Aqueous Two-Phase System–Ion Chromatography for Determination of Thiocyanate in Raw Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Equipment
2.3. Pretreatment of Raw Milk
2.4. Preparation of Solution
2.5. Preparation of ATPSs
2.6. Evaluation Index of ATPS
2.7. RSM Optimization
2.8. Sample and Result Analysis
2.9. Analysis of FTIR
2.10. Statistical Analysis
3. Results
3.1. Influencing Factors of SCN− Isolation
3.1.1. ATPS of Acetonitrile/(NH4)2SO4
3.1.2. ATPS of Acetone/(NH4)2SO4
3.2. Comparison of the ATPSs
3.3. RSM Optimization of ATPS Conditions
3.3.1. Model Fitting and Statistical Analysis
3.3.2. Variance Analysis
3.3.3. Interactive Analysis
3.3.4. Optimal Conditions and Verification
3.4. Mechanism Analysis
3.5. Interference Analysis
3.6. Method Validation
3.7. Application
3.8. Comparison
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fweja, L.W.; Lewis, M.J.; Grandison, A.S. Alternative strategies for activation of the natural lactoperoxidase system in cows’ milk: Trials in Tanzania. J. Dairy Res. 2007, 74, 381–386. [Google Scholar] [CrossRef]
- Braverman, L.E.; He, X.; Pino, S.; Cross, M.; Magnani, B.; Lamm, S.H.; Kruse, M.B.; Engel, A.; Crump, K.S.; Gibbs, J.P. The effect of perchlorate, thiocyanate, and nitrate on thyroid function in workers exposed to perchlorate long-term. J. Clin. Endocrinol. Metab. 2005, 90, 700–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pena-Pereira, F.; Lavilla, I.; Bendicho, C. Paper-based analytical device for instrumental-free detection of thiocyanate in saliva as a biomarker of tobacco smoke exposure. Talanta 2016, 147, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Deng, M.; Yang, Y.; Nie, B.; Zhao, S. 3D Microfluidic Devices in a Single Piece of Paper for the Simultaneous Determination of Nitrite and Thiocyanate. Sensors 2020, 20, 4118. [Google Scholar] [CrossRef] [PubMed]
- Meuwissen, H.; Rodey, G.; McArthur, J.; Pabst, H.; Gatti, R.; Chilgren, R.; Hong, R.; Frommel, D.; Coifman, R.; Good, R. Bone marrow transplantation: Therapeutic usefulness and complications. Am. J. Med. 1971, 51, 513–532. [Google Scholar] [CrossRef]
- Al-Saidi, H.M.; Al-Harbi, S.A.; Aljuhani, E.H.; El-Shahawi, M.S. Headspace sorptive solid phase microextraction (HS-SPME) combined with a spectrophotometry system: A simple glass devise for extraction and simultaneous determination of cyanide and thiocyanate in environmental and biological samples. Talanta 2016, 159, 137–142. [Google Scholar] [CrossRef]
- da Silva, M.; Fernandes Sako, A.V.; Micke, G.A.; Vitali, L. A rapid method for simultaneous determination of nitrate, nitrite and thiocyanate in milk by CZE-UV using quaternary ammonium chitosan as electroosmotic flow inverter. J. Food Compos. Anal. 2020, 88, 103455. [Google Scholar] [CrossRef]
- Lu, J.; Bu, J.; Ni, H.; Huang, Y. Indirect Determination of Thiocyanate Ions in Seawater by Methyl Isobutyl Ketone Extraction-Atomic Fluorescence Spectrometry. Asian J. Chem. 2014, 26, 3917–3919. [Google Scholar] [CrossRef]
- Oppermann, S.; Oppermann, C.; Bohm, M.; Kuhl, T.; Imhof, D.; Kragl, U. Quantification of amino acids and peptides in an ionic liquid based aqueous two-phase system by LC-MS analysis. AMB Express 2018, 8, 66. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Wang, L.; Zhu, M.; Wu, S.; Wang, X.; Li, D.; Liu, C.; Feng, Z.; Tian, B. Separation, structural characteristics and biological activity of lactic acid bacteria exopolysaccharides separated by aqueous two-phase system. LWT 2021, 147, 111617. [Google Scholar] [CrossRef]
- Jiang, B.; Wang, M.; Wang, X.; Wu, S.; Li, D.; Liu, C.; Feng, Z.; Li, J. Effective separation of prolyl endopeptidase from Aspergillus Niger by aqueous two phase system and its characterization and application. Int. J. Biol. Macromol. 2021, 169, 384–395. [Google Scholar] [CrossRef] [PubMed]
- Bettio, B.G.; Okumura, L.L.; Zacché, D.S.; Chagas, F.O.; Hespanhol, M.C. Square-wave Anodic Stripping Voltammetric Method for Novelty Detection of Bismuth Extracted by Aqueous Two-phase Systems. Electroanalysis 2021, 33, 1081–1087. [Google Scholar] [CrossRef]
- Jiang, B.; Wang, L.; Wang, M.; Wu, S.; Wang, X.; Li, D.; Liu, C.; Feng, Z.; Chi, Y. Direct separation and purification of alpha-lactalbumin from cow milk whey by aqueous two-phase flotation of thermo-sensitive polymer/phosphate. J. Sci. Food Agric. 2021, 101, 4173–4182. [Google Scholar] [CrossRef] [PubMed]
- Mokshina, N.Y.; Shkinev, V.M.; Shatalov, G.V.; Pakhomova, O.A.; Spivakov, B.Y. Extraction Systems Based on N-Vinylformamide for the Extraction and Separation of Cyclic Amino Acids. Dokl. Chem. 2020, 493, 113–116. [Google Scholar] [CrossRef]
- Shin, H.; Han, C.; Labuz, J.M.; Kim, J.; Kim, J.; Cho, S.; Gho, Y.S.; Takayama, S.; Park, J. High-yield isolation of extracellular vesicles using aqueous two-phase system. Sci. Rep. 2015, 5, 13103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caldeira, A.C.R.; Franca, W.F.L.d.; Converti, A.; Lima, W.J.N.; Sampaio, F.C.; Faria, J.T.d. Liquid-liquid equilibria in aqueous two-phase ethanol/salt systems at different temperatures and their application to anthocyanins extraction. Food Sci. Technol. 2019, 39, 711–717. [Google Scholar] [CrossRef] [Green Version]
- Assis, R.C.; Mageste, A.B.; de Lemos, L.R.; Orlando, R.M.; Rodrigues, G.D. Application of aqueous two-phase system for selective extraction and clean-up of emerging contaminants from aqueous matrices. Talanta 2021, 223, 121697. [Google Scholar] [CrossRef] [PubMed]
- de Barros, D.P.; Campos, S.R.; Madeira, P.P.; Azevedo, A.M.; Baptista, A.M.; Aires-Barros, M.R. Modeling the partitioning of amino acids in aqueous two phase systems. J. Chromatogr. A 2014, 1329, 52–60. [Google Scholar] [CrossRef]
- Wu, Z.-M.; Hao, C.-L.; Tong, T.; Zheng, R.-C.; Zheng, Y.-G. Purification of (S)-3-cyano-5-methylhexanoic acid from bioconversion broth using an acetone/ammonium sulfate aqueous two-phase system. Process Biochem. 2020, 89, 186–192. [Google Scholar] [CrossRef]
- Sankaran, R.; Show, P.L.; Yap, Y.J.; Lam, H.L.; Ling, T.C.; Pan, G.-T.; Yang, T.C.K. Sustainable approach in recycling of phase components of large scale aqueous two-phase flotation for lipase recovery. J. Clean. Prod. 2018, 184, 938–948. [Google Scholar] [CrossRef]
- Small, H.; Stevens, T.S.; Baumann, W.C. Novel ion exchange chromatographic method using conductimetric detection. Anal. Chem. 1975, 47, 1801–1809. [Google Scholar] [CrossRef]
- Thienpont, L.M.; Nuwenborg, J.; Chemistry, D.S.J.A. Ion chromatography as potential reference methodology for the determination of total sodium and potassium in human serum. J. Chromatogr. A 1995, 706, 443–450. [Google Scholar] [CrossRef]
- Charles, L.; Pepin, D.; Casetta, B.J.A.C. Electrospray Ion Chromatography-Tandem Mass Spectrometry of Bromate at Sub-ppb Levels in Water. Anal. Chem. 1996, 68, 2554–2558. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.; Leite, R.S.; Lancas, F.M. Rapid determination of bisphosphonates by ion chromatography with indirect UV detection. J. Chromatogr. Sci. 2007, 45, 236–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, Q.; Liu, Z.; Li, B.; Tian, B.; Zhang, N.; Liu, C.; Feng, Z.; Jiang, B. Development of Antioxidant and Stable Conjugated Linoleic Acid Pickering Emulsion with Protein Nanofibers by Microwave-Assisted Self-Assembly. Foods 2021, 10, 1892. [Google Scholar] [CrossRef]
- Kwon, Y.J.; Kaul, R.; Mattiasson, B. Extractive lactic acid fermentation in poly (ethyleneimine)-based aqueous two-phase system. Biotechnol. Bioeng. 1996, 50, 280–290. [Google Scholar] [CrossRef]
- Oliveranappa, A.; Lagomarsino, G.; Andrews, B.; Asenjo, J. Effect of electrostatic energy on partitioning of proteins in aqueous two-phase systems. J. Chromatogr. B 2004, 807, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Na, J.; Wang, L.; Li, D.; Liu, C.; Feng, Z. Reutilization of food waste: One-step extration, purification and characterization of ovalbumin from salted egg white by aqueous two-phase flotation. Foods 2019, 8, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da, S.M.; Arruda, M.A.J.T. An aqueous two-phase system as a strategy for serum albumin depletion. Talanta 2009, 77, 985–990. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, W.; Tian, B.; Li, D.; Liu, C.; Jiang, B.; Feng, Z. Preparation and Characterization of Coating Based on Protein Nanofibers and Polyphenol and Application for Salted Duck Egg Yolks. Foods 2020, 9, 449. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liang, S.; Zhang, J.; Chi, Y.; Tian, B.; Li, L.; Jiang, B.; Li, D.; Feng, Z.; Liu, C. Preparation of whey protein isolate nanofibrils by microwave heating and its application as carriers of lipophilic bioactive substances. Lwt 2020, 125, 109213. [Google Scholar] [CrossRef]
- Qiaoyan, Y.; Yanan, G.; Mei, L.; Fang, W.; Nan, Z.; Jiaqi, W. Determination of Thiocyanate in Raw Milk by Ion Chromatography. China Dairy Cattle 2020, 4, 49–54. [Google Scholar] [CrossRef]
- Ma, Y.-J.; Li, M.; Yu, H.; Li, R.-S. Fast analysis of thiocyanate by ion-pair chromatography with direct conductivity detection on a monolithic column. Chin. Chem. Lett. 2013, 24, 1067–1069. [Google Scholar] [CrossRef]
- Gavrilenko, N.A.; Volgina, T.N.; Gavrilenko, M.A. Colorimetric sensor for determination of thiocyanate in fossil and drill waters. Mendeleev Commun. 2017, 27, 529–530. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Qu, C.; Pan, D.; Chen, Z.; Chen, L. Label free colorimetric sensing of thiocyanate based on inducing aggregation of Tween 20-stabilized gold nanoparticles. Analyst 2012, 137, 2682–2686. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Mo, R.; Wang, L.; Zhou, C.; Hong, P.; Li, C. Surface Enhanced Raman Spectroscopy Detection of Sodium Thiocyanate in Milk Based on the Aggregation of Ag Nanoparticles. Sensors 2019, 19, 1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zot, P.; Gin, G.; Bachmann, L. Validation of a Thiocyanate Method on the Shimadzu UV-1800 Spectrophotometer. Am. J. Clin. Pathol. 2019, 152, S83–S84. [Google Scholar] [CrossRef]
- Easow, J.S.; Gnanaprakasam, P.; Selvaraju, T. Synergistic effect of bimetallic Ag@Cu nanorods modified electrode for enhanced electrochemical sensing of thiocyanate ions. Res. Chem. Intermed. 2015, 42, 2539–2551. [Google Scholar] [CrossRef]
Organic/(NH4)2SO4 ATPS | Organic Solvent (%) | (NH4)2SO4 (%) | pH | Temperature (°C) |
---|---|---|---|---|
acetonitrile/(NH4)2SO4 | 30 32 34 36 38 40 42 44 46 | 10 12 14 16 18 20 | 2.5 3.5 4.5 5.5 7.0 | 25 40 55 70 80 |
acetone/(NH4)2SO4 | 30 32 34 36 38 49 | 10 12 14 16 18 20 | 2 3 4 5 6 7 8 | 25 32 40 50 55 |
Variables | Coded Variable Levels | ||
---|---|---|---|
−1 a | 0 b | +1 c | |
x1 acetonitrile (w/w)% | 41 | 42 | 43 |
x2 (NH4)2SO4 (w/w)% | 15 | 16 | 17 |
x3 pH | 3.5 | 4.5 | 5.5 |
Number | A | B | C | CF | Y (%) |
---|---|---|---|---|---|
x1 Acetonitrile (w/w)% | x2 (NH4)2SO4 (w/w)% | x3 pH | |||
1 | 0 | 0 | 0 | 10.98 | 107.13 |
2 | −1 | −1 | 0 | 9.30 | 95.20 |
3 | 1 | 0 | −1 | 8.46 | 90.22 |
4 | 0 | 0 | 0 | 10.74 | 106.42 |
5 | −1 | 0 | −1 | 9.54 | 96.70 |
6 | 1 | 0 | 1 | 10.14 | 100.99 |
7 | 0 | 0 | 0 | 10.56 | 105.64 |
8 | 0 | 1 | 1 | 9.48 | 96.59 |
9 | 0 | 1 | −1 | 8.34 | 87.93 |
10 | 0 | 0 | 0 | 10.56 | 105.07 |
11 | 0 | −1 | 1 | 8.88 | 91.47 |
12 | 1 | 1 | 0 | 10.26 | 103.92 |
13 | 0 | −1 | −1 | 9.00 | 93.91 |
14 | −1 | 0 | 1 | 9.36 | 95.22 |
15 | 0 | 0 | 0 | 11.46 | 108.83 |
16 | −1 | 1 | 0 | 9.78 | 100.20 |
17 | 1 | −1 | 0 | 9.60 | 99.37 |
Source | Sum of Squares | df | Mean Square | f1-Value | p1-Value |
---|---|---|---|---|---|
Model | 11.66 | 9.00 | 0.036 | 9.82 | 0.0033 |
A-acetonitrile | 0.029 | 1.00 | 0.0008 | 0.218 | 0.6545 |
B-(NH4)2SO4 | 0.15 | 1.00 | 0.0041 | 1.105 | 0.3280 |
C-pH | 0.79 | 1.00 | 0.0221 | 6.018 | 0.0439 |
Residual | 0.92 | 7.00 | 0.004 | -- | -- |
Lack of fit | 0.35 | 3.00 | 0.003 | 0.83 | 0.5422 |
Pure error | 0.57 | 4.00 | 0.004 | -- | -- |
Cor total | 12.58 | 16.00 | -- | -- | -- |
CV1% | -- | -- | 3.71 | -- | -- |
R12 | -- | -- | 0.93 | -- | -- |
Source | Sum of Squares | df | Mean Square | f2-Value | p2-Value |
---|---|---|---|---|---|
Model | 617.82 | 9.00 | 68.65 | 14.78 | 0.0009 |
A-acetonitrile | 6.4441 | 1.00 | 6.4441 | 1.3873 | 0.2774 |
B-(NH4)2SO4 | 9.4395 | 1.00 | 9.4395 | 2.0321 | 0.1970 |
C-pH | 30.0700 | 1.00 | 30.0700 | 6.4734 | 0.0384 |
Residual | 32.52 | 7.00 | 4.65 | -- | -- |
Lack of fit | 23.97 | 3.00 | 7.99 | 3.74 | 0.1176 |
Pure error | 8.55 | 4.00 | 2.14 | -- | -- |
Cor total | 650.34 | 16.00 | -- | -- | -- |
CV2% | -- | -- | 2.17 | -- | -- |
R22 | -- | -- | 0.95 | -- | -- |
Addition of Thiocyanate (mg/kg) | Found1 b (mg/kg) | Found2 c (mg/kg) | Found3 d (mg/kg) | Recovery (%) | Average (%) | RSD (%, n = 3) |
---|---|---|---|---|---|---|
1.00 | 1.17 | 2.13 | 0.96 | 96 | 90 ± 8 | 8.8 |
1.98 | 0.81 | 81 | ||||
2.10 | 0.93 | 93 | ||||
5.00 | 6.84 | 5.67 | 113 | 114 ± 5 | 4.5 | |
7.14 | 5.97 | 119 | ||||
6.63 | 5.46 | 109 | ||||
10.00 | 11.65 11.98 12.44 | 10.48 10.81 11.27 | 104.8 108.1 112.7 | 108.5 ± 4.0 | 3.7 |
Detection Method | Sample | LOD | RSD | Literature |
---|---|---|---|---|
acetonitrile/(NH4)2SO4 ATPS-IC | Raw milk | 0.20 μg/L | 1.6% | This study |
IC (UV) | Emulsion | 0.08 mg/L | 0.40% | [32] |
Ion Pair Chromatography | Ionic liquid | 0.96 mg/L | 1.40% | [33] |
High Performance Liquid Chromatography (UV) | Emulsion | 0.06 mg/L | 1.20% | [34] |
Colorimetric sensor | Fossil and drill waters | 0.60 mg/L | 4.50% | [34] |
Gold nanoparticles colorimetry | Saliva/environmental water | 11.60 μg/L | 3.2% | [35] |
Surface Enhanced Raman Spectroscopy | Emulsion | 0.04 mg/L | <10% | [36] |
Methyl Isobutyl Ketone Extraction-Atomic Fluorescence Spectrometry | Seawater | 1.33 μg/L | 2.10% | [8] |
Spectrophotometry | Blood | 1.80 mg/L | <7% | [37] |
Electrode electrochemical method | Saliva | 0.58 μg/L | 2.20% | [38] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, B.; Zhong, S.; Yu, H.; Chen, P.; Li, B.; Li, D.; Liu, C.; Feng, Z.; Tian, B. Aqueous Two-Phase System–Ion Chromatography for Determination of Thiocyanate in Raw Milk. Separations 2021, 8, 212. https://doi.org/10.3390/separations8110212
Jiang B, Zhong S, Yu H, Chen P, Li B, Li D, Liu C, Feng Z, Tian B. Aqueous Two-Phase System–Ion Chromatography for Determination of Thiocyanate in Raw Milk. Separations. 2021; 8(11):212. https://doi.org/10.3390/separations8110212
Chicago/Turabian StyleJiang, Bin, Shaojing Zhong, Hongliang Yu, Peifeng Chen, Baoyun Li, Dongmei Li, Chunhong Liu, Zhibiao Feng, and Bo Tian. 2021. "Aqueous Two-Phase System–Ion Chromatography for Determination of Thiocyanate in Raw Milk" Separations 8, no. 11: 212. https://doi.org/10.3390/separations8110212
APA StyleJiang, B., Zhong, S., Yu, H., Chen, P., Li, B., Li, D., Liu, C., Feng, Z., & Tian, B. (2021). Aqueous Two-Phase System–Ion Chromatography for Determination of Thiocyanate in Raw Milk. Separations, 8(11), 212. https://doi.org/10.3390/separations8110212