Preparation, Microstructural Characterization and Photocatalysis Tests of V5+-Doped TiO2/WO3 Nanocomposites Supported on Electrospun Membranes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Microstructural Analysis
2.2. Photocatalysis Tests
3. Materials and Methods
3.1. Materials
3.2. Sample Preparation
3.3. Microstructural Characterization
3.4. Photocatalysis Tests
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Handojo, L.; Ikhsan, N.A.; Mukti, R.R.; Indarto, A. Nanotechnology for remediations of agrochemicals. In Agrochemicals Detection, Treatment and Remediation; Narasimha, M., Prasad, V., Eds.; Butterworth-Heinemann: London, UK, 2020; pp. 535–567. [Google Scholar]
- Li, X.; Yu, J.; Jiang, C. Principle and surface science of photocatalysis. Interface Sci. Technol. 2020, 31, 1–38. [Google Scholar]
- Kwaadsteniet, M.; Dobrowsky, P.; Deventer, A.V.; Khan, W.; Cloete, T. Domestic rainwater harvesting: Microbial and chemical water quality and point-of-use treatment systems. Water Air Soil Pollut. 2013, 224, 1629–1637. [Google Scholar] [CrossRef]
- Presura, E.; Robescu, L. Energy use and carbon footprint for potable water and wastewater treatment. Proc. Int. Conf. Bus. Excell. 2017, 11, 191–198. [Google Scholar] [CrossRef]
- Chen, J.; Luo, J.; Luo, Q.; Pang, Z. Wastewater Treatment; De Gruyter: Berlin, Germany; Boston, MA, USA, 2018. [Google Scholar]
- Moga, I.C.; Ardelean, I.; Donțu, O.G.; Moisescu, C.; Băran, N.; Petrescu, G.; Voicea, I. Materials and Technologies Used in Wastewater Treatment. IOP Conf. Ser. Mater. Sci. Eng. 2018, 374, 012079. [Google Scholar] [CrossRef]
- Carolin, C.F.; Kumar, P.S.; Saravanan, A.; Joshiba, G.J.; Naushad, M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng. 2017, 5, 2782–2799. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Parveen, T.; Umar, K.; Ibrahim, M.N.M. Role of Nanomaterials in the Treatment of Wastewater: A Review. Water Sci. Eng. 2020, 12, 495. [Google Scholar] [CrossRef]
- Ganachari, S.V.; Hublikar, L.; Yaradoddi, J.S.; Math, S.S. Metal oxide nanomaterials for environmental applications. In Handbook of Ecomaterials; Martínez, L., Kharissova, O., Kharisov, B., Eds.; Springer: Singapore, 2019; pp. 2357–2368. [Google Scholar]
- Yang, Y.; Niu, S.; Han, D.; Liu, T.; Wang, G.; Li, Y. Progress in Developing Metal Oxide Nanomaterials for Photoelectrochemical Water Splitting. Adv. Energy Mater. 2017, 7, 170–555. [Google Scholar] [CrossRef]
- Choi, T.; Kim, J.S.; Kim, J.H. Transparent nitrogen doped TiO2/WO3 composite films for self-cleaning glass applications with improved photodegradation activity. Adv. Powder Technol. 2016, 27, 347–353. [Google Scholar] [CrossRef]
- Baia, L.; Orbán, E.; Fodor, S.; Hampel, B.; Kedves, E.Z.; Székely, I.; Pap, Z. Preparation of TiO2/WO3 composite photocatalysts by the adjustment of the semiconductors’ surface charge. Mater. Sci. Semicond. Processing 2016, 42, 66–71. [Google Scholar] [CrossRef]
- Ibhadon, A.O.; Fitzpatrick, P. Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts 2013, 3, 189–218. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Zhao, X.; Li, C.; Song, X.; Zhang, P.; Huo, P. A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies. Chin. J. Catal. 2022, 43, 178–214. [Google Scholar] [CrossRef]
- Upadhyay, G.K.; Rajput, J.K.; Pathak, T.K.; Kumar, V.; Purohit, L.P. Synthesis of ZnO: TiO2 nanocomposites for photocatalyst application in visible light. Vacuum 2019, 160, 154–163. [Google Scholar] [CrossRef]
- Caswell, T.; Dlamini, M.W.; Miedziak, P.J.; Pattisson, S.; Davies, P.R.; Taylor, S.H.; Hutchings, G.J. Enhancement in the rate of nitrate degradation on Au-and Ag-decorated TiO2 photocatalysts. Catal. Sci. Technol. 2020, 10, 2082–2091. [Google Scholar] [CrossRef]
- Xu, W.; Shu, G.; Zhang, S.; Song, L.; Ma, K.; Yue, H. In-Situ Fabricating V2O5/TiO2-Carbon Heterojunction from Ti3C2 MXene as Highly Active Visible-Light Photocatalyst. J. Nanomater. 2022, 12, 1776. [Google Scholar] [CrossRef] [PubMed]
- Julkapli, N.M.; Bagheri, S.; Yousefi, A.T. TiO2 Hybrid Photocatalytic Systems: Impact of Adsorption and Photocatalytic Performance. Rev. Inorg. Chem. 2015, 35, 151–178. [Google Scholar]
- Kadam, A.V. Propylene glycol-assisted seed layer-free hydrothermal synthesis of nanostructured WO3 thin films for electrochromic applications. J. Appl. Electrochem. 2017, 47, 335–342. [Google Scholar] [CrossRef]
- Qi, J.J.; Gao, S.; Chen, K.; Yang, J.; Zhao, H.W.; Guo, L.; Yang, S.H. Vertically aligned, double-sided, and self-supported 3D WO3 nanocolumn bundles for low-temperature gas sensing. J. Mater. Chem. 2015, 7, 10108–10114. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Y.; Li, L.; Zuo, T. Sustainable Approach for Spent V2O5-WO3/TiO2 Catalysts Management: Selective Recovery of Heavy Metal Vanadium and Production of Value-Added WO3-TiO2 Photocatalysts. ACS Sustain. Chem. Eng. 2018, 6, 12502–12510. [Google Scholar] [CrossRef]
- Araújo, E.S.; Leão, V.N.S. TiO2:WO3 heterogeneous structures prepared by electrospinning and sintering steps: Characterization and analysis of the impedance variation to humidity. J. Adv. Ceram. 2019, 8, 238–246. [Google Scholar] [CrossRef]
- Yan, J.; Wu, G.; Guan, N.; Li, L. Nb2O5/TiO2 Heterojunctions: Synthesis Strategy and Photocatalytic Activity. Appl. Catal. 2014, 152, 280–288. [Google Scholar] [CrossRef]
- Mandal, R.K.; Kundu, S.; Sain, S.; Pradhan, S.K. Enhanced photocatalytic performance of V2O5–TiO2 nanocomposites synthesized by mechanical alloying with morphological hierarchy. New J. Chem. 2019, 43, 2804–2816. [Google Scholar] [CrossRef]
- Chen, M.; Wei, X.; Liang, J.; Li, S.; Zhang, Z.; Tang, F. Effects of CrOx species doping on V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3 at low temperature. Reac. Kinet. Mech. Cat. 2022, 135, 1767–1783. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, H.; Wan, Z.; Zhang, S.; Zeng, Y.; Guo, H.; Zhong, Q.; Li, X.; Han, J.; Rong, W. Promotional Effect of S Doping on V2O5–WO3/TiO2 Catalysts for Low-Temperature NOx Reduction with NH3. Ind. Eng. Chem. Res. 2020, 59, 15478–15488. [Google Scholar] [CrossRef]
- Hiemstra, T. Formation, stability, and solubility of metal oxide nanoparticles: Surface entropy, enthalpy, and free energy of ferrihydrite. Geochim. Cosmochim. Acta 2015, 158, 179–198. [Google Scholar] [CrossRef]
- Tanev, P.; Chibwe, M.; Pinnavaia, T. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature 1994, 368, 321–323. [Google Scholar] [CrossRef]
- Lee, D.W.; Yoo, B.R. Advanced metal oxide (supported) catalysts: Synthesis and applications. Ind. Eng. Chem. Res. 2014, 20, 3947–3959. [Google Scholar] [CrossRef]
- Fatimah, I.; Fadillah, G.; Yanti, I.; Doong, R. Clay-Supported Metal Oxide Nanoparticles in Catalytic Advanced Oxidation Processes: A Review. J. Nanomater. 2022, 12, 825. [Google Scholar] [CrossRef]
- Araújo, E.S.; da Costa, B.P.; Oliveira, R.A.P.; Libardi, J.; Faia, P.M.; de Oliveira, H.P. TiO2/ZnO hierarchical heteronanostructures: Synthesis, characterization and application as photocatalysts. J. Environ. Chem. Eng. 2016, 4, 2820–2829. [Google Scholar] [CrossRef]
- Treacy, J.P.; Hussain, H.; Torrelles, X.; Grinter, D.C.; Cabailh, G.; Bikondoa, O.; Thornton, G. Geometric structure of anatase TiO2(101). Phys. Rev. B 2017, 95, 075–416. [Google Scholar] [CrossRef]
- Leng, X.; Pereiro, J.; Strle, J.; Bollinger, A.T.; Božović, I. Epitaxial growth of high quality WO3 thin films. APL Mater. 2015, 3, 096–102. [Google Scholar] [CrossRef]
- Faia, P.M.; Libardi, J.; Louro, C.S. Effect of V2O5 doping on P- to N-conduction type transition of TiO2:WO3 composite humidity sensors. Sens. Actuators B Chem. 2016, 222, 952–964. [Google Scholar] [CrossRef]
- Chen, A.; Li, C.; Zhang, C.; Li, W.; Yang, Q. The mechanical hybrid of V2O5 microspheres/graphene as an excellent cathode for lithium-ion batteries. J. Solid. State Electrochem. 2022, 26, 729–738. [Google Scholar] [CrossRef]
- Kniec, K.; Ledwa, K.; Marciniak, L. Enhancing the Relative Sensitivity of V5+, V4+ and V3+ Based Luminescent Thermometer by the Optimization of the Stoichiometry of Y3Al5−xGaxO12 Nanocrystals. Nanomaterials 2019, 9, 1375. [Google Scholar] [CrossRef] [PubMed]
- Lima, F.M.; Martins, F.M.; Maia Júnior, P.H.F.; Almeida, A.F.L.; Freire, F.N. Nanostructured titanium dioxide average size from alternative analysis of Scherrer’s Equation. Matéria 2018, 23, 1–9. [Google Scholar] [CrossRef]
- Miranda, M.A.R.; Sasaki, J.M. The limit of application of the Scherrer equation. Acta Crystallogr. A Found. Adv. 2018, 74, 54–65. [Google Scholar] [CrossRef]
- Sahoo, S.; Arora, A.K.; Sridharan, V. Raman line shapes of optical phonons of different symmetries in anatase TiO2 nanocrystals. J. Phys. Chem. C 2009, 113, 16927–16933. [Google Scholar] [CrossRef]
- Su, C.Y.; Lin, H.C.; Lin, C.K. Fabrication and optical properties of Ti-doped W18O49 nanorods using a modified plasma-arc gas-condensation technique. J. Vac. Sci. Technol. B 2009, 27, 2170–2174. [Google Scholar] [CrossRef]
- Yang, C.C.; Li, S. Size-dependent Raman red shifts of semiconductor nanocrystals. J. Phys. Chem. B 2008, 112, 14193–14197. [Google Scholar] [CrossRef]
- Sangeetha, P.; Jayapandi, S.; Saranya, C.; Ramakrishnan, V. Phonon confinement and size effect in Raman spectra of TiO2 nanocrystal towards Photocatalysis Application. J. Aust. Ceram. Soc. 2021, 57, 533–541. [Google Scholar] [CrossRef]
- Tan, Z.; Sato, K.; Ohara, S. Synthesis of layered nanostructured TiO2 by hydrothermal method. Adv. Powder Technol. 2015, 26, 296–302. [Google Scholar] [CrossRef]
- Patrycja Makuła, P.; Pacia, M.; Macyk, W. How to correctly determine the band gap energy of modified semiconductor photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef] [PubMed]
- Illangakoon, U.E.; Nazir, T.; Williams, G.R.; Chatterton, N.P. Mebeverineloaded electrospun nanofibers: Physicochemical characterization and dissolution studies. J. Pharm. Sci. 2014, 103, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Franco, P.; De Marco, I. Eudragit: A Novel Carrier for Controlled Drug Delivery in Supercritical Antisolvent Coprecipitation. Polymers 2020, 12, 234. [Google Scholar] [CrossRef] [PubMed]
- Kishori, L.D.; Nilima, A.T.; Gide, P.S. Formulation and development of tinidazole microspheres for colon targeted drug delivery system. J. Pharm. Res. 2013, 6, 158–165. [Google Scholar]
- Revellame, E.D.; Fortela, D.L.; Sharp, W.; Hernandez, R.; Zappi, M.E. Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Clean. Eng. Technol. 2020, 1, 100032. [Google Scholar] [CrossRef]
- Luo, X.; Liu, F.; Li, X.; Gao, H.; Liu, G. WO3/TiO2 nanocomposites: Salt–ultrasonic assisted hydrothermal synthesis and enhanced photocatalytic activity. Mater. Sci. Semicond. Processing 2013, 16, 1613–1618. [Google Scholar] [CrossRef]
- Bledowski, M.; Wang, L.; Ramakrishnan, A.; Khavryuchenko, O.V.; Khavryuchenko, V.D.; Ricci, P.C.; Beranek, R. Visible-light photocurrent response of TiO2–polyheptazine hybrids: Evidence for interfacial charge-transfer absorption. Phys. Chem. Chem. Phys. 2011, 13, 21511–21519. [Google Scholar] [CrossRef]
- Lee, W.H.; Lai, C.W.; Abd Hamid, S.B. One-step formation of WO3-loaded TiO2 nanotubes composite film for high photocatalytic performance. Materials 2015, 8, 2139–2153. [Google Scholar] [CrossRef]
- Gao, L.; Gan, W.; Qiu, Z.; Zhan, X.; Qiang, T.; Li, J. Preparation of heterostructured WO3/TiO2 cat-alysts from wood fibers and its versatile photodegradation abilities. Sci. Rep. 2017, 7, 1102. [Google Scholar] [CrossRef]
- Enesca, A. The Influence of Photocatalytic Reactors Design and Operating Parameters on the Wastewater Organic Pollutants Removal—A Mini-Review. Catalysts 2021, 11, 556. [Google Scholar] [CrossRef]
- Huang, Z.F.; Zou, J.J.; Pan, L.; Wang, S.; Zhang, X.; Wang, L. Synergetic promotion on photoactivity and stability of W18O49/TiO2 hybrid. Appl. Catal. B-Environ. 2014, 147, 167–174. [Google Scholar] [CrossRef]
- Luo, X.; He, G.; Fang, Y.; Xu, Y. Nickel sulfide/graphitic carbon nitride/strontium titanate (NiS/g-C3N4/SrTiO3) composites with significantly enhanced photocatalytic hydrogen production activity. J. Colloid. Interface Sci. 2018, 518, 184–191. [Google Scholar] [CrossRef] [PubMed]
3.783 | 9.509 | 20.23 ± | |
3.803 | 9.704 | 25.31 ± | |
3.804 | 9.708 | 25.43 ± |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, M.F.G.; Nascimento, M.M.; Cardoso, P.H.N.; Oliveira, C.Y.B.; Tavares, G.F.; Araújo, E.S. Preparation, Microstructural Characterization and Photocatalysis Tests of V5+-Doped TiO2/WO3 Nanocomposites Supported on Electrospun Membranes. Inorganics 2022, 10, 143. https://doi.org/10.3390/inorganics10090143
Pereira MFG, Nascimento MM, Cardoso PHN, Oliveira CYB, Tavares GF, Araújo ES. Preparation, Microstructural Characterization and Photocatalysis Tests of V5+-Doped TiO2/WO3 Nanocomposites Supported on Electrospun Membranes. Inorganics. 2022; 10(9):143. https://doi.org/10.3390/inorganics10090143
Chicago/Turabian StylePereira, Michel F. G., Mayane M. Nascimento, Pedro Henrique N. Cardoso, Carlos Yure B. Oliveira, Ginetton F. Tavares, and Evando S. Araújo. 2022. "Preparation, Microstructural Characterization and Photocatalysis Tests of V5+-Doped TiO2/WO3 Nanocomposites Supported on Electrospun Membranes" Inorganics 10, no. 9: 143. https://doi.org/10.3390/inorganics10090143
APA StylePereira, M. F. G., Nascimento, M. M., Cardoso, P. H. N., Oliveira, C. Y. B., Tavares, G. F., & Araújo, E. S. (2022). Preparation, Microstructural Characterization and Photocatalysis Tests of V5+-Doped TiO2/WO3 Nanocomposites Supported on Electrospun Membranes. Inorganics, 10(9), 143. https://doi.org/10.3390/inorganics10090143