Strengthened Effect of Surface-Active Ionic Liquids on Curcumin Solubility and Extraction Performance of Curcuminoids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Instruments
2.3. Determination of Critical Micelle Concentration of Imidazolium Ionic Liquids by Conductivity
2.4. UV–Vis Detection Method for Curcumin and Establishment of Its Standard Curve
2.5. Establishing the Method for Determining Curcumin Solubility
2.6. Extraction Conditions and Calculation of Extraction Yield
2.7. Extraction Kinetics Fitting
2.8. Computational Chemistry Study
3. Results and Discussion
3.1. Critical Micelle Concentration of Imidazolium ILs in Aqueous Solutions
3.2. Effect of Imidazolium ILs on Curcumin Solubility
3.3. Comparison with the Effect of Tropine-Based ILs on Curcumin Solubility
3.4. Computation for Intermolecular Interactions
3.5. Electrostatic Potential Distribution of Ionic Liquids and Curcumin Molecules
3.6. Effects of Main Extraction Conditions
3.6.1. Effects of Particle Size and Solid-to-Liquid Ratio
3.6.2. Effects of IL Concentration and Ultrasonic Power
3.7. Study on the Extraction Kinetics of Ionic Liquids
3.8. ComplexGAPI Analysis and Product Antioxidant Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perinelli, D.R.; Cespi, M.; Lorusso, N.; Palmieri, G.F.; Bonacucina, G.; Blasi, P. Surfactant Self-Assembling and Critical Micelle Concentration: One Approach Fits All? Langmuir 2020, 36, 5745–5753. [Google Scholar] [CrossRef]
- Williams, H.D.; Trevaskis, N.L.; Charman, S.A.; Shanker, R.M.; Charman, W.N.; Pouton, C.W.; Porter, C.J.H. Strategies to Address Low Drug Solubility in Discovery and Development. Pharmacol. Rev. 2013, 65, 315–499. [Google Scholar] [PubMed]
- Rangel-Yagui, C.O.; Pessoa, A.; Tavares, L.C. Micellar solubilization of drugs. J. Pharm. Pharm. Sci. 2005, 8, 147–163. [Google Scholar] [PubMed]
- Fayyaz, S.; Talat, R.; Ali, S.; Khalid, N.; Shah, A.; Ullah, F. Synthesis, Characterization, and Micellization Behavior of Cationic Surfactants: N-Alkyl-3-Methylpyridinium Bromides and Their Drug Interaction Study by UV–Visible Spectroscopy and Conductometry. J. Surfactants Deterg. 2019, 22, 625–632. [Google Scholar] [CrossRef]
- Jabbari, M.; Teymoori, F. An insight into effect of micelle-forming surfactants on aqueous solubilization and octanol/water partition coefficient of the drugs gemfibrozil and ibuprofen. J. Mol. Liq. 2018, 262, 1–7. [Google Scholar] [CrossRef]
- Vinarov, Z.; Katev, V.; Radeva, D.; Tcholakova, S.; Denkov, N.D. Micellar solubilization of poorly water-soluble drugs: Effect of surfactant and solubilizate molecular structure. Drug Dev. Ind. Pharm. 2018, 44, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Y.; Cheng, H.L.; Zhao, Y.G.; Cui, H.R. Ionic Liquids in Pharmaceutical and Biomedical Applications: A Review. Pharmaceutics 2024, 16, 151. [Google Scholar] [CrossRef]
- Buettner, C.S.; Cognigni, A.; Schroder, C.; Bica-Schroder, K. Surface-active ionic liquids: A review. J. Mol. Liq. 2022, 347, 118160. [Google Scholar] [CrossRef]
- Sarac, B.; Medos, Z.; Cognigni, A.; Bica, K.; Chen, L.J.; Bešter-Rogač, M. Thermodynamic study for micellization of imidazolium based surface active ionic liquids in water: Effect of alkyl chain length and anions. Colloids Surf. A-Physicochem. Eng. Asp. 2017, 532, 609–617. [Google Scholar] [CrossRef]
- Kuznetsova, D.A.; Gabdrakhmanov, D.R.; Lukashenko, S.S.; Voloshina, A.D.; Sapunova, A.S.; Kulik, N.V.; Nizameev, I.R.; Kadirov, M.K.; Kashapov, R.R.; Zakharova, L.Y. Supramolecular systems based on cationic imidazole-containing amphiphiles bearing hydroxyethyl fragment: Aggregation properties and functional activity. J. Mol. Liq. 2019, 289, 111058. [Google Scholar] [CrossRef]
- Dong, B.; Zhao, X.Y.; Zheng, L.Q.; Zhang, J.; Li, N.; Inoue, T. Aggregation behavior of long-chain imidazolium ionic liquids in aqueous solution: Micellization and characterization of micelle microenvironment. Colloids Surf. A-Physicochem. Eng. Asp. 2008, 317, 666–672. [Google Scholar] [CrossRef]
- Baltazar, Q.Q.; Chandawalla, J.; Sawyer, K.; Anderson, J.L. Interfacial and micellar properties of imidazolium-based monocationic and dicationic ionic liquids. Colloids Surf. A-Physicochem. Eng. Asp. 2007, 302, 150–156. [Google Scholar] [CrossRef]
- Vanyur, R.; Biczok, L.; Miskolczy, Z. Micelle formation of 1-alkyl-3-methylimidazolium bromide ionic liquids in aqueous solution. Colloids Surf. A-Physicochem. Eng. Asp. 2007, 299, 256–261. [Google Scholar] [CrossRef]
- Inoue, T.; Ebina, H.; Dong, B.; Zheng, L.Q. Electrical conductivity study on micelle formation of long-chainimidazolium ionic liquids in aqueous solution. J. Colloid Interface Sci. 2007, 314, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Li, N.; Zheng, L.Q.; Li, Y.; Inoue, T. Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution. Langmuir 2007, 23, 4178–4182. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, S.J.; Wang, J.J.; Tang, J.M. Aggregation of ionic liquids [C(n)mim]Br (n = 4, 6, 8, 10, 12) in D2O: A NMR study. J. Phys. Chem. B 2008, 112, 2031–2039. [Google Scholar] [CrossRef]
- Sirieix-Plenet, J.; Gaillon, L.; Letellier, P. Behaviour of a binary solvent mixture constituted by an amphiphilic ionic liquid, 1-decyl-3-methylimidazolium bromide and water Potentiometric and conductimetric studies. Talanta 2004, 63, 979–986. [Google Scholar] [CrossRef]
- Goodchild, I.; Collier, L.; Millar, S.L.; Prokeš, I.; Lord, J.C.D.; Butts, C.P.; Bowers, J.; Webster, J.R.P.; Heenan, R.K. Structural studies of the phase, aggregation and surface behaviour of 1-alkyl-3-methylimidazolium halide plus water mixtures. J. Colloid Interface Sci. 2007, 307, 455–468. [Google Scholar] [CrossRef]
- Mester, P.; Wagner, M.; Rossmanith, P. Ionic liquids designed as chaotrope and surfactant for use in protein chemistry. Sep. Purif. Technol. 2012, 97, 211–215. [Google Scholar] [CrossRef]
- Alawi, M.A.; Hamdan, I.I.; Sallam, A.A.; Heshmeh, N.A. Solubility enhancement of glibenclamide in choline–tryptophan ionic liquid: Preparation, characterization and mechanism of solubilization. J. Mol. Liq. 2015, 212, 629–634. [Google Scholar] [CrossRef]
- Pathan, H.; Patil, R.; Ray, D.; Aswal, V.K.; Bahadur, P.; Tiwari, S. Structural changes in non-ionic surfactant micelles induced by ionic liquids and application thereof for improved solubilization of quercetin. J. Mol. Liq. 2019, 290, 111235. [Google Scholar] [CrossRef]
- Pino, V.; German-Hernandez, M.; Martin-Perez, A.; Anderson, J.L. Ionic Liquid-Based Surfactants in Separation Science. Sep. Sci. Technol. 2012, 47, 264–276. [Google Scholar] [CrossRef]
- Amalraj, A.; Pius, A.; Gopi, S.; Gopi, S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives—A review. J. Tradit. Complement. Med. 2016, 15, 205–233. [Google Scholar] [CrossRef] [PubMed]
- Shahrajabian, M.H.; Sun, W. The Golden Spice for Life: Turmeric with the Pharmacological Benefits of Curcuminoids Components, Including Curcumin, Bisdemethoxycurcumin, and Demethoxycurcumins. Curr. Org. Synth. 2024, 21, 665–683. [Google Scholar] [CrossRef]
- Wu, H.; Liu, Z.; Zhang, Y.; Gao, B.; Li, Y.; He, X.; Sun, J.; Choe, U.; Chen, P.; Blaustein, R.A.; et al. Chemical Composition of Turmeric (Curcuma longa L. ) Ethanol Extract and Its Antimicrobial Activities and Free Radical Scavenging Capacities. Foods 2024, 13, 1550. [Google Scholar]
- Cornellas, A.; Perez, L.; Comelles, F.; Ribosa, I.; Manresa, A.; Garcia, M.T. Self-aggregation and antimicrobial activity of imidazolium and pyridinium based ionic liquids in aqueous solution. J. Colloid Interface Sci. 2011, 355, 164. [Google Scholar] [CrossRef] [PubMed]
- Paterno, A.; Fiorenza, R.; Marullo, S.; Musumarra, G.; Scire, S. Prediction of ionic liquid’s heat capacity by means of their in silico principal properties. RSC Adv. 2016, 6, 36085. [Google Scholar] [CrossRef]
- Lu, J.; Song, H.; Yang, Y.; Qian, G.F.; Nie, L.R.; Yao, S. Synthesis and characterization of novel hexafluorophosphate salts with tropine-type cations. J. Mol. Liq. 2015, 209, 648–656. [Google Scholar] [CrossRef]
- Pal, A.; Chaudhary, S. Ionic liquids effect on critical micelle concentration of SDS: Conductivity, fluorescence and NMR studies. Fluid Phase Equilibria 2014, 327, 100–104. [Google Scholar] [CrossRef]
- Rahman, M. Development of UV spectrophotometric method for estimation of curcumin in bulk drug and nanogel formulation: A hydrolytic degradation studies. Int. J. Pharm. Chem. Anal. 2022, 9, 87–92. [Google Scholar] [CrossRef]
- Xu, J.; Wang, W.; Liang, H.; Zhang, Q.; Li, Q.Y. Optimization of ionic liquid based ultrasonic assisted extraction of antioxidant compounds from Curcuma longa L. using response surface methodology. Ind. Crops Prod. 2015, 76, 487–493. [Google Scholar] [CrossRef]
- Liang, H.; Wang, W.; Xu, J.; Zhang, Q.; Shen, Z.; Zeng, Z.; Li, Q. Optimization of ionic liquid-based microwave-assisted extraction technique for curcuminoids from Curcuma longa L. Food Bioprod. Process. 2017, 104, 57–65. [Google Scholar] [CrossRef]
- Bogdanov, M.G.; Svinyarov, I. Ionic liquid-supported solid–liquid extraction of bioactive alkaloids. II. Kinetics, modeling and mechanism of glaucine extraction from Glaucium flavum Cr. (Papaveraceae). Sep. Purif. Technol. 2013, 103, 279–288. [Google Scholar] [CrossRef]
- Ali, A.; Lim, X.Y.; Chong, C.H.; Mah, S.H.; Chua, B.L. Ultrasound-assisted extraction of natural antioxidants from betel leaves (Piper betle): Extraction kinetics and modeling. Sep. Sci. Technol. 2018, 53, 2192–2205. [Google Scholar] [CrossRef]
- Gonzalez-Perez, A.; Del Castillo, J.L.; Czapkiewicz, J.; Rodriguez, J.R. Conductivity, density, and adiabatic compressibility of dodecyldimethylbenzylammonium chloride in aqueous solutions. J. Phys. Chem. B 2001, 105, 1720–1724. [Google Scholar] [CrossRef]
- Tanford, C. Micelle Shape and Size. J. Phys. Chem. 1972, 76, 3020–3024. [Google Scholar] [CrossRef]
- Wang, J.J.; Wang, H.Y.; Zhang, S.L.; Zhang, H.C.; Zhao, Y. Conductivities, volumes, fluorescence, and aggregation behavior of ionic liquids [C(4)mim][BF4] and [C(n)mim]Br(n = 4, 6, 8, 10, 12) in aqueous solutions. J. Phys. Chem. B 2007, 111, 6181–6188. [Google Scholar] [CrossRef] [PubMed]
- Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 2005, 437, 640–647. [Google Scholar] [CrossRef]
- Rosen, M.J.; Kunjappu, J.T. Surfactants and Interfacial Phenomena; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Lu, T.; Chen, F.W. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Lu, T. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 2024, 161, 082503. [Google Scholar] [CrossRef]
- Lu, T.; Chen, Q.X. Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems. J. Comput. Chem. 2022, 43, 539–555. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.F.; Zhou, Z.L.; Zou, L.; Chi, R. Imidazolium-based ionic liquids with inorganic anions in the extraction of salidroside and tyrosol from Rhodiola: The role of cations and anions on the extraction mechanism. J. Mol. Liq. 2019, 275, 136–145. [Google Scholar] [CrossRef]
- Sui, X.Y.; Liu, T.T.; Liu, J.C.; Zhang, J.; Zhang, H.L.; Wang, H.Y.; Yang, Y. Ultrasonic-enhanced surface-active ionic liquid-based extraction and defoaming for the extraction of psoralen and isopsoralen from Psoralea corylifolia seeds. Ultrason. Sonochem. 2020, 69, 105263. [Google Scholar] [CrossRef]
- Tan, Z.-J.; Wang, C.-Y.; Yang, Z.-Z.; Yi, Y.-J.; Wang, H.-Y.; Zhou, W.-L.; Li, F.-F. Ionic Liquid-Based Ultrasonic-Assisted Extraction of Secoisolariciresinol Diglucoside from Flaxseed (Linum usitatissimum L.) with Further Purification by an Aqueous Two-Phase System. Molecules 2015, 20, 17929–17943. [Google Scholar] [CrossRef] [PubMed]
- Płotka-Wasylka, J.; Wojnowski, W. Complementary green analytical procedure index (ComplexGAPI) and software. Green Chem. 2021, 23, 8657–8665. [Google Scholar] [CrossRef]
- El-Eryan, R.T.; Toubar, S.S.; Ashour, A.A.; Elshahed, M.S. Application of analytical Eco-Scale and Complex-GAPI tools for green assessment of a new simple nanoparticle modified carbon paste electrode method for voltammetric determination of mosapride citrate in pharmaceutical dosage form and human plasma. Microchem. J. 2022, 178, 107347. [Google Scholar] [CrossRef]
- Ak, T.; Gülçin, I. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 2008, 174, 27–37. [Google Scholar] [CrossRef]
ILs | CMC (mM) | Aggregation Number |
---|---|---|
[C16mim]Br | 0.55–0.84 [11], 0.8 [12], 0.61 [13], 0.653 [14] | 64 [11], 66 [13], 76 [14] |
[C14mim]Br | 2.8–2.9 [11], 2.5 [13], 2.61 [14] | 48 [11], 59 [13], 61 [14] |
[C12mim]Br | 10.9 [11,15], 4.3 [12], 11.2 [11], 9.8 [13], 9.53 [14], 11 [16], 8.5 [15] | 37 [11], 44 [13], 43 [14] |
[C10mim]Br | 40 [17], 41 [13], 29.3–32.9 [15], 30–40 [18], 31 [16] | 42 [13], 37–47 [18], 27 [16] |
[C9mim]Br | 74 [13] | 45 [13] |
[C8mim]Br | 121 [12], 150 [18], 141 [16] | 21–27 [18], 25 [16] |
[C6mim]Br | 470 [12], 400–600 [18], 797 [16] | - |
Objects | VS, max (kcal·mol−1) | VS, min (kcal·mol−1) | Π (kcal·mol−1) | (kcal·mol−1)2 |
---|---|---|---|---|
[C4mim]Br | 62.90104 | −81.66787 | 33.40844 | 767.62555 |
[C6mim]Br | 63.05364 | −81.58291 | 29.07002 | 771.87480 |
[C8mim]Br | 62.33606 | −81.63857 | 26.01044 | 1225.22731 |
[C10mim]Br | 63.08433 | −81.56138 | 23.44796 | 1102.42871 |
[C12mim]Br | 63.08845 | −81.53636 | 21.38200 | 1230.40456 |
[C8Tr]Br | 59.53544 | −83.15667 | 27.53352 | 1191.78945 |
[C10Tr]Br | 59.42606 | −83.12667 | 25.01963 | 1174.60610 |
[C12Tr]Br | 59.38706 | −83.10465 | 22.85953 | 1153.49930 |
Enol | 47.42085 | −47.85527 | 15.62625 | 230.34114 |
Diketone | 47.29646 | −42.70744 | 13.48562 | 202.75778 |
Extractant | Slop | Intercept | Cs (mg·mL−1) | h (mg·mL−1min−1) | k (mL·mg−1min−1) | R2 |
---|---|---|---|---|---|---|
[C12mim]Br | 6.79958 | 6.68604 | 0.14707 | 0.14957 | 6.91505 | 0.99893 |
Ethanol | 12.60328 | 44.53841 | 0.07934 | 0.02245 | 3.56642 | 0.98852 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Qin, Y.; Li, J.; Mahmood, S.; Shi, J.; Cao, Y.; Yao, S. Strengthened Effect of Surface-Active Ionic Liquids on Curcumin Solubility and Extraction Performance of Curcuminoids. Separations 2025, 12, 29. https://doi.org/10.3390/separations12020029
Li D, Qin Y, Li J, Mahmood S, Shi J, Cao Y, Yao S. Strengthened Effect of Surface-Active Ionic Liquids on Curcumin Solubility and Extraction Performance of Curcuminoids. Separations. 2025; 12(2):29. https://doi.org/10.3390/separations12020029
Chicago/Turabian StyleLi, Dan, Yuxin Qin, Jingxing Li, Subhan Mahmood, Jianqin Shi, Yu Cao, and Shun Yao. 2025. "Strengthened Effect of Surface-Active Ionic Liquids on Curcumin Solubility and Extraction Performance of Curcuminoids" Separations 12, no. 2: 29. https://doi.org/10.3390/separations12020029
APA StyleLi, D., Qin, Y., Li, J., Mahmood, S., Shi, J., Cao, Y., & Yao, S. (2025). Strengthened Effect of Surface-Active Ionic Liquids on Curcumin Solubility and Extraction Performance of Curcuminoids. Separations, 12(2), 29. https://doi.org/10.3390/separations12020029