A CsPbI3/PCBM Phototransistor with Low Dark Current by Suppressing Ion Migration
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Zhang, Y.; Pang, T.; Sun, K.; Hu, Z.; Zhu, Y.; Jia, R. Organolead Halide Perovskite-Based Metal-Oxide-Semiconductor Structure Photodetectors Achieving Ultrahigh Detectivity. Sol. Energy 2019, 183, 226–233. [Google Scholar] [CrossRef]
- Erodici, M.P.; Pierone, P.J.; Hartono, N.T.P.; Hidalgo, J.; Lai, B.; Buonassisi, T.; Correa-Baena, J.-P.; Sher, M.-J. Enhanced Charge Carrier Lifetime and Mobility as a Result of Rb and Cs Incorporation in Hybrid Perovskite. Appl. Phys. Lett. 2021, 118, 063901. [Google Scholar] [CrossRef]
- Kang, C.H.; Dursun, I.; Liu, G.; Sinatra, L.; Sun, X.; Kong, M.; Pan, J.; Maity, P.; Ooi, E.-N.; Ng, T.K.; et al. High-Speed Colour-Converting Photodetector with All-Inorganic CsPbBr3 Perovskite Nanocrystals for Ultraviolet Light Communication. Light Sci. Appl. 2019, 8, 94. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zhan, S.; Li, B.; Hou, B.; Zhou, H. A Low-Toxic Colloidal Quantum Dots Sensitized IGZO Phototransistor Array for Neuromorphic Vision Sensors. Adv. Opt. Mater. 2024, 2302451. [Google Scholar] [CrossRef]
- Xie, C.; You, P.; Liu, Z.; Li, L.; Yan, F. Ultrasensitive Broadband Phototransistors Based on Perovskite/Organic-Semiconductor Vertical Heterojunctions. Light Sci. Appl. 2017, 6, e17023. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Yang, L.; Huang, C.; Chen, Q.; Zeng, W.; She, X. Understanding Illumination Effect on Saturation Behavior of Thin Film Transistor. Photonics 2023, 10, 309. [Google Scholar] [CrossRef]
- Guo, J.; Wang, B.; Lu, D.; Wang, T.; Liu, T.; Wang, R.; Dong, X.; Zhou, T.; Zheng, N.; Fu, Q.; et al. Ultralong Carrier Lifetime Exceeding 20 ms in Lead Halide Perovskite Film Enable Efficient Solar Cells. Adv. Mater. 2023, 35, 2212126. [Google Scholar] [CrossRef] [PubMed]
- Wehrenfennig, C.; Eperon, G.E.; Johnston, M.B.; Snaith, H.J.; Herz, L.M. High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites. Adv. Mater. 2014, 26, 1584–1589. [Google Scholar] [CrossRef] [PubMed]
- She, X.-J.; Chen, C.; Divitini, G.; Zhao, B.; Li, Y.; Wang, J.; Orri, J.F.; Cui, L.; Xu, W.; Peng, J.; et al. A Solvent-Based Surface Cleaning and Passivation Technique for Suppressing Ionic Defects in High-Mobility Perovskite Field-Effect Transistors. Nat. Electron. 2020, 3, 694–703. [Google Scholar] [CrossRef]
- Xing, G.; Mathews, N.; Sun, S.; Lim, S.S.; Lam, Y.M.; Grätzel, M.; Mhaisalkar, S.; Sum, T.C. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science 2013, 342, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Ran, P.; Chen, X.; Chen, Z.; Su, Y.; Hui, J.; Yang, L.; Liu, T.; Tang, X.; Zhu, H.; She, X.; et al. Metal Halide CsCu2I3 Flexible Scintillator with High Photodiode Spectral Compatibility for X-ray Cone Beam Computed Tomography (CBCT) Imaging. Laser Photonics Rev. 2024, 18, 2300743. [Google Scholar] [CrossRef]
- Cho, K.; Yamada, T.; Tahara, H.; Tadano, T.; Suzuura, H.; Saruyama, M.; Sato, R.; Teranishi, T.; Kanemitsu, Y. Luminescence Fine Structures in Single Lead Halide Perovskite Nanocrystals: Size Dependence of the Exciton–Phonon Coupling. Nano Lett. 2021, 21, 7206–7212. [Google Scholar] [CrossRef] [PubMed]
- Stoumpos, C.C.; Malliakas, C.D.; Kanatzidis, M.G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorg. Chem. 2013, 52, 9019–9038. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Huang, C.; Chen, Q.; Zeng, W.; She, X.-J. A Vertical Phototransistor of Perovskite/Polymer Nano Heterojunction for Minimizing Ionic Defects. IEEE Electron Device Lett. 2023, 44, 1488–1491. [Google Scholar] [CrossRef]
- Gao, L.; Zeng, K.; Guo, J.; Ge, C.; Du, J.; Zhao, Y.; Chen, C.; Deng, H.; He, Y.; Song, H.; et al. Passivated Single-Crystalline CH3NH3PbI3 Nanowire Photodetector with High Detectivity and Polarization Sensitivity. Nano Lett. 2016, 16, 7446–7454. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Yang, B.; Mao, X.; Yang, R.; Jiang, L.; Li, Y.; Xiong, J.; Yang, Y.; He, R.; Deng, W.; et al. Perovskite CH3NH3PbI3-xBrx Single Crystals with Charge-Carrier Lifetimes Exceeding 260 Μs. ACS Appl. Mater. Interfaces 2017, 9, 14827–14832. [Google Scholar] [CrossRef] [PubMed]
- Sheng, J.; Hong, T.; Lee, H.-M.; Kim, K.; Sasase, M.; Kim, J.; Hosono, H.; Park, J.-S. Amorphous IGZO TFT with High Mobility of ∼70 cm2/(V·s) via Vertical Dimension Control Using PEALD. ACS Appl. Mater. Interfaces 2019, 11, 40300–40309. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.T.; Park, J.; Ahn, B.D.; Kim, D.M.; Choi, S.-J.; Kim, H.-S.; Kim, D.H. Study on the Photoresponse of Amorphous In–Ga–Zn–O and Zinc Oxynitride Semiconductor Devices by the Extraction of Sub-Gap-State Distribution and Device Simulation. ACS Appl. Mater. Interfaces 2015, 7, 15570–15577. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.H.; Seol, H.; Song, A.; Choi, S.; Song, Y.; Yun, P.S.; Chung, K.-B.; Bae, J.U.; Park, K.-S.; Jeong, J.K. Comparative Study on Performance of IGZO Transistors with Sputtered and Atomic Layer Deposited Channel Layer. IEEE Trans. Electron Devices 2019, 66, 1783–1788. [Google Scholar] [CrossRef]
- Lee, M.; Kim, K.-T.; Lee, M.; Park, S.K.; Kim, Y.-H. A Study on the Persistent Photoconductance and Transient Photo-Response Characteristics of Photochemically Activated and Thermally Annealed Indium-gallium-zinc-Oxide Thin-Film Transistors. Thin Solid Films 2018, 660, 749–753. [Google Scholar] [CrossRef]
- Wu, H.-C.; Chien, C.-H. Highly Transparent, High-Performance IGZO-TFTs Using the Selective Formation of IGZO Source and Drain Electrodes. IEEE Electron Device Lett. 2014, 35, 645–647. [Google Scholar]
- Yabuta, H.; Sano, M.; Abe, K.; Aiba, T.; Den, T.; Kumomi, H.; Nomura, K.; Kamiya, T.; Hosono, H. High-Mobility Thin-Film Transistor with Amorphous InGaZnO4 Channel Fabricated by Room Temperature Rf-Magnetron Sputtering. Appl. Phys. Lett. 2006, 89, 112123. [Google Scholar] [CrossRef]
- Trinh, T.T.; Nguyen, V.D.; Ryu, K.; Jang, K.; Lee, W.; Baek, S.; Raja, J.; Yi, J. Improvement in the Performance of an InGaZnO Thin-Film Transistor by Controlling Interface Trap Densities between the Insulator and Active Layer. Semicond. Sci. Technol. 2011, 26, 085012. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Huang, C.-P.; Chen, H.; Pai, S.-W.; Wang, P.-J.; He, X.-R.; Chen, J.-C. A Self-Powered Ultraviolet Photodiode Using an Amorphous InGaZnO/p-Silicon Nanowire Heterojunction. Vacuum 2020, 180, 109619. [Google Scholar] [CrossRef]
- Wei, S.; Wang, F.; Zou, X.; Wang, L.; Liu, C.; Liu, X.; Hu, W.; Fan, Z.; Ho, J.C.; Liao, L. Flexible Quasi-2D Perovskite/IGZO Phototransistors for Ultrasensitive and Broadband Photodetection. Adv. Mater. 2020, 32, 1907527. [Google Scholar] [CrossRef] [PubMed]
- Tak, Y.J.; Kim, D.J.; Kim, W.-G.; Lee, J.H.; Kim, S.J.; Kim, J.H.; Kim, H.J. Boosting Visible Light Absorption of Metal-Oxide-Based Phototransistors via Heterogeneous In–Ga–Zn–O and CH3NH3PbI3 Films. ACS Appl. Mater. Interfaces 2018, 10, 12854–12861. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Park, S.; Iyer, V.; Shaheen, B.; Choudhry, U.; Jiang, Q.; Eichman, G.; Gnabasik, R.; Kelley, K.; Lawrie, B.; et al. Mapping the Pathways of Photo-Induced Ion Migration in Organic-Inorganic Hybrid Halide Perovskites. Nat. Commun. 2023, 14, 1846. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Yan, L.; Zou, T.; Qiu, R.; Liu, C.; Dai, Q.; Chen, J.; Zhang, S.; Zhou, H. Enhanced Detectivity and Suppressed Dark Current of Perovskite–InGaZnO Phototransistor via a PCBM Interlayer. ACS Appl. Mater. Interfaces 2018, 10, 44144–44151. [Google Scholar] [CrossRef] [PubMed]
Materials | CsPbI3 | CsPbI3-PCBM | FA0.2MA0.8PbI3 | FA0.2MA0.8PbI3-PCBM |
dark current (mA) | 2.64 × 10−5 | 6.10 × 10−6 | 3.62 × 10−2 | 7.48 × 10−3 |
γ = Imax/Iinitial | 1.28 | 1.16 | 1.36 | 1.51 |
Materials | FAPbI3 | FAPbI3-PCBM | MAPbI3 | MAPbI3-PCBM |
dark current (mA) | 3.82 | 3.61 | 8.78 | 8.52 |
γ = Imax/Iinitial | 1.30 | 1.25 | 1.24 | 1.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.; Yang, Y.; Li, Y.; Jiang, S.; Yang, L.; Li, R.; She, X. A CsPbI3/PCBM Phototransistor with Low Dark Current by Suppressing Ion Migration. Photonics 2024, 11, 362. https://doi.org/10.3390/photonics11040362
Huang C, Yang Y, Li Y, Jiang S, Yang L, Li R, She X. A CsPbI3/PCBM Phototransistor with Low Dark Current by Suppressing Ion Migration. Photonics. 2024; 11(4):362. https://doi.org/10.3390/photonics11040362
Chicago/Turabian StyleHuang, Chenbo, Yichao Yang, Yujie Li, Shijie Jiang, Lurong Yang, Ruixiao Li, and Xiaojian She. 2024. "A CsPbI3/PCBM Phototransistor with Low Dark Current by Suppressing Ion Migration" Photonics 11, no. 4: 362. https://doi.org/10.3390/photonics11040362
APA StyleHuang, C., Yang, Y., Li, Y., Jiang, S., Yang, L., Li, R., & She, X. (2024). A CsPbI3/PCBM Phototransistor with Low Dark Current by Suppressing Ion Migration. Photonics, 11(4), 362. https://doi.org/10.3390/photonics11040362