Evaluating the Sorption Affinity of Low Specific Activity 99Mo on Different Metal Oxide Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Solution pH
2.2. Adsorption Isotherm
2.2.1. Freundlich Isotherm
2.2.2. Langmuir Isotherm
2.3. Thermodynamic Studies
2.4. Determining the Maximum Sorption Capacity
2.5. Effect of Contact Time
3. Materials and Methods
3.1. Materials
3.2. Batch Equilibrium Studies
3.2.1. Distribution Ratio (Kd)
3.2.2. Adsorption Isotherm
3.2.3. Thermodynamic Studies
3.2.4. Effect of Contact Time
3.3. Calculations
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cutler, C.S. Supply of Mo-99: Focus on U.S. supply. Trends in Radiopharmaceuticals (ISTR-2019). In Proceedings of the International Symposium, Vienna, Austria, 28 October–1 November 2019; International Atomic Energy Agency (IAEA): Vienna, Austria, 2020. [Google Scholar]
- Munir, M.; Sriyono; Abidin; Sarmini, E.; Saptiama, I.; Kadarisman; Marlina. Development of mesoporous γ-alumina from aluminium foil waste for 99Mo/99mTc generator. J. Radioanal. Nucl. Chem. Artic. 2020, 326, 87–96. [Google Scholar] [CrossRef]
- Nawar, M.F.; Türler, A. New strategies for a sustainable 99mTc supply to meet increasing medical demands: Promising solutions for current problems. Front. Chem. 2022, 10, 926258. [Google Scholar] [CrossRef] [PubMed]
- Capogni, M.; Pietropaolo, A.; Quintieri, L.; Angelone, M.; Boschi, A.; Capone, M.; Cherubini, N.; De Felice, P.; Dodaro, A.; Duatti, A.; et al. 14 MeV Neutrons for 99Mo/99mTc Production: Experiments, Simulations and Perspectives. Molecules 2018, 23, 1872. [Google Scholar] [CrossRef] [PubMed]
- Duatti, A. Review on 99mTc radiopharmaceuticals with emphasis on new advancements. Nucl. Med. Biol. 2021, 92, 202–216. [Google Scholar] [CrossRef] [PubMed]
- Boschi, A.; Uccelli, L.; Martini, P. A Picture of Modern Tc-99m Radiopharmaceuticals: Production, Chemistry, and Applications in Molecular Imaging. Appl. Sci. 2019, 9, 2526. [Google Scholar] [CrossRef]
- Mohan, A.-M.; Beindorff, N.; Brenner, W. Nuclear Medicine Imaging Procedures in Oncology. Metastasis 2021, 2294, 297–323. [Google Scholar] [CrossRef]
- Kniess, T.; Laube, M.; Wüst, F.; Pietzsch, J. Technetium-99m based small molecule radiopharmaceuticals and radiotracers targeting inflammation and infection. Dalton Trans. 2017, 46, 14435–14451. [Google Scholar] [CrossRef] [PubMed]
- Momin, M.; Abdullah, M.; Reza, M. Comparison of relative renal functions calculated with 99m Tc-DTPA and 99m Tc-DMSA for kidney patients of wide age ranges. Phys. Med. 2018, 45, 99–105. [Google Scholar] [CrossRef]
- Fang, W.; Liu, S. New 99mTc Radiotracers for Myocardial Perfusion Imaging by SPECT. Curr. Radiopharm. 2019, 12, 171–186. [Google Scholar] [CrossRef]
- Marlina, M.; Lestari, E.; Abidin, A.; Hambali, H.; Saptiama, I.; Febriana, S.; Kadarisman, K.; Awaludin, R.; Tanase, M.; Nishikata, K.; et al. Molybdenum-99 (99Mo) Adsorption Profile of Zirconia-Based Materials for 99Mo/99mTc Generator Application. At. Indones. 2020, 46, 91–97. [Google Scholar] [CrossRef]
- Papagiannopoulou, D. Technetium-99m radiochemistry for pharmaceutical applications. J. Label. Compd. Radiopharm. 2017, 60, 502–520. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Jain, S.; Baldi, A.; Singh, R.K.; Sharma, R.K. Intricacies in the approval of radiopharmaceuticals-regulatory per-spectives and the way forward. Curr. Sci. 2019, 116, 47–55. [Google Scholar] [CrossRef]
- Lassen, A.; Stokely, E.; Vorstrup, S.; Goldman, T.; Henriksen, J.H. Neuro-SPECT: On the development and function of brain emission tomography in the Copenhagen area. Clin. Physiol. Funct. Imaging 2021, 41, 10–24. [Google Scholar] [CrossRef]
- Chen, B.; Wei, P.; Macapinlac, H.A.; Lu, Y. Comparison of 18F-Fluciclovine PET/CT and 99mTc-MDP bone scan in detection of bone metastasis in prostate cancer. Nucl. Med. Commun. 2019, 40, 940–946. [Google Scholar] [CrossRef] [PubMed]
- Hasan, S.; Prelas, M.A. Molybdenum-99 production pathways and the sorbents for 99Mo/99mTc generator systems using (n, γ) 99Mo: A review. SN Appl. Sci. 2020, 2, 1782. [Google Scholar] [CrossRef]
- Marlina; Ridwan, M.; Abdullah, I.; Yulizar, Y. Recent progress and future challenge of high-capacity adsorbent for non-fission molybdenum-99 (99Mo) in application of 99Mo/99mTc generator. AIP Conf. Proc. 2021, 2346, 030003. [Google Scholar] [CrossRef]
- Munir, M.; Herlina; Sriyono; Sarmini, E.; Abidin; Lubis, H.; Marlina. Influence of GA Siwabessy Reactor Irradiation Period on The Molybdenum-99 (99Mo) Production by Neutron Activation of Natural Molybdenum to Produce Technetium-99m (99mTc). J. Phys. Conf. Ser. 2019, 1204, 012021. [Google Scholar] [CrossRef]
- Nawar, M.F.; El-Daoushy, A.F.; Ashry, A.; Türler, A. Developing a Chromatographic 99mTc Generator Based on Mesoporous Alumina for Industrial Radiotracer Applications: A Potential New Generation Sorbent for Using Low-Specific-Activity 99Mo. Molecules 2022, 27, 5667. [Google Scholar] [CrossRef]
- Nawar, M.F.; Türler, A. Development of New Generation of 99Mo/99mTc Radioisotope Generators to Meet the Continuing Clinical Demands. In Proceedings of the 2nd International Conference on Radioanalytical and Nuclear Chemistry (RANC 2019), Budapest, Hungary, 5–10 May 2019. [Google Scholar]
- Moreno-Gil, N.; Badillo-Almaraz, V.E.; Pérez-Hernández, R.; López-Reyes, C.; Issac-Olivé, K. Comparison of the sorption behavior of 99Mo by Ti-, Si-, Ti-Si-xerogels and commercial sorbents. J. Radioanal. Nucl. Chem. Artic. 2021, 328, 679–690. [Google Scholar] [CrossRef]
- Nawar, M.F.; El-Daoushy, A.F.; Madkour, M.; Türler, A. Sorption Profile of Low Specific Activity 99Mo on Nanoceria-Based Sorbents for the Development of 99mTc Generators: Kinetics, Equilibrium, and Thermodynamic Studies. Nanomaterials 2022, 12, 1587. [Google Scholar] [CrossRef]
- Sakr, T.M.; Nawar, M.F.; Fasih, T.; El-Bayoumy, S.; Abd El-Rehim, H.A. Nano-technology contributions towards the development of high performance radioisotope generators: The future promise to meet the continuing clinical demand. Appl. Radiat. Isot. 2017, 129, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Monir, T.; El-Din, A.S.; El-Nadi, Y.; Ali, A. A novel ionic liquid-impregnated chitosan application for separation and purification of fission 99Mo from alkaline solution. Radiochim. Acta 2020, 108, 649–659. [Google Scholar] [CrossRef]
- Van Tran, T.; Nguyen, V.H.; Nong, L.X.; Nguyen, H.-T.T.; Nguyen, D.T.C.; Nguyen, H.T.T.; Nguyen, T.D. Hexagonal Fe-based MIL-88B nanocrystals with NH2 functional groups accelerating oxytetracycline capture via hydrogen bonding. Surf. Interfaces 2020, 20, 100605. [Google Scholar] [CrossRef]
- Dash, A.; Chakravarty, R.; Ram, R.; Pillai, K.; Yadav, Y.Y.; Wagh, D.; Verma, R.; Biswas, S.; Venkatesh, M. Development of a 99Mo/99mTc generator using alumina microspheres for industrial radiotracer applications. Appl. Radiat. Isot. 2012, 70, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Moret, J.; Alkemade, J.; Upcraft, T.; Oehlke, E.; Wolterbeek, H.; van Ommen, J.; Denkova, A. The application of atomic layer deposition in the production of sorbents for 99Mo/99mTc generator. Appl. Radiat. Isot. 2020, 164, 109266. [Google Scholar] [CrossRef]
- Reedijk, J.; Poeppelmeier, K. Comprehensive Inorganic Chemistry II: From Elements to Applications, 2nd ed.; Elsevier Ltd.: Singapore, 2013; pp. 1–7196. [Google Scholar] [CrossRef]
- Bernauer, U.; Bodin, L.; Chaudhry, Q.; Coenraads, P.J.; Dusinska, M.; Gaffet, E.; Panteri, E.; Rousselle, C.; Stepnik, M.; Wijnhoven, S.; et al. SCCS Opinion on Solubility of Synthetic Amorphous Silica (SAS)-SCCS/1606/19; Publications Office of the European Union: Luxembourg, 2020; Available online: https://hal.archives-ouvertes.fr/hal-03115473 (accessed on 23 September 2022).
- Ashry, A.; Bailey, E.H.; Chenery, S.R.N.; Young, S.D. Kinetic study of time-dependent fixation of U(VI) on biochar. J. Hazard Mater. 2016, 320, 55–66. [Google Scholar] [CrossRef]
- Ashry, A. Adsorption and Time Dependent Fixation of Uranium (VI) in Synthetic and Natural Matrices. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2017. [Google Scholar]
- Mahmoud, M.R.; Soliman, M.A.; Allan, K.F. Removal of Thoron and Arsenazo III from radioactive liquid waste by sorption onto cetyltrimethylammonium-functionalized polyacrylonitrile. J. Radioanal. Nucl. Chem. Artic. 2014, 300, 1195–1207. [Google Scholar] [CrossRef]
- Mahmoud, M.R.; Sharaf El-deen, G.E.; Soliman, M.A. Surfactant-impregnated activated carbon for enhanced adsorptive re-moval of Ce(IV) radionuclides from aqueous solutions. Ann. Nucl. Energy 2014, 72, 134–144. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Akbas, Y.A.; Yusan, S.; Sert, S.; Aytas, S. Sorption of Ce(III) on magnetic/olive pomace nanocomposite: Isotherm, kinetic and thermodynamic studies. Environ. Sci. Pollut. Res. 2021, 28, 56782–56794. [Google Scholar] [CrossRef]
- Alothman, Z.A.; Naushad, M.; Ali, R. Kinetic, equilibrium isotherm and thermodynamic studies of Cr(VI) adsorption onto low-cost adsorbent developed from peanut shell activated with phosphoric acid. Environ. Sci. Pollut. Res. 2013, 20, 3351–3365. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Deng, R.j.; Ren, B.Z.; Hou, B.; Hursthouse, A. Preparation of a novel Fe3O4/HCO composite adsorbent and the mechanism for the removal of antimony (III) from aqueous solution. Sci. Rep. 2019, 9, 13021. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Wang, Y.; Zheng, Y.; Zhang, H.; Liang, S.; Long, M. Equilibrium, kinetic and thermodynamic studies on the sorption of 4-hydroxyphenol on Cr-bentonite. Chem. Eng. J. 2008, 143, 117–123. [Google Scholar] [CrossRef]
- Naiya, T.K.; Bhattacharya, A.K.; Mandal, S.; Das, S.K. The sorption of lead(II) ions on rice husk ash. J. Hazard. Mater. 2009, 163, 1254–1264. [Google Scholar] [CrossRef] [PubMed]
- Hamdaoui, O.; Naffrechoux, E. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. J. Hazard Mater. 2007, 147, 381–394. [Google Scholar] [CrossRef] [PubMed]
No. | Name | Description | Particle Size, (nm) | Surface Area, (m2∙g−1) | Isoelectric Point (pHIEP) |
---|---|---|---|---|---|
CeO2-544841 | Cerium oxide-SA-544841 | Molecular formula: CeO2 Molecular weight: 172.11 Density: 7.13 g∙mL−1 at 298 K | <25 | N.A | 5 |
ZrO2-544760 | Zirconium oxide-SA-544760 | Molecular formula: ZrO2 Molecular weight: 123.22 Density: 5.89 g∙mL−1 at 298 K | <100 | ≥25 | 6.1 |
TiO2-637254 | Titanium oxide-SA-637254 | Molecular formula: TiO2 Molecular weight: 79.87 Density: 3.9 g∙mL−1 at 298 K | <25 | 45–55 | 6.6 |
SnO2-549657 | Tin oxide-SA-549657 | Molecular formula: SnO2 Molecular weight: 150.71 Density: 6.95 g∙mL−1 at 298 K | ≤100 | 20.1 | 3.8 |
SiO2-637246 | Silicon oxide-SA-637246 | Molecular formula: SiO2 Molecular weight: 60.08 Density: 2.2–2.6 g∙mL−1 at 298 K | 5–20 | 590–690 | 2.5 |
AlCeO3-637866 | Cerium aluminium oxide-SA-637866 | Molecular formula: AlCeO3 Molecular weight: 215.1 | ≤80 | N.A | 4.8 |
Al2TiO5-634143 | Aluminium titanium oxide-SA-634143 | Molecular formula: Al2TiO5 Molecular weight: 181.83 | <25 | N.A | 6.4 |
Al2TiO5-14484 | Aluminium titanium oxide-AA-14484 | Molecular formula: Al2TiO5 Molecular weight: 181.86 | 100 mesh | N.A | 6.5 |
CeO2/ZrO2-634174 | Cerium zirconium oxide-SA-634174 | Molecular formula: (CeO2)·(ZrO2) Molecular weight: 295.34 Density: 6.61 g∙mL−1 at 298 K | <50 | N.A | 6.7 |
SiO2/Al2O3-643653 | Aluminosilicate-SA-643653 | Molecular formula: (SiO2)x(Al2O3)y pore volume: 0.8–1.1 cm3∙g−1 mesostructured, pore size: 2–4 nm | 4.5–4.8 | 900–1100 | 6 |
CeO2-700290 | Cerium oxide-SA-700290 | Molecular formula: CeO2 Molecular weight: 172.11 Density: 7.13 g∙mL−1 at 298 K | <50 | 30 | 4.5 |
Isotherm Model | Parameter | CeO2-544841 | ZrO2-544760 | TiO2-637254 | Al2TiO5-634143 | CeO2/ZrO2-634174 | CeO2-700290 |
---|---|---|---|---|---|---|---|
Langmuir | nL (mg∙g−1) | 26.704 | 16.814 | 36.980 | 10.207 | 23.470 | 19.603 |
KL (L∙mg−1) | 0.407 | 0.993 | 0.311 | 0.0907 | 3.537 | 0.254 | |
R2 | 0.911 | 0.957 | 0.930 | 0.836 | 0.870 | 0.954 | |
Freundlich | KF (mg1−nLn∙g−1) | 10.514 | 9.058 | 13.064 | 6.364 | 11.506 | 8.876 |
nf | 5.010 | 8.294 | 4.079 | 10.325 | 6.346 | 6.644 | |
R2 | 0.982 | 0.968 | 0.989 | 0.898 | 0.955 | 0.966 |
Adsorbent | Temperature (K) | ΔG0 (kJ∙mol−1) | ΔH0 (kJ∙mol−1) | ΔS0 (J∙mol−1∙K−1) |
---|---|---|---|---|
CeO2-544841 | 298 | −9.8 ± 2.9 | −5.1 ± 1.5 | 16.0 ± 4.7 |
313 | −10.1 ± 3.0 | |||
323 | −10.2 ± 3.0 | |||
333 | −10.4 ± 3.1 | |||
ZrO2-544760 | 298 | −7.8 ± 1.4 | −1.4 ± 0.7 | 21.3 ± 2.2 |
313 | −8.1 ± 1.4 | |||
323 | −8.3 ± 1.4 | |||
333 | −8.5 ± 1.5 | |||
TiO2-637254 | 298 | −10.9 ± 3.1 | 4.7 ± 1.5 | 52.0 ± 5.0 |
313 | −11.7 ± 3.1 | |||
323 | −12.2 ± 3.2 | |||
333 | −12.7 ± 3.2 | |||
Al2TiO5-634143 | 298 | −7.2 ± 2.0 | −4.5 ± 1 | 9.1 ± 3.2 |
313 | −7.4 ± 2.0 | |||
323 | −7.5 ± 2.0 | |||
333 | −7.6 ± 2.0 | |||
CeO2/ZrO2-634174 | 298 | −9.0 ± 1.4 | 1.3 ± 0.7 | 34.6 ± 2.2 |
313 | −9.5 ± 1.4 | |||
323 | −9.9 ± 1.4 | |||
333 | −10.2 ± 1.4 | |||
CeO2-700290 | 298 | −8.2 ± 1.9 | −0.1 ± 0.9 | 27.2 ± 3.0 |
313 | −8.6 ± 1.9 | |||
323 | −8.9 ± 2.0 | |||
333 | −9.1 ± 2.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawar, M.F.; El-Daoushy, A.F.; Ashry, A.; Soliman, M.A.; Türler, A. Evaluating the Sorption Affinity of Low Specific Activity 99Mo on Different Metal Oxide Nanoparticles. Inorganics 2022, 10, 154. https://doi.org/10.3390/inorganics10100154
Nawar MF, El-Daoushy AF, Ashry A, Soliman MA, Türler A. Evaluating the Sorption Affinity of Low Specific Activity 99Mo on Different Metal Oxide Nanoparticles. Inorganics. 2022; 10(10):154. https://doi.org/10.3390/inorganics10100154
Chicago/Turabian StyleNawar, Mohamed F., Alaa F. El-Daoushy, Ahmed Ashry, Mohamed A. Soliman, and Andreas Türler. 2022. "Evaluating the Sorption Affinity of Low Specific Activity 99Mo on Different Metal Oxide Nanoparticles" Inorganics 10, no. 10: 154. https://doi.org/10.3390/inorganics10100154
APA StyleNawar, M. F., El-Daoushy, A. F., Ashry, A., Soliman, M. A., & Türler, A. (2022). Evaluating the Sorption Affinity of Low Specific Activity 99Mo on Different Metal Oxide Nanoparticles. Inorganics, 10(10), 154. https://doi.org/10.3390/inorganics10100154