Electromigration Separation of Lithium Isotopes with the Benzo-12-Crown-4-Ether (B12C4) System
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Driving Effect of Electric Field
3.2. Influence of Migration Time
3.3. Chelating Effect of B12C4
3.4. Diffusion of Li+ with Different LiCl Concentrations
3.5. Li+ Migration Along with Isotope Separation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Michiels, E.; De Bièvre, P. Absolute isotopic composition and the atomic weight of a natural sample of lithium. Int. J. Mass Spectrom. Ion Phys. 1983, 49, 265–274. [Google Scholar] [CrossRef]
- Symons, E.A. Lithium Isotope Separation: A Review of Possible Techniques. Sep. Sci. Technol. 1985, 20, 633–651. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Busby, J.T. Structural materials for fission & fusion energy. Mater. Today 2009, 12, 12–19. [Google Scholar]
- Le Calvar, M.; De Curières, I. 15—Corrosion issues in pressurized water reactor (PWR) systems. In Nuclear Corrosion Science and Engineering; Féron, D., Ed.; Woodhead Publishing: Cambridge, UK, 2012; pp. 473–547. [Google Scholar]
- Lewis, G.N.; Macdonald, R.T. The Separation of Lithium Isotopes. J. Am. Chem. Soc. 1936, 58, 2519–2524. [Google Scholar] [CrossRef]
- Palko, A.A.; Drury, J.S.; Begun, G.M. Lithium isotope separation factors of some two-phase equilibrium systems. J. Chem. Phys. 1976, 64, 1828–1837. [Google Scholar] [CrossRef]
- Chen, D.; Chang, Z.; Nomura, M.; Fujii, Y. Isotope effects of magnesium in amalgam/organic solution systems. J. Chem. Soc. Faraday Trans. 1997, 93, 2395–2398. [Google Scholar] [CrossRef]
- Black, J.R.; Umeda, G.; Dunn, B.; McDonough, W.F.; Kavner, A. Electrochemical Isotope Effect and Lithium Isotope Separation. J. Am. Chem. Soc. 2009, 131, 9904–9905. [Google Scholar] [CrossRef] [PubMed]
- Taylor, T.I.; Urey, H.C. Fractionation of the Lithium and Potassium Isotopes by Chemical Exchange with Zeolites. J. Chem. Phys. 1938, 6, 429–438. [Google Scholar] [CrossRef]
- Okuyama, K.; Okada, I.; Saito, N. The isotope effects in the isotope exchange equilibria of lithium in the amalgam-solution system. J. Inorg. Nucl. Chem. 1973, 35, 2883–2895. [Google Scholar] [CrossRef]
- Okada, I.; Okuyama, K.; Miyamoto, T.; Tomita, I.; Saito, N. Enrichment of 7Li by countercurrent electromigration of molten lithium nitrate. J. Inorg. Nucl. Chem. 1973, 35, 2957–2969. [Google Scholar] [CrossRef]
- Hoshino, T.; Terai, T. Basic technology for 6Li enrichment using an ionic-liquid impregnated organic membrane. J. Nucl. Mater. 2011, 417, 696–699. [Google Scholar] [CrossRef]
- Dong, Y.; Zhu, Q.; Zou, W.; Fang, J.; Yang, Z.; Xu, T. Dibenzo-15-crown-5-based Tröger’s Base membrane for 6Li+/7Li+ separation. Sep. Purif. Technol. 2023, 309, 122990. [Google Scholar] [CrossRef]
- Honda, S.; Shin-Mura, K.; Sasaki, K. Lithium isotope enrichment by electrochemical pumping using solid lithium electrolytes. J. Ceram. Soc. Jpn. 2018, 126, 331–335. [Google Scholar] [CrossRef]
- Takami, Y.; Yanase, S.; Oi, T. Observation of Lithium Isotope Effects Accompanying Electrochemical Release from Lithium Cobalt Oxide. Z. Fur Naturforschung A 2013, 68, 73–78. [Google Scholar] [CrossRef]
- Okano, K.; Takami, Y.; Yanase, S.; Oi, T. Lithium Isotope Effects upon Electrochemical Release from Lithium Manganese Oxide. Energy Procedia 2015, 71, 140–148. [Google Scholar] [CrossRef]
- Zhang, Z.; Murali, A.; Sarswat, P.K.; Free, M.L. High-efficiency lithium isotope separation by electrochemical deposition and intercalation with electrochemical isotope effect in propylene carbonate and [BMIM][DCA] ionic liquid. Electrochim. Acta 2020, 361, 137060. [Google Scholar] [CrossRef]
- Taylor, T.I.; Urey, H.C. On the Electrolytic and Chemical Exchange Methods for the Separation of the Lithium Isotopes. J. Chem. Phys. 1937, 5, 597–598. [Google Scholar] [CrossRef]
- Martin, F.S.; Holt, R.J.W. Liquid-liquid extraction in inorganic chemistry. Q. Rev. Chem. Soc. 1959, 13, 327–352. [Google Scholar] [CrossRef]
- Nishizawa, K.; Ishino, S.-I.; Watanabe, H.; Shinagawa, M. Lithium Isotope Separation by Liquid-Liquid Extraction Using Benzo-15-Crown-5. J. Nucl. Sci. Technol. 1984, 21, 694–701. [Google Scholar] [CrossRef]
- Zhang, Q.; Jia, Y.; Sun, J.; Zhang, P.; Huang, C.; Wang, M.; Xue, Z.; Wang, C.; Shao, F.; Tong, F.; et al. Lithium isotope separation effect of N-phenylaza-15-crown-5. J. Mol. Liq. 2021, 330, 115467. [Google Scholar] [CrossRef]
- Cui, L.; Li, S.; Kang, J.; Yin, C.; Guo, Y.; He, H.; Cheng, F. A novel ion-pair strategy for efficient separation of lithium isotopes using crown ethers. Sep. Purif. Technol. 2021, 274, 118989. [Google Scholar] [CrossRef]
- Yan, F.; Pei, H.; Pei, Y.; Li, T.; Li, J.; He, B.; Cheng, Y.; Cui, Z.; Guo, D.; Cui, J. Preparation and Characterization of Polysulfone-graft-4′-aminobenzo-15-crown-5-ether for Lithium Isotope Separation. Ind. Eng. Chem. Res. 2015, 54, 3473–3479. [Google Scholar] [CrossRef]
- Inoue, Y.; Kanzaki, Y.; Abe, M. Isotopic separation of Lithium using Inorganic Ion Exchangers. J. Nucl. Sci. Technol. 1996, 33, 671–672. [Google Scholar] [CrossRef]
- Lee, D.A.; Begun, G.M. The Enrichment of Lithium Isotopes by Ion-exchange Chromatography. I. The Influence of the Degree of Crosslinking on the Separation Factor. J. Am. Chem. Soc. 1959, 81, 2332–2335. [Google Scholar] [CrossRef]
- Kakihana, H.; Nomura, T.; Mori, Y. The separation factor of lithium isotopes with ion exchangers. J. Inorg. Nucl. Chem. 1962, 24, 1145–1151. [Google Scholar] [CrossRef]
- Fujine, S.; Saito, K.; Shiba, K. Lithium Isotope Separation by Displacement Chromatography Using Cryptand Resin. J. Nucl. Sci. Technol. 1983, 20, 439–440. [Google Scholar] [CrossRef]
- Nishizawa, K.; Watanabe, H.; Ishino, S.-i.; Shinagawa, M. Lithium Isotope Separation by Cryptand (2B, 2, 1) Polymer. J. Nucl. Sci. Technol. 1984, 21, 133–138. [Google Scholar] [CrossRef]
- Suzuki, T.; Zhang, M.H.; Nomura, M.; Tsukahara, T.; Tanaka, M. Engineering study on lithium isotope separation by ion exchange chromatography. Fusion Eng. Des. 2021, 168, 112478. [Google Scholar] [CrossRef]
- Shimazu, M.; Takubo, Y.; Maeda, Y. Selective Two-Step Photoionization of Lithium Atoms. Jpn. J. Appl. Phys. 1977, 16, 1275. [Google Scholar] [CrossRef]
- Arisawa, T.; Maruyama, Y.; Suzuki, Y.; Shiba, K. Lithium isotope separation by laser. Appl. Phys. B 1982, 28, 73–76. [Google Scholar] [CrossRef]
- Saleem, M.; Hussain, S.; Rafiq, M.; Baig, M.A. Laser isotope separation of lithium by two-step photoionization. J. Appl. Phys. 2006, 100, 053111. [Google Scholar] [CrossRef]
- Saleem, M.; Hussain, S.; Zia, M.A.; Baig, M.A. An efficient pathway for Li6 isotope enrichment. Appl. Phys. B 2007, 87, 723–726. [Google Scholar] [CrossRef]
- Arisawa, T.; Suzuki, Y.; Maruyama, Y.; Shiba, K. Isotope separation by laser-enhanced chemical reaction. Chem. Phys. 1983, 81, 473–479. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, P.P.; Zhou, P.P.; Chen, S.L.; Zhou, Z.Q.; Huang, Y.; Qi, X.Q.; Yan, Z.C.; Shi, T.Y.; Drake, G.W.F.; et al. Measurement of Hyperfine Structure and the Zemach Radius in 6Li+ Using Optical Ramsey Technique. Phys. Rev. Lett. 2023, 131, 103002. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Fan, Y.; Kang, J.; Yin, C.; Ding, W.; He, H.; Cheng, F. Novel class of crown ether functionalized ionic liquids with multiple binding sites for efficient separation of lithium isotopes. J. Mol. Liq. 2023, 376, 121412. [Google Scholar] [CrossRef]
- Cui, L.; Gao, R.; Zhang, Q.; Jiang, K.; He, H.; Ding, W.-L.; Cheng, F. Benzo-15-Crown-5 Functionalized Ionic Liquids with Enhanced Stability for Effective Separation of Lithium Isotopes: The Effect of Alkyl Chain Length. ACS Sustain. Chem. Eng. 2024, 12, 1221–1232. [Google Scholar] [CrossRef]
- Yan, F.; Liu, Y.; Wang, M.; Yang, B.; Pei, H.; Li, J.; Cui, Z.; He, B. Preparation of polysulfone-graft-monoazabenzo-15-crown-5 ether porous membrane for lithium isotope separation. J. Radioanal. Nucl. Chem. 2018, 317, 111–119. [Google Scholar] [CrossRef]
- Zhang, Z.; Sarswat, P.K.; Murali, A.; Free, M.L. Investigation on Lithium Isotope Fractionation with Diffusion, Electrochemical Migration, and Electrochemical Isotope Effect in PEO-PC Based Gel Electrolyte. J. Electrochem. Soc. 2019, 166, E145. [Google Scholar] [CrossRef]
- Zhang, Z.; Murali, A.; Sarswat, P.K.; Free, M.L. High-efficiency lithium isotope separation in an electrochemical system with 1-butyl-3-methylimidazolium dicyanamide, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, and diethyl carbonate as the solvents. Sep. Purif. Technol. 2020, 253, 117539. [Google Scholar] [CrossRef]
- Wang, M.; Sun, J.; Zhang, P.; Huang, C.; Zhang, Q.; Shao, F.; Jing, Y.; Jia, Y. Lithium isotope separation by electromigration. Chem. Phys. Lett. 2020, 746, 137290. [Google Scholar] [CrossRef]
- Huang, C.; Sun, J.; Wang, C.; Zhang, Q.; Wang, M.; Zhang, P.; Xue, Z.; Jing, Y.; Jia, Y.; Shao, F. Lithium Isotope Electromigration Separation in an Ionic Liquid–Crown Ether System: Understanding the Role of Driving Forces. Ind. Eng. Chem. Res. 2022, 61, 4910–4919. [Google Scholar] [CrossRef]
- Wang, C.; Ju, H.; Zhou, X.; Zhang, P.; Xue, Z.; Mao, L.; Shao, F.; Jing, Y.; Jia, Y.; Sun, J. Separation of lithium isotopes: Electromigration coupling with crystallization. J. Mol. Liq. 2022, 355, 118911. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, P.; Huang, C.; Zhang, Q.; Ju, H.; Xue, Z.; Shao, F.; Li, B.; Mao, L.; Jing, Y.; et al. Electromigration Separation of Lithium Isotopes: The Effect of Electrode Solutions. J. Electrochem. Soc. 2022, 169, 016516. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, P.; Ju, H.; Xue, Z.; Zhou, X.; Mao, L.; Shao, F.; Zou, X.; Jing, Y.; Jia, Y.; et al. Electromigration separation of lithium isotopes: The multiple roles of crown ethers. Chem. Phys. Lett. 2022, 787, 139265. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, P.; Meng, Q.; Xue, Z.; Zhou, X.; Ju, H.; Mao, L.; Shao, F.; Jing, Y.; Jia, Y.; et al. Electromigration separation of lithium isotopes: The effect of electrolytes. J. Environ. Chem. Eng. 2023, 11, 109933. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, C.; Xue, Z.; Mao, L.; Sun, J.; Shao, F.; Qi, M.; Jing, Y.; Jia, Y. Extraction separation of lithium isotopes with Bromobenzene-15-crown-5/ionic liquids system: Experimental and theoretical study. J. Mol. Liq. 2022, 364, 120020. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, M.; Sun, J.; Shao, F.; Jia, Y.; Jing, Y. Lithium Isotope Green Separation Using Water Scrubbing. Chem. Lett. 2019, 48, 1541–1543. [Google Scholar] [CrossRef]
- Zhang, P.; Xue, Z.; Wang, C.; Sun, J.; Shao, F.; Zou, X.; Li, B.; Qi, M.; Jing, Y.; Jia, Y. Mechanisms of ionic liquids on the enhancement of interfacial transport of lithium ions in crown ether system. J. Clean. Prod. 2022, 366, 132782. [Google Scholar] [CrossRef]
- Ju, H.; Wang, C.; Meng, Q.; Mao, L.; Zhou, X.; Zhang, P.; Xue, Z.; Shao, F.; Jing, Y.; Jia, Y.; et al. Electromigration separation of lithium isotopes: The effect of ionic liquid ratios. J. Mol. Liq. 2024, 393, 123526. [Google Scholar] [CrossRef]
- Mao, L.; Zhang, P.; Ju, H.; Zhou, X.; Xue, Z.; Wang, C.; Sun, J.; Jia, Y.; Shao, F.; Zou, X.; et al. Solvent extraction for lithium isotope separation by 4-NO2-B15C5/[BMIm][NTf2] system. J. Mol. Liq. 2022, 367, 120357. [Google Scholar] [CrossRef]
- Mao, L.; Zhou, X.; Zheng, T.; Li, X.; Wang, X.; Zhao, Z.; Sun, W.; Zhang, P.; Sun, J. A novel strategy for water content analysis in (B12C4/B15C5/B18C6-[EMIm][NTf2])-LiNTf2 extraction system: Quantitative calculation and theoretical study. J. Mol. Liq. 2024, 414, 126157. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, P.; Meng, Q.; Mao, L.; Ju, H.; Shao, F.; Jing, Y.; Jia, Y.; Wang, S.; Zou, X.; et al. The extraction method for the separation of lithium isotopes using B12C4/B15C5/B18C6-ionic liquid systems. N. J. Chem. 2023, 47, 1916–1924. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhou, X.; Meng, Q.; Zhang, P.; Shao, F.; Li, X.; Li, H.; Mao, L.; Zheng, T.; Jing, Y.; et al. Electromigration separation of lithium isotopes with B12C4, B15C5 and B18C6 systems. N. J. Chem. 2024, 48, 6676–6687. [Google Scholar] [CrossRef]
- Ju, H. Separation System and Separation Law of Lithium Isotope Byelectromigration Method. Master’s Thesis, University of Chinese Academy of Sciences, Xining, China, 2023. [Google Scholar]
- Flesch, G.D.; Anderson, A.R.; Svec, H.J. A secondary isotopic standard for 6Li/7Li determinations. Int. J. Mass Spectrom. Ion Phys. 1973, 12, 265–272. [Google Scholar] [CrossRef]
- Urey, H.C. The thermodynamic properties of isotopic substances. J. Chem. Soc. 1947, 562–581. [Google Scholar] [CrossRef]
- Betts, R.H.; Bron, J. A Discussion of Partial Isotope Separation by Means of Solvent Extraction. Sep. Sci. 1977, 12, 635–639. [Google Scholar] [CrossRef]
Reagent | Purity | Manufacturer |
---|---|---|
Lithium chloride (LiCl) | AR, 99% | Aladdin Co., Ltd. (Shanghai, China) |
Benzo-12-crown-4-ether (B12C4) | AR, 98% | TCI Co., Ltd. (Tokyo, Japan) |
Anisole | AR, 99% | Aladdin Co., Ltd. (Shanghai, China) |
[EMIm][NTf2] ionic liquid | AR, 99% | Greenchem ILs Co., Ltd. (Lanzhou, China) |
Ammonium chloride (NH4Cl) | AR, 99.5% | Aladdin Co., Ltd. (Shanghai, China) |
Hydrochloric acid standard titration solution (HCl) | 1.000 mol/L | Howei Pharma Co., Ltd. (Guangzhou, China) |
Instrument | Model | Manufacturer |
---|---|---|
DC power supply | DH1766-1 | Beijing Dahua Radio Instrument Co., Ltd. (Beijing, China) |
Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) | Avio 200 | Perkin Elmer Co., Ltd. (Waltham, MA, USA) |
Multi-collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) | Neptune Plus | Thermo Fisher Scientific Co., Ltd. (Waltham, MA, USA) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Mao, L.; Zheng, T.; Li, X.; Ye, C.; Zhang, P.; Li, H.; Sun, W.; Sun, J. Electromigration Separation of Lithium Isotopes with the Benzo-12-Crown-4-Ether (B12C4) System. Separations 2025, 12, 27. https://doi.org/10.3390/separations12020027
Zhao Z, Mao L, Zheng T, Li X, Ye C, Zhang P, Li H, Sun W, Sun J. Electromigration Separation of Lithium Isotopes with the Benzo-12-Crown-4-Ether (B12C4) System. Separations. 2025; 12(2):27. https://doi.org/10.3390/separations12020027
Chicago/Turabian StyleZhao, Zhiyu, Lianjing Mao, Tianyu Zheng, Xiao Li, Chunsen Ye, Pengrui Zhang, Huifang Li, Wei Sun, and Jinhe Sun. 2025. "Electromigration Separation of Lithium Isotopes with the Benzo-12-Crown-4-Ether (B12C4) System" Separations 12, no. 2: 27. https://doi.org/10.3390/separations12020027
APA StyleZhao, Z., Mao, L., Zheng, T., Li, X., Ye, C., Zhang, P., Li, H., Sun, W., & Sun, J. (2025). Electromigration Separation of Lithium Isotopes with the Benzo-12-Crown-4-Ether (B12C4) System. Separations, 12(2), 27. https://doi.org/10.3390/separations12020027