Upconversion Luminescence from Sol-Gel-Derived Erbium- and Ytterbium-Doped BaTiO3 Film Structures and the Target Form
Abstract
:1. Introduction
2. Experimental
2.1. Film Structures on Silicon and Fused Silica
2.2. BaTiO3 Target
2.3. Structural and Optical Studies
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karvounis, A.; Timpu, F.; Vogler-Neuling, V.V.; Savo, R.; Grange, R. Barium titanate nanostructures and thin films for photonics. Adv. Opt. Mater. 2020, 8, 2001249. [Google Scholar] [CrossRef]
- Strek, W.; Hreniak, D.; Boulon, G.; Guyot, Y.; Pazik, R. Optical behavior of Eu3+-doped BaTiO3 nano-crystallites prepared by sol–gel method. Opt. Mater. 2003, 24, 15–22. [Google Scholar] [CrossRef]
- Kumari, M.; Yadav, A.; Sarun, P.M. Systematic investigation of structural, optical and dielectric properties of 0.5 mol% Eu:BaTiO3 ceramics. Mater. Today Proc. 2020, 46, 6102–6106. [Google Scholar] [CrossRef]
- Jia, Q.X.; Shi, Z.Q.; Anderson, W.A. BaTiO3 thin film capacitors deposited by r.f. magnetron sputtering. Thin Solid Films 1992, 209, 230–239. [Google Scholar] [CrossRef]
- Petraru, A.; Schubert, J.; Schmid, M.; Buchal, C. Ferroelectric BaTiO3 thin-film optical waveguide modulators. Appl. Phys. Lett. 2002, 81, 1375–1377. [Google Scholar] [CrossRef] [Green Version]
- Tang, P.; Towner, D.; Hamano, T.; Meier, A.; Wessels, B. Electrooptic modulation up to 40 GHz in a barium titanate thin film waveguide modulator. Opt. Express 2004, 12, 5962–5967. [Google Scholar] [CrossRef]
- Subasri, R.; Reddy, D.S.; Soma Raju, K.R.C.; Rao, K.S.; Kholov, P.; Gaponenko, N. Sol–gel derived Ba/SrTiO3–MgF2 solar control coating stack on glass for architectural and automobile applications. Res. Chem. Intermed. 2019, 45, 4179–4191. [Google Scholar] [CrossRef]
- Zhou, J.; Sun, C.Q.; Pita, K.; Lam, Y.L.; Zhou, Y.; Ng, S.L.; Kam, C.H.; Li, L.T.; Gui, Z.L. Thermally tuning of the photonic band gap of SiO2 colloid-crystal infilled with ferroelectric BaTiO3. Appl. Phys. Lett. 2001, 78, 661–663. [Google Scholar] [CrossRef]
- Gaponenko, N.V.; Kholov, P.A.; Sukalin, K.S.; Raichenok, T.F.; Tikhomirov, S.A.; Subasri, R.; Soma Raju, K.R.C.; Mudryi, A.V. Optical properties of multilayer BaTiO3/SiO2 film structures formed by the sol–gel method. Phys. Solid State 2019, 61, 397–401. [Google Scholar] [CrossRef]
- Lashkovskaya, E.I.; Gaponenko, N.V.; Stepikhova, M.V.; Yablonskiy, A.N.; Andreev, B.A.; Zhivulko, V.D.; Mudryi, A.V.; Martynov, I.L.; Chistyakov, A.A.; Kargin, N.I.; et al. Optical properties and upconversion luminescence of BaTiO3 xerogel structures doped with erbium and ytterbium. Gels 2022, 8, 347. [Google Scholar] [CrossRef]
- Gaponenko, N.V.; Kholov, P.A.; Raichenok, T.F.; Prislopski, S.Y. Enhanced luminescence of europium in sol-gel derived BaTiO3/SiO2 multilayer cavity structure. Opt. Mater. 2019, 96C, 109265–109269. [Google Scholar] [CrossRef]
- Ghosh, P.; Sadhu, S.; Sen, T.; Patra, A. Upconversion emission of BaTiO3:Er nanocrystals. Bull. Mater. Sci. 2008, 31, 461–465. [Google Scholar] [CrossRef]
- Chen, L.; Wei, X.; Fu, X. Effect of Er substituting sites on upconversion luminescence of Er3+-doped BaTiO3 films. Trans. Nonferr. Met. Soc. China 2012, 22, 1156–1160. [Google Scholar] [CrossRef]
- Bae, H.; Lee, E.; Lee, K.T. Power-dependent photophysical pathways of upconversion in BaTiO3:Er3+. Phys. Chem. Chem. Phys. 2021, 23, 14587–14591. [Google Scholar] [CrossRef] [PubMed]
- Kashaev, A.A.; Ushchapovskii, L.V.; Il’in, A.G. Electron-diffraction and X-ray diffraction study of rare earth metal oxides in thin films. Sov. Phys. Crystallogr. 1975, 20, 114–115. [Google Scholar]
- Parsons, J.L.; Rimai, L. Raman spectrum of BaTiO3. Solid State Commun. 1967, 5, 423–427. [Google Scholar] [CrossRef]
- Lim, C.S.; Aleksandrovsky, A.; Molokeev, M.; Oreshonkov, A.; Atuchin, V. Microwave sol–gel synthesis and upconversion photoluminescence properties of CaGd2(WO4)4:Er3+/Yb3+ phosphors with incommensurately modulated structure. J. Solid State Chem. 2015, 228, 160–166. [Google Scholar] [CrossRef]
- Liu, M.H.; Li, T.T.; Wang, X.; Liu, D.Y.; Yuan, N.; Zhang, D.L.; Tian, Y. Synthesis and Er3+ spectroscopic property of Er3+/Yb3+-codoped CaIn2O4 nano-fibers for thermometry. J. Lumin. 2019, 215, 116703. [Google Scholar] [CrossRef]
- Lim, C.S.; Aleksandrovsky, A.; Molokeev, M.; Oreshonkov, A.; Atuchin, V. Structural and spectroscopic effects of Li+ substitution for Na+ in LixNa1−xCaLa0.5Er0.05Yb0.45(MoO4)3 upconversion scheelite-type phosphors. Crystals 2023, 13, 362. [Google Scholar] [CrossRef]
- Gaponenko, N.V.; Sudnik, L.V.; Vityaz, P.A.; Luchanok, A.R.; Stepikhova, M.V.; Yablonskiy, A.N.; Lashkovskaya, E.I.; Shustsikava, K.V.; Radyush, Y.V.; Zhivulko, V.D.; et al. Upconversion luminescence of Er3+ ions from barium titanate xerogel powder and target fabricated by explosive compaction method. J. Appl. Spectrosc. 2022, 89, 238–243. [Google Scholar] [CrossRef]
- Tolstik, N.A.; Kurilchik, S.V.; Kisel, V.E.; Kuleshov, N.V.; Maltsev, V.V.; Pilipenko, O.V.; Koporulina, E.V.; Leonyuk, N.I. Efficient 1 W continuous-wave diode-pumped Er,Yb:YAl3(BO3)4 laser. Opt. Lett. 2007, 32, 3233–3235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schubert, E.F.; Vredenberg, A.M.; Hunt, N.E.J.; Wong, Y.H.; Becker, P.C.; Poate, J.M.; Jacobson, D.C.; Feldman, L.C.; Zydzik, G.J. Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities. Appl. Phys. Lett. 1992, 61, 1381–1383. [Google Scholar] [CrossRef]
- Lopez, H.A.; Fauchet, P.M. Erbium emission from porous silicon one-dimensional photonic band gap structures. Appl. Phys. Lett. 2000, 77, 3704–3706. [Google Scholar] [CrossRef]
- Bellessa, J.; Rabaste, S.; Plenet, J.C.; Dumas, J.; Mugnier, J.; Marty, O. Eu3+-doped microcavities fabricated by sol–gel process. Appl. Phys. Lett. 2001, 79, 2142–2144. [Google Scholar] [CrossRef]
- Rojas-Hernandez, R.E.; Santos, L.F.; Almeida, R.M. Photonic crystal assisted up-converter based on Tb3+/Yb3+-doped aluminosilicate glass. Opt. Mater. 2018, 83, 61–67. [Google Scholar] [CrossRef]
- Mitschke, F. Fiber-optic sensor for humidity. Opt. Lett. 1989, 14, 967–969. [Google Scholar] [CrossRef]
- Tripathy, A.; Pramanik, S.; Cho, J.; Santhosh, J.; Abu Osman, N.A. Role of morphological structure, doping, and coating of different materials in the sensing characteristics of humidity sensors. Sensors 2014, 14, 16343–16422. [Google Scholar] [CrossRef] [PubMed]
- Ryszczyńska, S.; Trejgis, K.; Marciniak, Ł.; Grzyb, T. Upconverting SrF2:Er3+ Nanoparticles for Optical Temperature Sensors. ACS Appl. Nano Mater. 2021, 4, 10438–10448. [Google Scholar] [CrossRef]
- Sotsky, A.B.; Mikheev, S.S.; Stas’kov, N.I.; Sotskaya, L.I. Spectrophotometry of Layers on Plane Parallel Substrates. Opt. Spectrosc. 2020, 128, 1155–1166. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Mishra, V.; Sagdeo, A.; Kumar, V.; Warshi, M.K.; Rai, H.M.; Saxena, S.K.; Roy, D.R.; Mishra, V.; Kumar, R.; Sagdeo, P.R. Electronic and optical properties of BaTiO3 across tetragonal to cubic phase transition: An experimental and theoretical investigation. J. Appl. Phys. 2017, 122, 065105. [Google Scholar] [CrossRef]
- Borah, M.; Mohanta, D. Effect of Gd3+ doping on structural, optical and frequency-dependent dielectric response properties of pseudo-cubic BaTiO3 nanostructures. Appl. Phys. A 2014, 115, 1057–1067. [Google Scholar] [CrossRef]
- Ahadi, K.; Mahdavi, S.M.; Nemati, A.; Tabesh, M.; Ranjbar, M. Electronic structure and morphological study of BaTiO3 film grown by pulsed-laser deposition. Mater. Lett. 2012, 72, 107–109. [Google Scholar] [CrossRef]
- Wemple, S.H. Polarization fluctuations and the optical-absorption edge in BaTiO3. Phys. Rev. B 1970, 2, 2679–2689. [Google Scholar] [CrossRef]
- Cullis, A.; Canham, L. Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature 1991, 353, 335–338. [Google Scholar] [CrossRef]
- Suzuki, K.; Kijima, K. Optical band gap of barium titanate nanoparticles prepared by RF-plasma chemical vapor deposition. Jpn. J. Appl. Phys. 2005, 44, 2081–2082. [Google Scholar] [CrossRef]
- Yan, Y.; Faber, A.J.; de Waal, H. Luminescence quenching by OH groups in highly Er-doped phosphate glasses. J. Non-Cryst. Solids 1995, 181, 283–290. [Google Scholar] [CrossRef] [Green Version]
Element | Concentration, at. % | Standard Deviation, at. % |
---|---|---|
O | 55.6 | 0.6 |
Ti | 19.0 | 0.8 |
Ba | 16.6 | 0.8 |
C | 5.4 | 0.6 |
Yb | 2.8 | 0.2 |
Er | 0.6 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaponenko, N.V.; Staskov, N.I.; Sudnik, L.V.; Vityaz, P.A.; Luchanok, A.R.; Karnilava, Y.D.; Lashkovskaya, E.I.; Stepikhova, M.V.; Yablonskiy, A.N.; Zhivulko, V.D.; et al. Upconversion Luminescence from Sol-Gel-Derived Erbium- and Ytterbium-Doped BaTiO3 Film Structures and the Target Form. Photonics 2023, 10, 359. https://doi.org/10.3390/photonics10040359
Gaponenko NV, Staskov NI, Sudnik LV, Vityaz PA, Luchanok AR, Karnilava YD, Lashkovskaya EI, Stepikhova MV, Yablonskiy AN, Zhivulko VD, et al. Upconversion Luminescence from Sol-Gel-Derived Erbium- and Ytterbium-Doped BaTiO3 Film Structures and the Target Form. Photonics. 2023; 10(4):359. https://doi.org/10.3390/photonics10040359
Chicago/Turabian StyleGaponenko, Nikolai V., Nikolai I. Staskov, Larisa V. Sudnik, Petr A. Vityaz, Alexei R. Luchanok, Yuliana D. Karnilava, Ekaterina I. Lashkovskaya, Margarita V. Stepikhova, Artem N. Yablonskiy, Vadim D. Zhivulko, and et al. 2023. "Upconversion Luminescence from Sol-Gel-Derived Erbium- and Ytterbium-Doped BaTiO3 Film Structures and the Target Form" Photonics 10, no. 4: 359. https://doi.org/10.3390/photonics10040359
APA StyleGaponenko, N. V., Staskov, N. I., Sudnik, L. V., Vityaz, P. A., Luchanok, A. R., Karnilava, Y. D., Lashkovskaya, E. I., Stepikhova, M. V., Yablonskiy, A. N., Zhivulko, V. D., Mudryi, A. V., Martynov, I. L., Chistyakov, A. A., Kargin, N. I., Labunov, V. A., Radyush, Y. V., Chubenko, E. B., & Timoshenko, V. Y. (2023). Upconversion Luminescence from Sol-Gel-Derived Erbium- and Ytterbium-Doped BaTiO3 Film Structures and the Target Form. Photonics, 10(4), 359. https://doi.org/10.3390/photonics10040359