In Vitro and In Silico Anticyclooxygenase and Antitopoisomerase Activity of Anonna cherimola Ent-Kaurenes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Solvents
2.2. Biological Material
2.3. Collection and Treatment of Anonna cherimola
2.4. Preparation of the Plant Extract
2.5. Isolation of Ent-Kaurenes and Qualitative Identification
2.6. Anticyclooxygenase Activity
2.7. Antitopoisomerase Activity
2.8. Identification of Ent-Kaurenes
2.9. In Silico Study
2.10. Statistical Analysis
3. Results
3.1. In Vitro Anticyclooxygenase Activity
3.2. In Vitro Antitopoisomerase Activity
3.3. Identification of Ent-Kaurenes by GC/MS
3.4. In Silico Anticyclooxygenase Activity
3.5. In Silico Antitopoisomerase Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santos, S.A.O.; Vilela, C.; Camacho, J.F.; Cordeiro, N.; Gouveia, M.; Freire, C.S.R.; Silvestre, A.J.D. Profiling of lipophilic and phenolic phytochemicals of four cultivars from cherimoya (Annona cherimola Mill.). Food Chem. 2016, 211, 845–852. [Google Scholar] [CrossRef]
- Ding, C.; Ding, Y.; Chen, H.; Zhou, J. Chemistry and Bioactivity of Ent-Kaurene Diterpenoids, 1st ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2017; Volume 54, ISBN 9780444639295. [Google Scholar]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Mathew, L.E.; Sindhu, G.; Helen, A. Dolichos biflorus exhibits anti-inflammatory and antioxidant properties in an acute inflammatory model. J. Food Drug Anal. 2014, 22, 455–462. [Google Scholar] [CrossRef]
- Lindsey, R.H.; Pendleton, M.; Ashley, R.E.; Mercer, S.L.; Deweese, J.E.; Osheroff, N. The Catalytic Core of Human Topoisomerase II α: Insights into Enzyme—DNA Interactions and Drug Mechanism. Am. Chem. Soc. 2014, 1, 6595–6602. [Google Scholar] [CrossRef]
- Song, H.; Chen, C.; Zhao, S.; Ge, F.; Liu, D.; Shi, D.; Zhang, T. Interaction of gallic acid with trypsin analyzed by spectroscopy. J. Food Drug Anal. 2015, 23, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Gouvea, D.; Vasconcellos, F.A.; Berwaldt, A.; Neto, S.; Fischer, G.; Sakata, R.P.; Almeida, W.P.; Cunico, W. 2-Aryl-3-(2-morpholinoethyl)thiazolidin-4-ones: Synthesis, anti-inflammatory in vivo, cytotoxicity in vitro and molecular docking studies. Eur. J. Med. Chem. 2016, 118, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Dhanjal, J.K.; Sreenidhi, A.K.; Bafna, K. Computational Structure-Based De Novo Design of Hypothetical Inhibitors against the Anti-Inflammatory Target COX-2. PLoS ONE 2015, 2, e0134691. [Google Scholar] [CrossRef]
- Jadaun, A.; Subbarao, N.; Dixit, A. Allosteric inhibition of topoisomerase I by pinostrobin: Molecular docking, spectroscopic and topoisomerase I activity studies. J. Photochem. Photobiol. B Biol. 2017, 167, 299–308. [Google Scholar] [CrossRef]
- Barut, B.; Çoban, O.; Ozgür, C.Y.; Bas, H.; Sari, S.; Biyiklioglu, Z.; Demirbas, Ü.; Ozel, A. Synthesis, DNA interaction, in vitro/in silico topoisomerase II inhibition and photodynamic therapy activities of two cationic BODIPY derivatives. Dyes Pigment 2019, 174, 108072. [Google Scholar] [CrossRef]
- El-Metwally, S.A.; Khalil, A.K.; El-sayed, W.M. Design, Molecular Modeling and Anticancer Evaluation of Thieno [2,3-d]pyrimidine Derivatives as Inhibitors of Topoisomerase II. Bioorg. Chem. 2019, 94, 103492. [Google Scholar] [CrossRef]
- Boonyalai, N.; Sittikul, P.; Pradidphol, N.; Kongkathip, N. Biophysical and molecular docking studies of naphthoquinone derivatives on the ATPase domain of human Topoisomerase II. Biomed. Pharmacother. 2013, 67, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Nitiss, J.; Wang, J.C. DNA topoisomerase-targeting antitumor drugs can be studied in yeast. Proc. Natl. Acad. Sci. USA 1988, 85, 7501–7505. [Google Scholar] [CrossRef] [PubMed]
- Nitiss, J.L.; Nitiss, K.C. Yeast systems for demonstrating the targets of anti-topoisomerase II agents. Methods Mol. Biol. 2001, 95, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Razura-Carmona, F.F.; Herrera-Martínez, M.; Sáyago-Ayerdi, S.G.; Pérez-Larios, A.; Montalvo-González, E.; Ramírez-Mares, M.V.; Sánchez-Burgos, J.A. Nanoparticles of two ZnO Precursors as an Encapsulating Matrix of Mangiferin: Associated Studies to Cytotoxic Effects on Liver Cancer Cells Hep-G2 and Healthy Lung Cell Beas-2B. J. Clust. Sci. 2021, 33, 163–171. [Google Scholar] [CrossRef]
- Ortiz, M.I.; Fernández-martínez, E.; Soria-jasso, L.E.; Lucas-gómez, I.; Villagómez-ibarra, R.; González-garcía, M.P.; Castañeda-hernández, G.; Salinas-caballero, M. Isolation, identification and molecular docking as cyclooxygenase (COX) inhibitors of the main constituents of Matricaria chamomilla L. extract and its synergistic interaction with diclofenac on nociception and gastric damage in rats. Biomed. Pharmacother. 2016, 78, 248–256. [Google Scholar] [CrossRef]
- Maia, J.; Caja, S.; Carolina, M.; Moraes, S.; Couto, N.; Costa-silva, B. Exosome-Based Cell-Cell Communication in the Tumor Microenvironment. Front. Cell Dev. Biol. 2018, 6, 18. [Google Scholar] [CrossRef]
- Mccook-russell, K.P.; Nair, M.G.; Facey, P.C.; Bowen-forbes, C.S. Nutritional and nutraceutical comparison of Jamaican Psidium cattleianum (strawberry guava) and Psidium guajava (common guava) fruits. Food Chem. 2012, 134, 1069–1073. [Google Scholar] [CrossRef]
- Raola, V.K.; Chakraborty, K. Biogenic guaianolide-type sesquiterpene lactones with antioxidative and anti-inflammatory properties from natural mangrove hybrid Rhizophora annamalayana. Nat. Prod. Res. 2017, 31, 2719–2729. [Google Scholar] [CrossRef]
- Liu, Y.; Nair, M.G. Labdane diterpenes in Curcuma mangga rhizomes inhibit lipid peroxidation, cyclooxygenase enzymes and human tumour cell proliferation. Food Chem. 2018, 124, 527–532. [Google Scholar] [CrossRef]
- Jayaprakasam, B.; Alexander-lindo, R.L.; Dewitt, D.L.; Nair, M.G. Food Chemistry Terpenoids from Stinking toe (Hymneae courbaril) fruits with cyclooxygenase and lipid peroxidation inhibitory activities. Food Chem. 2007, 105, 485–490. [Google Scholar] [CrossRef]
- González de Mejia, E.; Soo Song, Y.; Ramirez Mares, M.V.; Kobayashi, H. Effect of Yerba Mate (Ilex paraguariensis) Tea on Topoisomerase Inhibition and Oral Carcinoma Cell Proliferation. J. Agric. Food Chem. 2005, 53, 1966–1973. [Google Scholar] [CrossRef]
- Sánchez-burgos, J.A.; Ramírez-mares, M.V.; Larrosa, M.M.; Gallegos-infante, J.A. Antioxidant, antimicrobial, antitopoisomerase and gastroprotective effect of herbal infusions from four Quercus species. Ind. Crop. Prod. 2013, 42, 57–62. [Google Scholar] [CrossRef]
- Razura-Carmona, F.F.; Pérez-Larios, A.; González-Silva, N.; Herrera-Martínez, M.; Medina-Torres, L.; Sáyago-Ayerdi, S.G.; Sánchez-Burgos, J.A. Mangiferin-loaded polymeric nanoparticles: Optical characterization, effect of antitopoisomerase I, and cytotoxicity. Cancers 2019, 11, 1965. [Google Scholar] [CrossRef] [PubMed]
- Jarma O, A.D.J.; Miguel, E.; Combatt, C.; Alejandro, J. Nutritional aspects and metabolism of Stevia rebaudiana (Bertoni). A review. Agron. Colomb. 2010, 28, 199–208. [Google Scholar]
- Singh, S.; Pandey, V.P.; Naaz, H.; Singh, P.; Dwivedi, U.N. Structural modeling and simulation studies of human cyclooxygenase (COX) isozymes with selected terpenes: Implications in drug designing and development. Comput. Biol. Med. 2013, 43, 744–750. [Google Scholar] [CrossRef]
- Rouzer, C.A.; Marnett, L.J. Cyclooxygenases: Structural and functional insights. Lipid Res. 2009, 50, 29–34. [Google Scholar] [CrossRef]
- Spencer, A.G.; Thuresson, E.; Otto, J.C.; Song, I.; Smith, T.; Dewitt, D.L.; Garavito, R.M.; Smith, W.L. The Membrane Binding Domains of Prostaglandin Endoperoxide H Synthases 1 and 2. J. Biol. Chem. 1999, 274, 32936–32942. [Google Scholar] [CrossRef]
- Otto, J.C.; Smith, W.L. Photolabeling of Prostaglandin Endoperoxide H Synthase-1 with 3-Trifluoro-3-(m-[125I]iodophenyl) diazirine as a Probe of Membrane Association and the Cyclooxygenase Active Site *. J. Biol. Chem. 1996, 271, 9906–9910. [Google Scholar] [CrossRef]
- Champoux, J.J. DNA T OPOISOMERASES: Structure, Function, and Mechanism. Annu. Rev. Biochem. 2001, 70, 369–413. [Google Scholar] [CrossRef]
- Li, M.; Pokharel, S.; Wang, J.; Xu, X.; Liu, Y. RECQ5-dependent SUMOylation of DNA topoisomerase I prevents transcription-associated genome instability. Nat. Commun. 2015, 6, 6720. [Google Scholar] [CrossRef]
- Roca, J.; Berger, J.M.; Harrison, S.C.; Wangt, J.C. DNA transport by a type II two-gate mechanism topoisomerase: Direct evidence for a two-gate mechanism. Proc. Natl. Acad. Sci. USA 1996, 93, 4057–4062. [Google Scholar] [CrossRef]
Enzyme | Treatment | Prostaglandin (pg/mL) * | Inhibition (%) |
---|---|---|---|
COX-II | SFLE | 7.92 ± 0.73 | 95.44 ± 9.51 |
ASA | 0.08 ± 0.08 | 99.86 ± 8.12 | |
Inactive | 0.07 ± 0.01 | 99.95 ± 5.44 | |
100% active | 173.88 ± 9.72 | - | |
COX-I | SFLE | 3.90 ± 0.30 | 75.78 ± 4.22 |
ASA | 0.02 ± 0.01 | 99.83 ± 8.43 | |
Inactive | 0.06 ± 0.01 | 99.61 ± 7.75 | |
100% active | 16.06 ± 1.42 | - |
Ligand | COX-I | COX-II | Reference |
---|---|---|---|
(Kcal/mol) | |||
Isopimaral | −2233.4333 | −2398.0186 | - |
Arachidonic acid (endogenous substrate) | −2380.8158 | −2385.5303 | [16] |
NS-398 (selective to COX-II) | −2383.8495 | −2385.4913 | [16] |
Kauran-16-ol | −2221.6966 | −2380.2690 | - |
Meloxicam (selective to COX-II) | −2347.0044 | −2349.0139 | [16] |
Indomethacin (selective to COX-I) | −2310.1476 | −2313.8915 | [16] |
Ligand | TOP-I | TOP-II |
---|---|---|
(Kcal/mol) | ||
Isopimaral | −3784.4620 | −4518.8753 |
Camptothecin (selective to TOP-I) | −3741.6567 | - |
Kauran-16-ol | −4564.1074 | −4501.5980 |
Amsacrine (selective to TOP-II) | −3666.9740 | −4537.3400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camacho-González, C.E.; Pérez-Larios, A.; Sáyago-Ayerdi, S.G.; Salazar-Mendoza, J.; Sánchez-Burgos, J.A. In Vitro and In Silico Anticyclooxygenase and Antitopoisomerase Activity of Anonna cherimola Ent-Kaurenes. Separations 2024, 11, 263. https://doi.org/10.3390/separations11090263
Camacho-González CE, Pérez-Larios A, Sáyago-Ayerdi SG, Salazar-Mendoza J, Sánchez-Burgos JA. In Vitro and In Silico Anticyclooxygenase and Antitopoisomerase Activity of Anonna cherimola Ent-Kaurenes. Separations. 2024; 11(9):263. https://doi.org/10.3390/separations11090263
Chicago/Turabian StyleCamacho-González, Carlos Eduardo, Alejandro Pérez-Larios, Sonia G. Sáyago-Ayerdi, Jasmin Salazar-Mendoza, and Jorge A. Sánchez-Burgos. 2024. "In Vitro and In Silico Anticyclooxygenase and Antitopoisomerase Activity of Anonna cherimola Ent-Kaurenes" Separations 11, no. 9: 263. https://doi.org/10.3390/separations11090263
APA StyleCamacho-González, C. E., Pérez-Larios, A., Sáyago-Ayerdi, S. G., Salazar-Mendoza, J., & Sánchez-Burgos, J. A. (2024). In Vitro and In Silico Anticyclooxygenase and Antitopoisomerase Activity of Anonna cherimola Ent-Kaurenes. Separations, 11(9), 263. https://doi.org/10.3390/separations11090263