Electromigration Separation of Lithium Isotopes with the Benzo-12-Crown-4-Ether (B12C4) System
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Driving Effect of Electric Field
3.2. Influence of Migration Time
3.3. Chelating Effect of B12C4
3.4. Diffusion of Li+ with Different LiCl Concentrations
3.5. Li+ Migration Along with Isotope Separation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Michiels, E.; De Bièvre, P. Absolute isotopic composition and the atomic weight of a natural sample of lithium. Int. J. Mass Spectrom. Ion Phys. 1983, 49, 265–274. [Google Scholar] [CrossRef]
- Symons, E.A. Lithium Isotope Separation: A Review of Possible Techniques. Sep. Sci. Technol. 1985, 20, 633–651. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Busby, J.T. Structural materials for fission & fusion energy. Mater. Today 2009, 12, 12–19. [Google Scholar]
- Le Calvar, M.; De Curières, I. 15—Corrosion issues in pressurized water reactor (PWR) systems. In Nuclear Corrosion Science and Engineering; Féron, D., Ed.; Woodhead Publishing: Cambridge, UK, 2012; pp. 473–547. [Google Scholar]
- Lewis, G.N.; Macdonald, R.T. The Separation of Lithium Isotopes. J. Am. Chem. Soc. 1936, 58, 2519–2524. [Google Scholar] [CrossRef]
- Palko, A.A.; Drury, J.S.; Begun, G.M. Lithium isotope separation factors of some two-phase equilibrium systems. J. Chem. Phys. 1976, 64, 1828–1837. [Google Scholar] [CrossRef]
- Chen, D.; Chang, Z.; Nomura, M.; Fujii, Y. Isotope effects of magnesium in amalgam/organic solution systems. J. Chem. Soc. Faraday Trans. 1997, 93, 2395–2398. [Google Scholar] [CrossRef]
- Black, J.R.; Umeda, G.; Dunn, B.; McDonough, W.F.; Kavner, A. Electrochemical Isotope Effect and Lithium Isotope Separation. J. Am. Chem. Soc. 2009, 131, 9904–9905. [Google Scholar] [CrossRef] [PubMed]
- Taylor, T.I.; Urey, H.C. Fractionation of the Lithium and Potassium Isotopes by Chemical Exchange with Zeolites. J. Chem. Phys. 1938, 6, 429–438. [Google Scholar] [CrossRef]
- Okuyama, K.; Okada, I.; Saito, N. The isotope effects in the isotope exchange equilibria of lithium in the amalgam-solution system. J. Inorg. Nucl. Chem. 1973, 35, 2883–2895. [Google Scholar] [CrossRef]
- Okada, I.; Okuyama, K.; Miyamoto, T.; Tomita, I.; Saito, N. Enrichment of 7Li by countercurrent electromigration of molten lithium nitrate. J. Inorg. Nucl. Chem. 1973, 35, 2957–2969. [Google Scholar] [CrossRef]
- Hoshino, T.; Terai, T. Basic technology for 6Li enrichment using an ionic-liquid impregnated organic membrane. J. Nucl. Mater. 2011, 417, 696–699. [Google Scholar] [CrossRef]
- Dong, Y.; Zhu, Q.; Zou, W.; Fang, J.; Yang, Z.; Xu, T. Dibenzo-15-crown-5-based Tröger’s Base membrane for 6Li+/7Li+ separation. Sep. Purif. Technol. 2023, 309, 122990. [Google Scholar] [CrossRef]
- Honda, S.; Shin-Mura, K.; Sasaki, K. Lithium isotope enrichment by electrochemical pumping using solid lithium electrolytes. J. Ceram. Soc. Jpn. 2018, 126, 331–335. [Google Scholar] [CrossRef]
- Takami, Y.; Yanase, S.; Oi, T. Observation of Lithium Isotope Effects Accompanying Electrochemical Release from Lithium Cobalt Oxide. Z. Fur Naturforschung A 2013, 68, 73–78. [Google Scholar] [CrossRef]
- Okano, K.; Takami, Y.; Yanase, S.; Oi, T. Lithium Isotope Effects upon Electrochemical Release from Lithium Manganese Oxide. Energy Procedia 2015, 71, 140–148. [Google Scholar] [CrossRef]
- Zhang, Z.; Murali, A.; Sarswat, P.K.; Free, M.L. High-efficiency lithium isotope separation by electrochemical deposition and intercalation with electrochemical isotope effect in propylene carbonate and [BMIM][DCA] ionic liquid. Electrochim. Acta 2020, 361, 137060. [Google Scholar] [CrossRef]
- Taylor, T.I.; Urey, H.C. On the Electrolytic and Chemical Exchange Methods for the Separation of the Lithium Isotopes. J. Chem. Phys. 1937, 5, 597–598. [Google Scholar] [CrossRef]
- Martin, F.S.; Holt, R.J.W. Liquid-liquid extraction in inorganic chemistry. Q. Rev. Chem. Soc. 1959, 13, 327–352. [Google Scholar] [CrossRef]
- Nishizawa, K.; Ishino, S.-I.; Watanabe, H.; Shinagawa, M. Lithium Isotope Separation by Liquid-Liquid Extraction Using Benzo-15-Crown-5. J. Nucl. Sci. Technol. 1984, 21, 694–701. [Google Scholar] [CrossRef]
- Zhang, Q.; Jia, Y.; Sun, J.; Zhang, P.; Huang, C.; Wang, M.; Xue, Z.; Wang, C.; Shao, F.; Tong, F.; et al. Lithium isotope separation effect of N-phenylaza-15-crown-5. J. Mol. Liq. 2021, 330, 115467. [Google Scholar] [CrossRef]
- Cui, L.; Li, S.; Kang, J.; Yin, C.; Guo, Y.; He, H.; Cheng, F. A novel ion-pair strategy for efficient separation of lithium isotopes using crown ethers. Sep. Purif. Technol. 2021, 274, 118989. [Google Scholar] [CrossRef]
- Yan, F.; Pei, H.; Pei, Y.; Li, T.; Li, J.; He, B.; Cheng, Y.; Cui, Z.; Guo, D.; Cui, J. Preparation and Characterization of Polysulfone-graft-4′-aminobenzo-15-crown-5-ether for Lithium Isotope Separation. Ind. Eng. Chem. Res. 2015, 54, 3473–3479. [Google Scholar] [CrossRef]
- Inoue, Y.; Kanzaki, Y.; Abe, M. Isotopic separation of Lithium using Inorganic Ion Exchangers. J. Nucl. Sci. Technol. 1996, 33, 671–672. [Google Scholar] [CrossRef]
- Lee, D.A.; Begun, G.M. The Enrichment of Lithium Isotopes by Ion-exchange Chromatography. I. The Influence of the Degree of Crosslinking on the Separation Factor. J. Am. Chem. Soc. 1959, 81, 2332–2335. [Google Scholar] [CrossRef]
- Kakihana, H.; Nomura, T.; Mori, Y. The separation factor of lithium isotopes with ion exchangers. J. Inorg. Nucl. Chem. 1962, 24, 1145–1151. [Google Scholar] [CrossRef]
- Fujine, S.; Saito, K.; Shiba, K. Lithium Isotope Separation by Displacement Chromatography Using Cryptand Resin. J. Nucl. Sci. Technol. 1983, 20, 439–440. [Google Scholar] [CrossRef]
- Nishizawa, K.; Watanabe, H.; Ishino, S.-i.; Shinagawa, M. Lithium Isotope Separation by Cryptand (2B, 2, 1) Polymer. J. Nucl. Sci. Technol. 1984, 21, 133–138. [Google Scholar] [CrossRef]
- Suzuki, T.; Zhang, M.H.; Nomura, M.; Tsukahara, T.; Tanaka, M. Engineering study on lithium isotope separation by ion exchange chromatography. Fusion Eng. Des. 2021, 168, 112478. [Google Scholar] [CrossRef]
- Shimazu, M.; Takubo, Y.; Maeda, Y. Selective Two-Step Photoionization of Lithium Atoms. Jpn. J. Appl. Phys. 1977, 16, 1275. [Google Scholar] [CrossRef]
- Arisawa, T.; Maruyama, Y.; Suzuki, Y.; Shiba, K. Lithium isotope separation by laser. Appl. Phys. B 1982, 28, 73–76. [Google Scholar] [CrossRef]
- Saleem, M.; Hussain, S.; Rafiq, M.; Baig, M.A. Laser isotope separation of lithium by two-step photoionization. J. Appl. Phys. 2006, 100, 053111. [Google Scholar] [CrossRef]
- Saleem, M.; Hussain, S.; Zia, M.A.; Baig, M.A. An efficient pathway for Li6 isotope enrichment. Appl. Phys. B 2007, 87, 723–726. [Google Scholar] [CrossRef]
- Arisawa, T.; Suzuki, Y.; Maruyama, Y.; Shiba, K. Isotope separation by laser-enhanced chemical reaction. Chem. Phys. 1983, 81, 473–479. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, P.P.; Zhou, P.P.; Chen, S.L.; Zhou, Z.Q.; Huang, Y.; Qi, X.Q.; Yan, Z.C.; Shi, T.Y.; Drake, G.W.F.; et al. Measurement of Hyperfine Structure and the Zemach Radius in 6Li+ Using Optical Ramsey Technique. Phys. Rev. Lett. 2023, 131, 103002. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Fan, Y.; Kang, J.; Yin, C.; Ding, W.; He, H.; Cheng, F. Novel class of crown ether functionalized ionic liquids with multiple binding sites for efficient separation of lithium isotopes. J. Mol. Liq. 2023, 376, 121412. [Google Scholar] [CrossRef]
- Cui, L.; Gao, R.; Zhang, Q.; Jiang, K.; He, H.; Ding, W.-L.; Cheng, F. Benzo-15-Crown-5 Functionalized Ionic Liquids with Enhanced Stability for Effective Separation of Lithium Isotopes: The Effect of Alkyl Chain Length. ACS Sustain. Chem. Eng. 2024, 12, 1221–1232. [Google Scholar] [CrossRef]
- Yan, F.; Liu, Y.; Wang, M.; Yang, B.; Pei, H.; Li, J.; Cui, Z.; He, B. Preparation of polysulfone-graft-monoazabenzo-15-crown-5 ether porous membrane for lithium isotope separation. J. Radioanal. Nucl. Chem. 2018, 317, 111–119. [Google Scholar] [CrossRef]
- Zhang, Z.; Sarswat, P.K.; Murali, A.; Free, M.L. Investigation on Lithium Isotope Fractionation with Diffusion, Electrochemical Migration, and Electrochemical Isotope Effect in PEO-PC Based Gel Electrolyte. J. Electrochem. Soc. 2019, 166, E145. [Google Scholar] [CrossRef]
- Zhang, Z.; Murali, A.; Sarswat, P.K.; Free, M.L. High-efficiency lithium isotope separation in an electrochemical system with 1-butyl-3-methylimidazolium dicyanamide, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, and diethyl carbonate as the solvents. Sep. Purif. Technol. 2020, 253, 117539. [Google Scholar] [CrossRef]
- Wang, M.; Sun, J.; Zhang, P.; Huang, C.; Zhang, Q.; Shao, F.; Jing, Y.; Jia, Y. Lithium isotope separation by electromigration. Chem. Phys. Lett. 2020, 746, 137290. [Google Scholar] [CrossRef]
- Huang, C.; Sun, J.; Wang, C.; Zhang, Q.; Wang, M.; Zhang, P.; Xue, Z.; Jing, Y.; Jia, Y.; Shao, F. Lithium Isotope Electromigration Separation in an Ionic Liquid–Crown Ether System: Understanding the Role of Driving Forces. Ind. Eng. Chem. Res. 2022, 61, 4910–4919. [Google Scholar] [CrossRef]
- Wang, C.; Ju, H.; Zhou, X.; Zhang, P.; Xue, Z.; Mao, L.; Shao, F.; Jing, Y.; Jia, Y.; Sun, J. Separation of lithium isotopes: Electromigration coupling with crystallization. J. Mol. Liq. 2022, 355, 118911. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, P.; Huang, C.; Zhang, Q.; Ju, H.; Xue, Z.; Shao, F.; Li, B.; Mao, L.; Jing, Y.; et al. Electromigration Separation of Lithium Isotopes: The Effect of Electrode Solutions. J. Electrochem. Soc. 2022, 169, 016516. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, P.; Ju, H.; Xue, Z.; Zhou, X.; Mao, L.; Shao, F.; Zou, X.; Jing, Y.; Jia, Y.; et al. Electromigration separation of lithium isotopes: The multiple roles of crown ethers. Chem. Phys. Lett. 2022, 787, 139265. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, P.; Meng, Q.; Xue, Z.; Zhou, X.; Ju, H.; Mao, L.; Shao, F.; Jing, Y.; Jia, Y.; et al. Electromigration separation of lithium isotopes: The effect of electrolytes. J. Environ. Chem. Eng. 2023, 11, 109933. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, C.; Xue, Z.; Mao, L.; Sun, J.; Shao, F.; Qi, M.; Jing, Y.; Jia, Y. Extraction separation of lithium isotopes with Bromobenzene-15-crown-5/ionic liquids system: Experimental and theoretical study. J. Mol. Liq. 2022, 364, 120020. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, M.; Sun, J.; Shao, F.; Jia, Y.; Jing, Y. Lithium Isotope Green Separation Using Water Scrubbing. Chem. Lett. 2019, 48, 1541–1543. [Google Scholar] [CrossRef]
- Zhang, P.; Xue, Z.; Wang, C.; Sun, J.; Shao, F.; Zou, X.; Li, B.; Qi, M.; Jing, Y.; Jia, Y. Mechanisms of ionic liquids on the enhancement of interfacial transport of lithium ions in crown ether system. J. Clean. Prod. 2022, 366, 132782. [Google Scholar] [CrossRef]
- Ju, H.; Wang, C.; Meng, Q.; Mao, L.; Zhou, X.; Zhang, P.; Xue, Z.; Shao, F.; Jing, Y.; Jia, Y.; et al. Electromigration separation of lithium isotopes: The effect of ionic liquid ratios. J. Mol. Liq. 2024, 393, 123526. [Google Scholar] [CrossRef]
- Mao, L.; Zhang, P.; Ju, H.; Zhou, X.; Xue, Z.; Wang, C.; Sun, J.; Jia, Y.; Shao, F.; Zou, X.; et al. Solvent extraction for lithium isotope separation by 4-NO2-B15C5/[BMIm][NTf2] system. J. Mol. Liq. 2022, 367, 120357. [Google Scholar] [CrossRef]
- Mao, L.; Zhou, X.; Zheng, T.; Li, X.; Wang, X.; Zhao, Z.; Sun, W.; Zhang, P.; Sun, J. A novel strategy for water content analysis in (B12C4/B15C5/B18C6-[EMIm][NTf2])-LiNTf2 extraction system: Quantitative calculation and theoretical study. J. Mol. Liq. 2024, 414, 126157. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, P.; Meng, Q.; Mao, L.; Ju, H.; Shao, F.; Jing, Y.; Jia, Y.; Wang, S.; Zou, X.; et al. The extraction method for the separation of lithium isotopes using B12C4/B15C5/B18C6-ionic liquid systems. N. J. Chem. 2023, 47, 1916–1924. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhou, X.; Meng, Q.; Zhang, P.; Shao, F.; Li, X.; Li, H.; Mao, L.; Zheng, T.; Jing, Y.; et al. Electromigration separation of lithium isotopes with B12C4, B15C5 and B18C6 systems. N. J. Chem. 2024, 48, 6676–6687. [Google Scholar] [CrossRef]
- Ju, H. Separation System and Separation Law of Lithium Isotope Byelectromigration Method. Master’s Thesis, University of Chinese Academy of Sciences, Xining, China, 2023. [Google Scholar]
- Flesch, G.D.; Anderson, A.R.; Svec, H.J. A secondary isotopic standard for 6Li/7Li determinations. Int. J. Mass Spectrom. Ion Phys. 1973, 12, 265–272. [Google Scholar] [CrossRef]
- Urey, H.C. The thermodynamic properties of isotopic substances. J. Chem. Soc. 1947, 562–581. [Google Scholar] [CrossRef]
- Betts, R.H.; Bron, J. A Discussion of Partial Isotope Separation by Means of Solvent Extraction. Sep. Sci. 1977, 12, 635–639. [Google Scholar] [CrossRef]
Reagent | Purity | Manufacturer |
---|---|---|
Lithium chloride (LiCl) | AR, 99% | Aladdin Co., Ltd. (Shanghai, China) |
Benzo-12-crown-4-ether (B12C4) | AR, 98% | TCI Co., Ltd. (Tokyo, Japan) |
Anisole | AR, 99% | Aladdin Co., Ltd. (Shanghai, China) |
[EMIm][NTf2] ionic liquid | AR, 99% | Greenchem ILs Co., Ltd. (Lanzhou, China) |
Ammonium chloride (NH4Cl) | AR, 99.5% | Aladdin Co., Ltd. (Shanghai, China) |
Hydrochloric acid standard titration solution (HCl) | 1.000 mol/L | Howei Pharma Co., Ltd. (Guangzhou, China) |
Instrument | Model | Manufacturer |
---|---|---|
DC power supply | DH1766-1 | Beijing Dahua Radio Instrument Co., Ltd. (Beijing, China) |
Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) | Avio 200 | Perkin Elmer Co., Ltd. (Waltham, MA, USA) |
Multi-collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) | Neptune Plus | Thermo Fisher Scientific Co., Ltd. (Waltham, MA, USA) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Mao, L.; Zheng, T.; Li, X.; Ye, C.; Zhang, P.; Li, H.; Sun, W.; Sun, J. Electromigration Separation of Lithium Isotopes with the Benzo-12-Crown-4-Ether (B12C4) System. Separations 2025, 12, 27. https://doi.org/10.3390/separations12020027
Zhao Z, Mao L, Zheng T, Li X, Ye C, Zhang P, Li H, Sun W, Sun J. Electromigration Separation of Lithium Isotopes with the Benzo-12-Crown-4-Ether (B12C4) System. Separations. 2025; 12(2):27. https://doi.org/10.3390/separations12020027
Chicago/Turabian StyleZhao, Zhiyu, Lianjing Mao, Tianyu Zheng, Xiao Li, Chunsen Ye, Pengrui Zhang, Huifang Li, Wei Sun, and Jinhe Sun. 2025. "Electromigration Separation of Lithium Isotopes with the Benzo-12-Crown-4-Ether (B12C4) System" Separations 12, no. 2: 27. https://doi.org/10.3390/separations12020027
APA StyleZhao, Z., Mao, L., Zheng, T., Li, X., Ye, C., Zhang, P., Li, H., Sun, W., & Sun, J. (2025). Electromigration Separation of Lithium Isotopes with the Benzo-12-Crown-4-Ether (B12C4) System. Separations, 12(2), 27. https://doi.org/10.3390/separations12020027