Previous Issue
Volume 12, January
 
 

Separations, Volume 12, Issue 2 (February 2025) – 1 article

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
13 pages, 4476 KiB  
Article
Green Preparation of ZnO Nanoparticles Using Citrus aurantium L. Extract for Dye Adsorption, Antibacterial, and Antioxidant Activities
by Xitao Yang, Liangliang Liu, Chenxiao Chen, Liping Liao and Siqi Huang
Separations 2025, 12(2), 18; https://doi.org/10.3390/separations12020018 - 21 Jan 2025
Viewed by 90
Abstract
In this study, ZnO nanoparticles (ZnO NPs) were synthesized using a green method employing fresh Citrus aurantium L. aqueous extract (CA) as a reducing agent. After preparation, the ZnO NPs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray [...] Read more.
In this study, ZnO nanoparticles (ZnO NPs) were synthesized using a green method employing fresh Citrus aurantium L. aqueous extract (CA) as a reducing agent. After preparation, the ZnO NPs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDAX), X-ray diffraction (XRD), and infrared spectroscopy (IR). The products displayed irregular particle shapes on a nanoscale. The adsorption ability of ZnO NPs was tested with amaranth red dye, and the result showed that it had a satisfied capacity for amaranth red. The adsorption data followed the pseudo-second-order model and the Langmuir model, which indicated the adsorption process was controlled by a chemical adsorption process and occurred homogeneously on the surface of absorbents. In addition, the prepared ZnO NPs also exhibited antibacterial abilities against Staphylococcus aureus and Escherichia coli bacteria; antioxidant activities were observed in 2-2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-di(3-ethylbenzthiazoline sulphonate) (ABTS) radicals scavenging assays and the ferric ion reducing antioxidant power (FRAP) assay, which were better than those of traditional ZnO NPs except in the FRAP assay. Based on these findings, the ZnO NPs fabricated with CA aqueous extract displayed promising abilities in the environmental remediation of dye wastewater. Full article
(This article belongs to the Special Issue Removal of Organic Pollutants from Aqueous Systems)
Show Figures

Figure 1

Previous Issue
Back to TopTop