Peroxidative Oxidation of Cyclohexane Using 3d Metal Complexes with Hydrazone-Derived Ligands as Catalysts: Exploring (Un)Conventional Conditions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalytic Studies under Conventional Conditions
2.2. Catalytic Studies in scCO2 or with MW Irradiation
2.3. Comparison with Other Copper Catalytic Systems
3. Materials and Methods
3.1. General
3.2. Catalytic Studies under Conventional Conditions
3.3. Catalytic Studies in scCO2 or under MW Irradiation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pombeiro, A.J.L.; Guedes da Silva, M.F.C. Alkane Functionalization, 1st ed.; John Wiley & Sons Ltd: Chichester, UK, 2019. [Google Scholar]
- Kirillov, A.M.; Kirillova, M.V.; Pombeiro, A.J.L. Multicopper complexes and coordination polymers for mild oxidative functionalization of alkanes. Coord. Chem. Rev. 2012, 256, 2741–2759. [Google Scholar] [CrossRef]
- Kirillova, M.V.; Kirillov, A.M.; Kuznetsov, M.L.; Silva, J.A.L.; Fraústo da Silva, J.J.R.; Pombeiro, A.J.L. Alkanes to carboxylic acids in aqueous medium: Metal-free and metal-promoted highly efficient and mild conversions. Chem. Commun. 2009, 17, 2353–2355. [Google Scholar] [CrossRef] [PubMed]
- Kirillova, M.V.; Kirillov, A.M.; Pombeiro, A.J.L. Mild, Single-Pot Hydrocarboxylation of Gaseous Alkanes to Carboxylic Acids in Metal-Free and Copper-Promoted Aqueous Systems. Chem. Eur. J. 2010, 16, 9485–9493. [Google Scholar] [CrossRef]
- Martins, N.M.R.; Pombeiro, A.J.L.; Martins, L.M.D.R.S. Green oxidation of cyclohexane catalyzed by recyclable magnetic transition-metal silica coated nanoparticles. Catal. Commun. 2019, 125, 15–20. [Google Scholar] [CrossRef]
- Da Silva, J.A.L.; Fraústo da Silva, J.J.R.; Pombeiro, A.J.L. Amavadin, a Vanadium Natural Complex: Its Role and Applications. Coord. Chem. Rev. 2013, 257, 2388–2400. [Google Scholar] [CrossRef]
- Da Silva, J.A.L.; Guedes da Silva, M.F.C.; Sutradhar, M.; Pombeiro, A.J.L. Amavadin and Related Complexes as Oxidation Catalysts. In Vanadium Catalysis, 1st ed.; Sutradhar, M., Pombeiro, A.J.L., da Silva, J.A.L., Eds.; Royal Society of Chemistry: London, UK, 2021; Chapter 2; pp. 12–34. [Google Scholar] [CrossRef]
- Kirillova, M.V.; Fernandes, T.A.; André, V.; Kirillov, A.M. Mild C–H functionalization of alkanes catalyzed by bioinspired copper(II) cores. Org. Biomol. Chem. 2019, 17, 7706–7714. [Google Scholar] [CrossRef]
- Kirillova, M.V.; Kirillov, A.M.; Pombeiro, A.J.L. Metal-Free and Copper-Promoted Single-Pot Hydrocarboxylation of Cycloalkanes to Carboxylic Acids in Aqueous Medium. Adv. Synth. Catal. 2009, 351, 2936–2948. [Google Scholar] [CrossRef]
- Nesterov, D.S.; Nesterova, O.V.; Pombeiro, A.J.L. Homo- and heterometallic polynuclear transition metal catalysts for alkane C–H bonds oxidative functionalization: Recent advances. Coord. Chem. Rev. 2018, 355, 199–222. [Google Scholar] [CrossRef]
- Gawlig, C.; Schindler, S.; Becker, S. One-Pot Conversion of Cyclohexane to Adipic Acid Using a μ4-Oxido-Copper Cluster as Catalyst Together with Hydrogen Peroxide. Eur. J. Inorg. Chem. 2020, 3, 248–252. [Google Scholar] [CrossRef]
- Shul’pin, G.B. Metal-catalyzed hydrocarbon oxygenations in solutions: The dramatic role of additives: A review. J. Mol. Catal. A Chem. 2002, 189, 39–66. [Google Scholar] [CrossRef]
- Shul’pin, G.B. Metal-catalysed hydrocarbon oxidations. Comptes Rendus Chim. 2013, 6, 163–178. [Google Scholar] [CrossRef]
- Shul’pin, G.B. Hydrocarbon Oxygenations with Peroxides Catalyzed by Metal Compounds. Mini-Rev. Org. Chem. 2009, 6, 95–104. [Google Scholar] [CrossRef]
- Kirillov, A.M.; Kirillova, M.V.; Pombeiro, A.J.L. Homogeneous Multicopper Catalysts for Oxidation and Hydrocarboxylation of Alkanes. In Advances in Inorganic Chemistry – Homogeneous Catalysis; van Eldik, R., Hubbard, C.D., Eds.; Academic Press: Cambridge, MA, USA, 2013; Volume 65, Chapter 1; pp. 1–31. [Google Scholar] [CrossRef]
- Han, X.; Poliakoff, M. Continuous reactions in supercritical carbon dioxide: Problems, solutions and possible ways forward. Chem. Soc. Rev. 2012, 41, 1428–1436. [Google Scholar] [CrossRef]
- Scott Oakes, R.; Clifford, A.A.; Rayner, C.M. The use of supercritical fluids in synthetic organic chemistry. J. Chem. Soc. Perkin Trans. 2001, 1, 917–941. [Google Scholar] [CrossRef]
- Sahle-Demessie, E.; Gonzalez, M.A.; Enriquez, J.; Zhao, Q. Selective Oxidation in Supercritical Carbon Dioxide Using Clean Oxidants. Ind. Eng. Chem. Res. 2000, 39, 4858–4864. [Google Scholar] [CrossRef]
- Sutradhar, M.; Ribeiro, A.P.C.; Guedes da Silva, M.F.C.; Palavra, A.M.F.; Pombeiro, A.J.L. Application of molybdenum complexes for the oxidation of cyclohexane in acetonitrile, ionic liquid and supercritical CO2 media, a comparative study. Mol. Catal. 2020, 482, 100356. [Google Scholar] [CrossRef]
- Dapurkar, S.E.; Kawanami, H.; Yokoyama, T.; Ikushima, Y. Catalytic Oxidation of Oleic Acid in Supercritical Carbon Dioxide Media with Molecular Oxygen. Top. Catal. 2009, 52, 707–713. [Google Scholar] [CrossRef]
- Paninho, A.B.; Ventura, A.L.R.; Branco, L.C.; Pombeiro, A.J.L.; Guedes da Silva, M.F.C.; Nunes da Ponte, M.; Mahmudov, K.T.; Nunes, A.V.M. CO2 + ionic liquid biphasic system for reaction/product separation in the synthesis of cyclic carbonates. J. Supercrit. Fluids 2018, 132, 71–75. [Google Scholar] [CrossRef]
- Tsang, S.C.; Zhu, J.; Yu, K.M.K. Selective catalytic oxidation of alkylaromatic molecules by nanosize water droplets containing Co2+ species in supercritical carbon dioxide fluid. J. Exp. Nanosci. 2006, 1, 435–456. [Google Scholar] [CrossRef]
- Fernandes, R.R.; Lasri, J.; Guedes da Silva, M.F.C.; Palavra, A.M.F.; da Silva, J.A.L.; Fraústo da Silva, J.J.R.; Pombeiro, A.J.L. Oxadiazoline and Ketoimine Palladium(II) Complexes as Highly Efficient Catalysts for Suzuki–Miyaura Cross-Coupling Reactions in Supercritical Carbon Dioxide. Adv. Synth. Catal. 2011, 353, 1153–1160. [Google Scholar] [CrossRef]
- Laskar, R.; Pal, T.; Bhattacharya, T.; Maiti, S.; Akita, M.; Maiti, D. Sustainable C–H functionalization under ballmilling, microwave-irradiation and aqueous media. Green Chem. 2022, 24, 2296. [Google Scholar] [CrossRef]
- Mahmudov, K.T.; Kopylovich, M.N.; Pombeiro, A.J.L. Coordination chemistry of arylhydrazones of methylene active compounds. Coord. Chem. Rev. 2013, 257, 1244–1281. [Google Scholar] [CrossRef]
- Mahmudov, K.T.; Kopylovich, M.N.; Guedes da Silva, M.F.C.; Figiel, P.J.; Karabach, Y.Y.; Pombeiro, A.J.L. New copper(II) dimer with 3-(2-hydroxy-4-nitrophenylhydrazo)pentane-2,4-dione and its catalytic activity in cyclohexane and benzyl alcohol oxidations. J. Mol. Catal. A Chem. 2010, 318, 44–50. [Google Scholar] [CrossRef]
- Kopylovich, M.N.; Guedes da Silva, M.F.C.; Martins, L.M.D.R.S.; Kouznetsov, M.L.; Mahmudov, K.T.; Pombeiro, A.J.L. Synthesis, structure and electrochemical behaviour of Na, MgII, MnII, ZnII, CdII and NiII complexes of 3-(2-carboxyphenylhydrazone)pentane-2,4-dione. Polyhedron 2013, 50, 374–382. [Google Scholar] [CrossRef] [Green Version]
- Gurbanov, A.V.; Maharramov, A.M.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Trinuclear and polymeric cobalt(II or II/III) complexes with an arylhydrazone of acetoacetanilide and their application in cyanosilylation of aldehydes. Inorg. Chim. Acta 2017, 466, 632–637. [Google Scholar] [CrossRef]
- Kopylovich, M.N.; Mizar, A.; Guedes da Silva, M.F.C.; Mac Leod, T.C.O.; Mahmudov, K.T.; Pombeiro, A.J.L. Template Syntheses of Copper(II) Complexes from Arylhydrazones of Malononitrile and their Catalytic Activity towards Alcohol Oxidations and the Nitroaldol Reaction: Hydrogen Bond-Assisted Ligand Liberation and E/Z Isomerisation. Chem. Eur. J. 2013, 19, 588–600. [Google Scholar] [CrossRef]
- Ribeiro, A.P.C.; Martins, L.M.D.R.S.; Alegria, E.C.B.A.; Matias, I.A.S.; Duarte, T.A.G.; Pombeiro, A.J.L. Catalytic Performance of Fe(II)-Scorpionate Complexes towards Cyclohexane Oxidation in Organic, Ionic Liquid and/or Supercritical CO2 Media: A Comparative Study. Catalysts 2017, 7, 230. [Google Scholar] [CrossRef] [Green Version]
- Reis Conceição, N.; Nobre, B.P.; Karmakar, A.; Palavra, A.M.F.; Mahmudov, K.T.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Knoevenagel condensation reaction in supercritical carbon dioxide medium using a Zn(II) coordination polymer as catalyst. Inorg. Chim. Acta 2022, 538, 120981. [Google Scholar] [CrossRef]
- Löw, S.; Becker, J.; Würtele, C.; Miska, A.; Kleeberg, C.; Behrens, U.; Walter, O.; Schindler, S. Reactions of Copper(II) Chloride in Solution: Facile Formation of Tetranuclear Copper Clusters and Other Complexes That Are Relevant in Catalytic Redox Processes. Chem. Eur. J. 2013, 19, 5342–5351. [Google Scholar] [CrossRef]
- Becker, S.; Dürr, M.; Miska, A.; Becker, J.; Gawlig, C.; Behrens, U.; Ivanović-Burmazović, I.; Schindler, S. Copper Chloride Catalysis: Do μ4-Oxido Copper Clusters Play a Significant Role? Inorg. Chem. 2016, 55, 3759–3766. [Google Scholar] [CrossRef]
- Kirillov, A.M.; Kopylovich, M.N.; Kirillova, M.V.; Karabach, E.Y.; Haukka, M.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Mild Peroxidative Oxidation of Cyclohexane Catalyzed by Mono-, Di-, Tri-, Tetra- and Polynuclear Copper Triethanolamine Complexes. Adv. Synth. Catal. 2006, 348, 159. [Google Scholar] [CrossRef]
- Fernandes, T.A.; Santos, C.I.M.; André, V.; Dias, S.S.P.; Kirillova, M.V.; Kirillov, A.M. New aqua-soluble dicopper(II) aminoalcoholate cores for mild and water-assisted catalytic oxidation of alkanes. Catal. Sci. Technol. 2016, 6, 4584–4593. [Google Scholar] [CrossRef]
- Roy, P.; Manassero, M. Tetranuclear copper(II)–Schiff-base complexes as active catalysts for oxidation of cyclohexane and toluene. Dalton Trans. 2010, 39, 1539–1545. [Google Scholar] [CrossRef] [PubMed]
- Hazra, S.; Mukherjee, S.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. A cyclic tetranuclear cuboid type copper(II) complex doubly supported by cyclohexane-1,4-dicarboxylate: Molecular and supramolecular structure and cyclohexane oxidation activity. RSC Adv. 2014, 4, 48449–48457. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Dey, S.; Roy, P. Synthesis, characterization and catalytic properties of dinuclear complexes of copper(II) and nickel(II): Oxidation of cyclohexane, toluene and cyclopentane. Inorg. Chim. Acta 2019, 490, 93–103. [Google Scholar] [CrossRef]
- Sutradhar, M.; Alegria, E.C.B.A.; Guedes da Silva, M.F.C.; Martins, L.M.D.R.S.; Pombeiro, A.J.L. Aroylhydrazone Cu(II) Complexes in keto Form: Structural Characterization and Catalytic Activity towards Cyclohexane Oxidation. Molecules 2016, 21, 425. [Google Scholar] [CrossRef] [Green Version]
- Detoni, C.; Carvalho, N.M.F.; Aranda, D.A.G.; Louis, B.; Antunes, O.A.C. Cyclohexane and toluene oxidation catalyzed by 1,10-phenantroline Cu(II) complexes. Appl. Catal. A Gen. 2009, 365, 281–286. [Google Scholar] [CrossRef]
- Bilyachenko, A.N.; Khrustalev, V.N.; Gutsul, E.I.; Zueva, A.Y.; Korlyukov, A.A.; Shul’pina, L.S.; Ikonnikov, N.S.; Dorovatovskii, P.V.; Gelman, D.; Shubina, E.S.; et al. Hybrid Silsesquioxane/Benzoate Cu7-Complexes: Synthesis, Unique Cage Structure, and Catalytic Activity. Molecules 2022, 27, 8505. [Google Scholar] [CrossRef] [PubMed]
- Hazra, S.; Rocha, B.G.M.; Guedes da Silva, M.F.C.; Karmakar, A.; Pombeiro, A.J.L. Syntheses, Structures, and Catalytic Hydrocarbon Oxidation Properties of N-Heterocycle-Sulfonated Schiff Base Copper(II) Complexes. Inorganics 2019, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Fırıncı, E. Copper(II) complexes with barbiturate derivatives: Synthesis, characterization and catalytic applications. Polyhedron 2019, 164, 132–137. [Google Scholar] [CrossRef]
- Galassi, R.; Simon, O.C.; Burini, A.; Tosi, G.; Conti, C.; Graiff, C.; Martins, N.M.R.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L.; Martins, L.M.D.R.S. Copper(I) and copper(II) metallacycles as catalysts for microwave assisted selective oxidation of cyclohexane. Polyhedron 2017, 134, 143–152. [Google Scholar] [CrossRef]
- Fernandes, R.J.R. Bioinspired Iron and Copper Catalyzed Oxidations and Reactions in Supercritical CO2 Media. Ph.D. Thesis, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal, 2011. [Google Scholar]
Entry | Promoter | t/°C | Time/h | Yield/% | TON a | TOF b/h−1 | ||
---|---|---|---|---|---|---|---|---|
CyOH | Cy’O | Total | ||||||
1 | HNO3 | r.t. | 1 | 7 | 1 | 8 | 16.0 | 16.0 |
2 | HNO3 | r.t. | 2 | 7 | 1 | 8 | 16.0 | 8.0 |
3 | HNO3 | r.t. | 4 | 11 | 1 | 12 | 24.0 | 6.0 |
4 | HNO3 | r.t. | 6 | 11 | 0.5 | 11.5 | 23.0 | 3.8 |
5 | PCA | r.t. | 4 | 2.5 | 0 | 2.5 | 5.0 | 1.3 |
6 | HNO3 | 40 | 1 | 18 | 2 | 20 | 40.0 | 40.0 |
7 | HNO3 | 40 | 2 | 17 | 2 | 19 | 38.0 | 19.0 |
8 | HNO3 | 40 | 4 | 11 | 2.5 | 13.5 | 27.0 | 6.8 |
9 | HNO3 | 40 | 6 | 15 | 3 | 18 | 36.0 | 6.0 |
10 | HNO3 | 50 | 4 | 13 | 3 | 16 | 32.0 | 8.0 |
11 | PCA | 40 | 1 | 1 | 0 | 1 | 2.0 | 2.0 |
12 | PCA | 40 | 2 | 3 | 0 | 3 | 6.0 | 3.0 |
13 | PCA | 40 | 4 | 18 | 8 | 26 | 52.0 | 13.0 |
14 | PCA | 50 | 4 | 2 | 0 | 2 | 4.0 | 1.0 |
15 | --- | 40 | 4 | 16.5 | 2 | 18.5 | 37.0 | 9.3 |
16 | --- | 50 | 4 | 10.5 | 4 | 14.5 | 29.0 | 7.3 |
17 c | HNO3 | 50 | 4 | 14 | 4 | 18 | 36.0 | 9.0 |
18 d | HNO3 | 50 | 4 | 14 | 3 | 17 | 34.0 | 8.5 |
19 e | HNO3 | 50 | 4 | 13 | 3 | 16 | 32.0 | 8.0 |
20 f | HNO3 | 50 | 4 | 6 | 6 | 12 | 24.0 | 6.0 |
21 g | HNO3 | 50 | 4 | 4 | 6 | 10 | 20.0 | 5.0 |
22 h | HNO3 | 50 | 4 | 12 | 3 | 15 | 30.0 | 7.5 |
23 | HNO3 | 50 | 6 | 13 | 2.5 | 15.5 | 31.0 | 5.2 |
24 i | HNO3 | 40 | 4 | 11 | 0 | 11 | 22.0 | 5.5 |
25 i | PCA | 40 | 4 | 1 | 0 | 1 | 2.0 | 0.5 |
26 j | HNO3 | 40 | 4 | 2 | 0 | 2 | 4.0 | 1.0 |
27 j | PCA | 40 | 4 | 0 | 0 | 0 | 0.0 | 0.0 |
Entry | Promoter | t/°C | Time/h | Yield/% | TON a | TOF b/h−1 | ||
---|---|---|---|---|---|---|---|---|
CyOH | Cy’O | Total | ||||||
1 | --- | r.t. | 4 | 0 | 0 | 0 | 0.0 | 0.0 |
2 | HNO3 | r.t. | 4 | 5 | 0 | 5 | 10.0 | 2.5 |
3 | PCA | r.t. | 4 | 0 | 0 | 0 | 0.0 | 0.0 |
4 | HNO3 | 40 | 4 | 14 | 2 | 16 | 32.0 | 8.0 |
5 | PCA | 40 | 4 | 21 | 3 | 24 | 48.0 | 12.0 |
6 | --- | 50 | 4 | 11 | 2 | 13 | 26.0 | 6.5 |
7 | HNO3 | 50 | 4 | 13 | 3 | 16 | 32.0 | 8.0 |
8 | PCA | 50 | 4 | 16 | 4 | 20 | 40.0 | 10.0 |
9 c | HNO3 | 50 | 4 | 13 | 3 | 16 | 32.0 | 8.0 |
10 d | HNO3 | 50 | 4 | 9 | 2 | 11 | 22.0 | 5.5 |
11 e | HNO3 | 50 | 4 | 6 | 3 | 9 | 18.0 | 4.5 |
12 f | HNO3 | 50 | 4 | 4 | 4 | 8 | 16.0 | 4.0 |
13 g | HNO3 | 50 | 4 | 3 | 6 | 9 | 18.0 | 4.5 |
Entry | Catalyst | Promoter | t/°C | Time/h | Yield/% | TON a | TOF b/h−1 | ||
---|---|---|---|---|---|---|---|---|---|
CyOH | Cy’O | Total | |||||||
1 | Cu(II) complex 3 | --- | r.t. | 4 | 3 | 0 | 3 | 6.0 | 1.5 |
2 | Cu(II) complex 3 | HNO3 | r.t. | 4 | 1 | 0 | 1 | 2.0 | 0.5 |
3 | Cu(II) complex 3 | PCA | r.t. | 4 | 0 | 0 | 0 | 0.0 | 0.0 |
4 | Cu(II) complex 3 | HNO3 | 40 | 4 | 2 | 0 | 2 | 4.0 | 1.0 |
5 | Cu(II) complex 3 | --- | 50 | 4 | 4 | 0 | 4 | 8.0 | 2.0 |
6 | Cu(II) complex 3 | HNO3 | 50 | 4 | 8 | 0 | 8 | 16.0 | 4.0 |
7 | Cu(II) complex 3 | PCA | 50 | 4 | 0 | 0 | 0 | 0.0 | 0.0 |
8 | Cu(II) complex 4 | --- | r.t. | 4 | 0 | 0 | 0 | 0.0 | 0.0 |
9 | Cu(II) complex 4 | HNO3 | r.t. | 4 | 0 | 0 | 0 | 0.0 | 0.0 |
10 | Cu(II) complex 4 | PCA | r.t. | 4 | 0 | 0 | 0 | 0.0 | 0.0 |
11 | Cu(II) complex 4 | HNO3 | 40 | 4 | 1 | 0 | 1 | 2.0 | 0.5 |
12 | Cu(II) complex 4 | --- | 50 | 4 | 3 | 0 | 3 | 6.0 | 1.5 |
13 | Cu(II) complex 4 | HNO3 | 50 | 4 | 4 | 0 | 4 | 8.0 | 2.0 |
14 | Cu(II) complex 4 | PCA | 50 | 4 | 1 | 0 | 1 | 2.0 | 0.5 |
15 | Co(II/III) complex 5 | HNO3 | 50 | 4 | 0 | 0 | 0 | 0.0 | 0.0 |
16 | Co(II/III) complex 5 | PCA | 50 | 4 | 0 | 0 | 0 | 0.0 | 0.0 |
17 | Zn(II) complex 6 | HNO3 | 50 | 4 | 0 | 0 | 0 | 0.0 | 0.0 |
18 | Zn(II) complex 6 | PCA | 50 | 4 | 0 | 0 | 0 | 0.0 | 0.0 |
Entry | Catalyst | Promoter | t/°C | Time/h | Yield/% | TON a | TOF b/h−1 | ||
---|---|---|---|---|---|---|---|---|---|
CyOH | Cy’O | Total | |||||||
1 | Cu(II) complex 1 | --- | 40 | 4 | 1 | 0 | 1 | 2.0 | 0.5 |
2 | Cu(II) complex 1 | HNO3 | 40 | 2 | 1 | 0 | 1 | 2.0 | 1.0 |
3 | Cu(II) complex 1 | HNO3 | 40 | 4 | 7 | 0 | 7 | 14.0 | 3.5 |
4 | Cu(II) complex 1 | HNO3 | 50 | 2 | 5 | 0 | 5 | 10.0 | 5.0 |
5 | Cu(II) complex 1 | HNO3 | 50 | 4 | 10.5 | 1 | 11.5 | 23.0 | 5.8 |
6 | Cu(II) complex 1 | HNO3 | 50 | 6 | 16 | 1 | 17 | 34.0 | 5.7 |
7 c | Cu(II) complex 1 | HNO3 | 50 | 6 | 6 | 1 | 7 | 14.0 | 2.3 |
8 | Cu(II) complex 2 | HNO3 | 50 | 4 | 17 | 4 | 21 | 42.0 | 10.5 |
9 | Cu(II) complex 2 | PCA | 50 | 4 | 0 | 0 | 0 | 0.0 | 0.0 |
Entry | Catalyst | Promoter | t/°C | Time/h | Yield/% | TON a | TOF b/h−1 | ||
---|---|---|---|---|---|---|---|---|---|
CyOH | Cy’O | Total | |||||||
1 | Cu(II) complex 1 | HNO3 | 50 | 0.5 | 4 | 0 | 4 | 8.0 | 16.0 |
2 | Cu(II) complex 1 | HNO3 | 70 | 0.5 | 12 | 2 | 14 | 28.0 | 56.0 |
3 | Cu(II) complex 1 | HNO3 | 70 | 1 | 7.5 | 1.5 | 9 | 18.0 | 18.0 |
4 | Cu(II) complex 1 | HNO3 | 80 | 0.5 | 6 | 2 | 8 | 16.0 | 32.0 |
5 | Cu(II) complex 2 | HNO3 | 50 | 0.5 | 6 | 0 | 6 | 12.0 | 24.0 |
6 | Cu(II) complex 2 | HNO3 | 70 | 0.5 | 10 | 3 | 13 | 26.0 | 52.0 |
7 | Cu(II) complex 2 | HNO3 | 70 | 1 | 6 | 2 | 8 | 16.0 | 16.0 |
8 | Cu(II) complex 2 | HNO3 | 80 | 0.5 | 7 | 3 | 10 | 20.0 | 40.0 |
Entry | Catalyst | Promoter | t/°C | Time/h | Total Yield of Oxygenates/% | Ref. |
---|---|---|---|---|---|---|
1 | [Cu2(H2O)2(μ-L)2] | HNO3 | 25 | 6 | 27 | [26] |
2 | [Cu4(O)(tea)4(BOH)4][BF4]2 | HNO3 | r.t. | 6 | 39 | [34] |
3 | [Cu3(H2tea)2(poba)2(H2O)]·4H2O | HNO3 | r.t. | 6 | 37 | [34] |
4 | [{Cu(Hdea)(H2dea)}2(H2pma)]·3H2O | TFA | 50 | 5 | 34 | [10,35] |
5 | [Cu4(O)(L3)2(CH3COO)4] | HNO3 | r.t. | 6 | 36 | [36] |
6 | [(CuL7)2(cdc)]2·2H2O | --- | 50 | 4 | 29.4 | [10,37] |
TFA | 50 | 4 | 30.6 | [10,37] | ||
7 | [Cu2(L1)2(μ2-Cl)Cl]·2.5H2O | HNO3 | 35 | 8 | up to 30.4 | [38] |
8 | [Cu(H2L)(NO3)(H2O)] | --- | r.t. | 24 | 30 | [1,39] |
9 | [CuCl(phen)2]Cl·5H2O | HNO3 | 70 | 24 | 67 | [1,40] |
10 | [(Ph5Si5O10)2][PhCOO]4Cu7(EtOH)6 | HNO3 | 50 | 2 | 32 | [41] |
11 | [CuCl2{κ3-HOCH2C(pz)3}] | HNO3 | r.t. | 6 | 23 | [1] |
12 | [Cu(L)(bipy)]·MeOH | HNO3 | 60 | 2 | 20 | [42] |
13 | Cu(II)-5-formylbarbiturate derivatives | TFA or HNO3 | 50 | 6 | up to 22.1 | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis Conceição, N.; Nobre, B.P.; Gurbanov, A.V.; Palavra, A.M.F.; Guedes da Silva, M.F.C.; Mahmudov, K.T.; Pombeiro, A.J.L. Peroxidative Oxidation of Cyclohexane Using 3d Metal Complexes with Hydrazone-Derived Ligands as Catalysts: Exploring (Un)Conventional Conditions. Inorganics 2023, 11, 62. https://doi.org/10.3390/inorganics11020062
Reis Conceição N, Nobre BP, Gurbanov AV, Palavra AMF, Guedes da Silva MFC, Mahmudov KT, Pombeiro AJL. Peroxidative Oxidation of Cyclohexane Using 3d Metal Complexes with Hydrazone-Derived Ligands as Catalysts: Exploring (Un)Conventional Conditions. Inorganics. 2023; 11(2):62. https://doi.org/10.3390/inorganics11020062
Chicago/Turabian StyleReis Conceição, Nuno, Beatriz P. Nobre, Atash V. Gurbanov, António M. F. Palavra, M. Fátima C. Guedes da Silva, Kamran T. Mahmudov, and Armando J. L. Pombeiro. 2023. "Peroxidative Oxidation of Cyclohexane Using 3d Metal Complexes with Hydrazone-Derived Ligands as Catalysts: Exploring (Un)Conventional Conditions" Inorganics 11, no. 2: 62. https://doi.org/10.3390/inorganics11020062
APA StyleReis Conceição, N., Nobre, B. P., Gurbanov, A. V., Palavra, A. M. F., Guedes da Silva, M. F. C., Mahmudov, K. T., & Pombeiro, A. J. L. (2023). Peroxidative Oxidation of Cyclohexane Using 3d Metal Complexes with Hydrazone-Derived Ligands as Catalysts: Exploring (Un)Conventional Conditions. Inorganics, 11(2), 62. https://doi.org/10.3390/inorganics11020062