous solution (40 μL)—Extraction | No | Yes |
D | Desorption volume (mL) | 0.4 | 0.8 |
E | Acetonitrile (% v/v)—Desorption | 0 | 40 |
F | Desorption time (min) | 5 | 30 |
Compound | System Suitability Parameter (CV%) 1 | |||
---|---|---|---|---|
Retention Time (min) | Resolution 2 | Symmetry Factor | N 3 | |
t0 | 1.44 (2.0%) | |||
GHK-Cu | 6.44 (0.8%) | 3.51 (6.2%) | 1.31 (8.9%) | 987 (1.9%) |
Parameters | ||||||
---|---|---|---|---|---|---|
Factor Variations | Level | Peak Area | Retention Time | Peak Symmetry | Resolution | EP Plate Count |
A: Ammonium formate concentration (mM) | ||||||
131 | −1 | 52,353 | 6.563 | 1.29 | 3.496 | 990 |
133 | 0 | 50,384 | 6.632 | 1.31 | 3.469 | 991 |
134 | 1 | 47,485 | 6.502 | 1.29 | 3.593 | 993 |
% CV | 4.9 | 1.0 | 1.1 | 1.9 | 0.2 | |
B: ΦH2O (% v/v) | ||||||
39 | −1 | 51,391 | 6.585 | 1.40 | 3.587 | 981 |
40 | 0 | 50,384 | 6.632 | 1.32 | 3.369 | 991 |
41 | 1 | 53,841 | 5.887 | 1.28 | 3.348 | 994 |
% CV | 3.4 | 2.4 | 4.6 | 3.8 | 6.8 | |
C: pH of the aqueous eluent in the mobile phase | ||||||
8.7 | −1 | 48,249 | 6.743 | 1.34 | 3.660 | 979 |
9 | 0 | 50,384 | 6.632 | 1.32 | 3.470 | 991 |
9.3 | 1 | 52,553 | 6.234 | 1.24 | 3.380 | 996 |
% CV | 4.2 | 4.1 | 4.0 | 4.1 | 1.1 |
Parameter | Value |
---|---|
Selected linear range in (% w/w) | 0.002–0.005 |
Regression equation | SGHK-Cu = 1818 × CGHK-Cu − 0.398 |
Correlation coefficient (r) | 0.996 |
Standard error (slope) | 88 |
Standard error (intercept) | 0.320 |
Standard error of the estimate (Sr) | 0.1990 |
LOD % w/w | 5.3 × 10−4 |
LOQ % w/w | 0.002 |
texperimental: a/Sa 1 | 1.24 |
tp, f = 3, p = 0.05 2 | 3.182 |
Concentration Level (% w/w) | 0.02 | 0.03 | 0.04 |
---|---|---|---|
Run 1 (mean ± SD) | 20.40 (±0.29) × 10−4 | 29.32 (±0.55) × 10−4 | 38.96 (±0.62) × 10−4 |
Run 2 (mean ± SD) | 20.46 (±0.68) × 10−4 | 29.40 (±0.35) × 10−4 | 40.75 (±1.04) × 10−4 |
Run 3 (mean ± SD) | 19.9 (±0.32) × 10−4 | 29.43 (±0.45) × 10−4 | 40.07 (±0.51) × 10−4 |
Overall mean | 20.26 (±0.49) × 10−4 | 29.38 (±0.43) × 10−4 | 39.93 (±1.04) × 10−4 |
Intra-day precision (Repeatability) CV (%) 1 | 2.3 | 1.6 | 1.9 |
Total precision, CV (%) 1 | 3.9 | 1.7 | 5.4 |
Total accuracy, recovery (%) 2 | 101.3 | 97.9 | 99.8 |
Batch No | % Label Claim (±SD) 1 (n=5) | % CV 2 | % Recovery (±SD) 1 (n=5) |
---|---|---|---|
Batch No GHK-Cu1 | 0.00413 (±0.00011) | 2.6 | 103.4 (±2.6) |
Batch No GHK-Cu2 | 0.00406 (±0.00012) | 2.9 | 101.4 (±2.9) |
Batch No GHK-Cu3 | 0.0039 (±0.0001) | 2.6 | 99.1 (±2.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pingou, P.; Parla, A.; Kabir, A.; Furton, K.G.; Samanidou, V.; Papageorgiou, S.; Tsirivas, E.; Varvaresou, A.; Panderi, I. Quantitation of Copper Tripeptide in Cosmetics via Fabric Phase Sorptive Extraction Combined with Zwitterionic Hydrophilic Interaction Liquid Chromatography and UV/Vis Detection. Separations 2024, 11, 293. https://doi.org/10.3390/separations11100293
Pingou P, Parla A, Kabir A, Furton KG, Samanidou V, Papageorgiou S, Tsirivas E, Varvaresou A, Panderi I. Quantitation of Copper Tripeptide in Cosmetics via Fabric Phase Sorptive Extraction Combined with Zwitterionic Hydrophilic Interaction Liquid Chromatography and UV/Vis Detection. Separations. 2024; 11(10):293. https://doi.org/10.3390/separations11100293
Chicago/Turabian StylePingou, Pantelitsa, Anthi Parla, Abuzar Kabir, Kenneth G. Furton, Victoria Samanidou, Spyridon Papageorgiou, Efthimios Tsirivas, Athanasia Varvaresou, and Irene Panderi. 2024. "Quantitation of Copper Tripeptide in Cosmetics via Fabric Phase Sorptive Extraction Combined with Zwitterionic Hydrophilic Interaction Liquid Chromatography and UV/Vis Detection" Separations 11, no. 10: 293. https://doi.org/10.3390/separations11100293
APA StylePingou, P., Parla, A., Kabir, A., Furton, K. G., Samanidou, V., Papageorgiou, S., Tsirivas, E., Varvaresou, A., & Panderi, I. (2024). Quantitation of Copper Tripeptide in Cosmetics via Fabric Phase Sorptive Extraction Combined with Zwitterionic Hydrophilic Interaction Liquid Chromatography and UV/Vis Detection. Separations, 11(10), 293. https://doi.org/10.3390/separations11100293