Diffractive Deep-Neural-Network-Based Classifier for Holographic Memory
Abstract
:1. Introduction
2. Method
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coufal, H.J.; Psaltis, D.; Sincerbox, G.T. Holographic Data Storage; Springer: Berlin/Heidelberg, Germany, 2000; Volume 8. [Google Scholar]
- Katano, Y.; Muroi, T.; Kinoshita, N.; Ishii, N. Prototype holographic data storage drive with wavefront compensation for playback of 8K video data. IEEE Trans. Consum. Electron. 2017, 63, 243–250. [Google Scholar] [CrossRef]
- Barbastathis, G.; Levene, M.; Psaltis, D. Shift multiplexing with spherical reference waves. Appl. Opt. 1996, 35, 2403–2417. [Google Scholar] [CrossRef]
- Yoshida, S.; Kurata, H.; Ozawa, S.; Okubo, K.; Horiuchi, S.; Ushiyama, Z.; Yamamoto, M.; Koga, S.; Tanaka, A. High-density holographic data storage using three-dimensional shift multiplexing with spherical reference wave. Jpn. J. Appl. Phys. 2013, 52, 09LD07. [Google Scholar] [CrossRef]
- Tsunoda, Y.; Takeda, Y. High density image-storage holograms by a random phase sampling method. Appl. Opt. 1974, 13, 2046–2051. [Google Scholar] [CrossRef]
- John, R.; Joseph, J.; Singh, K. Holographic digital data storage using phase-modulated pixels. Opt. Lasers Eng. 2005, 43, 183–194. [Google Scholar] [CrossRef]
- Saita, Y.; Nomura, T. Design method of input phase mask to improve light use efficiency and reconstructed image quality for holographic memory. Appl. Opt. 2014, 53, 4136–4140. [Google Scholar] [CrossRef]
- Nobukawa, T.; Nomura, T. Linear phase encoding for holographic data storage with a single phase-only spatial light modulator. Appl. Opt. 2016, 55, 2565–2573. [Google Scholar] [CrossRef]
- Honma, S.; Funakoshi, H. A two-step exposure method with interleaved phase pages for recording of SQAM signal in holographic memory. Jpn. J. Appl. Phys. 2019, 58, SKKD05. [Google Scholar] [CrossRef]
- Hao, J.; Lin, X.; Lin, Y.; Chen, M.; Chen, R.; Situ, G.; Horimai, H.; Tan, X. Lensless complex amplitude demodulation based on deep learning in holographic data storage. Opto-Electron. Adv. 2023, 6, 220157. [Google Scholar] [CrossRef]
- Bunsen, M.; Miwa, T. Accurate decoding of data pages in an amplitude-and phase-modulated signal beam detected by the single-shot transport of intensity equation method with convolutional neural network-based classifiers. Opt. Contin. 2023, 2, 1849–1866. [Google Scholar] [CrossRef]
- Horimai, H.; Tan, X.; Li, J. Collinear holography. Appl. Opt. 2005, 44, 2575–2579. [Google Scholar] [CrossRef]
- Shibukawa, A.; Okamoto, A.; Tomita, A.; Takabayashi, M.; Sato, K. Multilayer collinear holographic memory with movable random phase mask. Jpn. J. Appl. Phys. 2011, 50, 09ME10. [Google Scholar] [CrossRef]
- Nobukawa, T.; Nomura, T. Shift multiplexing with a spherical wave in holographic data storage based on a computer-generated hologram. Appl. Opt. 2017, 56, F31–F36. [Google Scholar] [CrossRef]
- Yoneda, N.; Nobukawa, T.; Morimoto, T.; Saita, Y.; Nomura, T. Common-path angular-multiplexing holographic data storage based on computer-generated holography. Opt. Lett. 2021, 46, 2920–2923. [Google Scholar] [CrossRef]
- Okamoto, A.; Kunori, K.; Takabayashi, M.; Tomita, A.; Sato, K. Holographic diversity interferometry for optical storage. Opt. Express 2011, 19, 13436–13444. [Google Scholar] [CrossRef]
- Chen, R.; Hao, J.; Yu, C.; Zheng, Q.; Qiu, X.; Wang, S.; Chen, Y.; Wang, K.; Lin, D.; Yang, Y.; et al. Dynamic sampling iterative phase retrieval for holographic data storage. Opt. Express 2021, 29, 6726–6736. [Google Scholar] [CrossRef]
- Chen, R.; Hao, J.; Wang, J.; Lin, Y.; Wang, K.; Lin, D.; Lin, X.; Tan, X. Phase retrieval in holographic data storage by expanded spectrum combined with dynamic sampling method. Sci. Rep. 2023, 13, 18912. [Google Scholar] [CrossRef]
- Yoneda, N.; Saita, Y.; Komuro, K.; Nobukawa, T.; Nomura, T. Transport-of-intensity holographic data storage based on a computer-generated hologram. Appl. Opt. 2018, 57, 8836–8840. [Google Scholar] [CrossRef]
- Bunsen, M.; Tateyama, S. Detection method for the complex amplitude of a signal beam with intensity and phase modulation using the transport of intensity equation for holographic data storage. Opt. Express 2019, 27, 24029–24042. [Google Scholar] [CrossRef]
- Yoneda, N.; Saita, Y.; Nomura, T. Holographic data storage based on compressive sensing. In Proceedings of the International Workshop on Holograhy and Related Technologies 2019 (IWH2019), Toyama, Japan, 5–7 November 2019; pp. 6–a–8. [Google Scholar]
- Liu, J.; Zhang, L.; Wu, A.; Tanaka, Y.; Shigaki, M.; Shimura, T.; Lin, X.; Tan, X. High noise margin decoding of holographic data page based on compressed sensing. Opt. Express 2020, 28, 7139–7151. [Google Scholar] [CrossRef]
- Shimobaba, T.; Kuwata, N.; Homma, M.; Takahashi, T.; Nagahama, Y.; Sano, M.; Hasegawa, S.; Hirayama, R.; Kakue, T.; Shiraki, A.; et al. Convolutional neural network-based data page classification for holographic memory. Appl. Opt. 2017, 56, 7327–7330. [Google Scholar] [CrossRef]
- Shimobaba, T.; Endo, Y.; Hirayama, R.; Nagahama, Y.; Takahashi, T.; Nishitsuji, T.; Kakue, T.; Shiraki, A.; Takada, N.; Masuda, N.; et al. Autoencoder-based holographic image restoration. Appl. Opt. 2017, 56, F27–F30. [Google Scholar] [CrossRef]
- Katano, Y.; Muroi, T.; Kinoshita, N.; Ishii, N.; Hayashi, N. Data demodulation using convolutional neural networks for holographic data storage. Jpn. J. Appl. Phys. 2018, 57, 09SC01. [Google Scholar] [CrossRef]
- Katano, Y.; Nobukawa, T.; Muroi, T.; Kinoshita, N.; Ishii, N. CNN-based demodulation for a complex amplitude modulation code in holographic data storage. Opt. Rev. 2021, 28, 662–672. [Google Scholar] [CrossRef]
- Hao, J.; Lin, X.; Lin, Y.; Song, H.; Chen, R.; Chen, M.; Wang, K.; Tan, X. Lensless phase retrieval based on deep learning used in holographic data storage. Opt. Lett. 2021, 46, 4168–4171. [Google Scholar] [CrossRef]
- Katano, Y.; Nobukawa, T.; Muroi, T.; Kinoshita, N.; Ishii, N. Efficient decoding method for holographic data storage combining convolutional neural network and spatially coupled low-density parity-check code. ITE Trans. Media Technol. Appl. 2021, 9, 161–168. [Google Scholar] [CrossRef]
- Kurokawa, S.; Yoshida, S. Demodulation scheme for constant-weight codes using convolutional neural network in holographic data storage. Opt. Rev. 2022, 29, 375–381. [Google Scholar] [CrossRef]
- Hao, J.; Lin, X.; Fujimura, R.; Hirayama, S.; Tanaka, Y.; Tan, X.; Shimura, T. Deep learning-based super-resolution holographic data storage. In Proceedings of the Optical Manipulation and Structured Materials Conference, Online, 18 October 2023; Volume 12606, pp. 118–121. [Google Scholar]
- Chijiwa, K.; Takabayashi, M. Deep learning-based design of additional patterns in self-referential holographic data storage. Opt. Rev. 2023, 1–13. [Google Scholar]
- Nguyen, T.A.; Lee, J. A Nonlinear Convolutional Neural Network-Based Equalizer for Holographic Data Storage Systems. Appl. Sci. 2023, 13, 13029. [Google Scholar] [CrossRef]
- Lin, Y.; Hao, J.; Ke, S.; Song, H.; Liu, H.; Lin, X.; Tan, X. Objective defocusing correction of collinear amplitude-modulated holographic data storage system based on deep learning. In Proceedings of the Optical Manipulation and Structured Materials Conference, Online, 18 October 2023; Volume 12606, pp. 3–8. [Google Scholar]
- Lin, X.; Rivenson, Y.; Yardimci, N.T.; Veli, M.; Luo, Y.; Jarrahi, M.; Ozcan, A. All-optical machine learning using diffractive deep neural networks. Science 2018, 361, 1004–1008. [Google Scholar] [CrossRef]
- Hao, J.; Ren, Y.; Zhang, Y.; Wang, K.; Li, H.; Tan, X.; Lin, X. Non-interferometric phase retrieval for collinear phase-modulated holographic data storage. Opt. Rev. 2020, 27, 419–426. [Google Scholar] [CrossRef]
- Watanabe, S.; Shimobaba, T.; Kakue, T.; Ito, T. Hyperparameter tuning of optical neural network classifiers for high-order Gaussian beams. Opt. Express 2022, 30, 11079–11089. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakurai, T.; Ito, T.; Shimobaba, T. Diffractive Deep-Neural-Network-Based Classifier for Holographic Memory. Photonics 2024, 11, 145. https://doi.org/10.3390/photonics11020145
Sakurai T, Ito T, Shimobaba T. Diffractive Deep-Neural-Network-Based Classifier for Holographic Memory. Photonics. 2024; 11(2):145. https://doi.org/10.3390/photonics11020145
Chicago/Turabian StyleSakurai, Toshihiro, Tomoyoshi Ito, and Tomoyoshi Shimobaba. 2024. "Diffractive Deep-Neural-Network-Based Classifier for Holographic Memory" Photonics 11, no. 2: 145. https://doi.org/10.3390/photonics11020145
APA StyleSakurai, T., Ito, T., & Shimobaba, T. (2024). Diffractive Deep-Neural-Network-Based Classifier for Holographic Memory. Photonics, 11(2), 145. https://doi.org/10.3390/photonics11020145