Skip Content
You are currently on the new version of our website. Access the old version .
  • Mathematical and Computational Applications is published by MDPI from Volume 21 Issue 1 (2016). Previous articles were published by another publisher in Open Access under a CC-BY (or CC-BY-NC-ND) licence, and they are hosted by MDPI on mdpi.com as a courtesy and upon agreement with Association for Scientific Research (ASR).
  • Article
  • Open Access

1 August 2003

Cutting Tool Condition Monitoring Using Surface Texture via Neural Network

and
1
Selçuk University, Technical Sci. Vocational High School. 42031, Konya, Turkey
2
Celal Bayar University, Faculty of Engineering, Manisa, Turkey
*
Authors to whom correspondence should be addressed.

Abstract

For defining surface finish and monitoring tool wear is essential for optimisation of machining parameters and performing automated manufacturing systems. There is very close relationship between tool wear and surface finish parameters as surface roughness (Ra,) and maximum depth of profile (Rt). The machined surface reflects the rate of tool wear and the plot of surface pmvides reliable information about tool condition. In this paper an approach for estimating Ra,and Rt in milling process using the artificial neural networks is proposed. Feed-forward multi-layered neural networks, trained by the back-propagation algorithm are used. In training phase seven input parameters (v, f, d, Fx, Fy, Fz and Vb) and two output parameters are used and the network architecture is as 7x6x6x6x2. It was found that the ANN results are very close to the experimental resuks. The developed model can be used to define the quality of surface finish in tool condition monitoring systems.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.