TiO2-Embedded Biocompatible Hydrogel Production Assisted with Alginate and Polyoxometalate Polyelectrolytes for Photocatalytic Application
Abstract
:1. Introduction
2. Results and Discussion
2.1. Swelling Behavior and Thermodynamic Study of the Alg-Ca@PAAm@TiO2 Beads
2.2. The Photocatalytic Properties of the Alg-Ca@PAAm@TiO2 Hydrogel Beads
2.3. Swelling Behavior of the PAAm@Mo132@TiO2 Hydrogel
2.4. Photostability of PAAm@Mo132@TiO2
3. Materials and Methods
3.1. TiO2 Characterization
3.2. Hydrogel Alg-Ca@PAAm@TiO2 Synthesis and Characterization
3.3. Swelling Behavior of Alg-Ca@PAAm@TiO2 Beads
3.4. Photocatalytic Activity
3.5. Photostability of the Hydrogel Beads Alg-Ca@PAAm@TiO2
3.6. Thermodynamic Study of the “Alginate-TiO2” System
3.7. Hydrogel PAAm@TiO2@Mo132 Synthesis
3.8. Swelling Behavior of PAAm@Mo132 and PAAm@TiO2@Mo132
3.9. Photostability of PAAm@Mo132 and PAAm@TiO2@Mo132
3.10. UV-Vis Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mondal, S.; Das, S.; Nandi, A.K. A Review on Recent Advances in Polymer and Peptide Hydrogels. Soft Matter 2020, 16, 1404–1454. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Bae, J.; Fang, Z.; Li, P.; Zhao, F.; Yu, G. Hydrogels and Hydrogel-Derived Materials for Energy and Water Sustainability. Chem. Rev. 2020, 120, 7642–7707. [Google Scholar] [CrossRef] [PubMed]
- Bashir, S.; Hina, M.; Iqbal, J.; Rajpar, A.H.; Mujtaba, M.A.; Alghamdi, N.A.; Wageh, S.; Ramesh, K.; Ramesh, S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers 2020, 12, 2702. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.Y.; Zhao, X.; Illeperuma, W.R.K.; Chaudhuri, O.; Oh, K.H.; Mooney, D.J.; Vlassak, J.J.; Suo, Z. Highly Stretchable and Tough Hydrogels. Nature 2012, 489, 133–136. [Google Scholar] [CrossRef] [Green Version]
- Lei, W.; Suzuki, N.; Terashima, C.; Fujishima, A. Hydrogel Photocatalysts for Efficient Energy Conversion and Environmental Treatment. Front. Energy 2021, 15, 577–595. [Google Scholar] [CrossRef]
- Guidetti, G.; Giuri, D.; Zanna, N.; Calvaresi, M.; Montalti, M.; Tomasini, C. Biocompatible and Light-Penetrating Hydrogels for Water Decontamination. ACS Omega 2018, 3, 8122–8128. [Google Scholar] [CrossRef] [PubMed]
- Fagan, R.; McCormack, D.E.; Dionysiou, D.D.; Pillai, S.C. A Review of Solar and Visible Light Active TiO2 Photocatalysis for Treating Bacteria, Cyanotoxins and Contaminants of Emerging Concern. Mater. Sci. Semicond. Process. 2016, 42, 2–14. [Google Scholar] [CrossRef] [Green Version]
- Kubacka, A.; Fernández-García, M.; Colón, G. Advanced Nanoarchitectures for Solar Photocatalytic Applications. Chem. Rev. 2012, 112, 1555–1614. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Danish, M.S.S.; Estrella, L.L.; Alemaida, I.M.A.; Lisin, A.; Moiseev, N.; Ahmadi, M.; Nazari, M.; Wali, M.; Zaheb, H.; Senjyu, T. Photocatalytic Applications of Metal Oxides for Sustainable Environmental Remediation. Metals 2021, 11, 80. [Google Scholar] [CrossRef]
- You, X.; Huang, H.; Zhang, R.; Yang, Z.; Xu, M.; Wang, X.; Yao, Y. Immobilization of Tio2 Nanoparticles in Hydrogels Based on Poly(Methyl Acrylate) and Succinamide Acid for the Photodegradation of Organic Dyes. Catalysts 2021, 11, 613. [Google Scholar] [CrossRef]
- Dat Mai, N.X.; Park, D.; Yoon, J.; Hur, J. Comparative Study of Hydrogel-Based Recyclable Photocatalysts. J. Nanosci. Nanotechnol. 2018, 18, 1361–1364. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Ayati, A.; Davoodi, R.; Tanhaei, B.; Karimi, F.; Malekmohammadi, S.; Orooji, Y.; Fu, L.; Sillanpää, M. Recent Advances in Using of Chitosan-Based Adsorbents for Removal of Pharmaceutical Contaminants: A Review. J. Clean. Prod. 2021, 291, 125880. [Google Scholar] [CrossRef]
- Puscaselu, R.G.; Lobiuc, A.; Dimian, M.; Covasa, M. Alginate: From Food Industry to Biomedical Applications and Management of Metabolic Disorders. Polymers 2020, 12, 2417. [Google Scholar] [CrossRef] [PubMed]
- Darnell, M.C.; Sun, J.Y.; Mehta, M.; Johnson, C.; Arany, P.R.; Suo, Z.; Mooney, D.J. Performance and Biocompatibility of Extremely Tough Alginate/Polyacrylamide Hydrogels. Biomaterials 2013, 34, 8042–8048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, S.; Zhang, X.; Zhao, K.; Fu, Y.; Li, Z.; Lin, B.; Wei, J. Preparation, Characterization, and Photocatalytic Degradation Properties of Polyacrylamide/Calcium Alginate/TiO2 Composite Film. Polym. Compos. 2016, 16, 101–113. [Google Scholar] [CrossRef]
- Park, T.G.; Hoffman, A.S. Preparation of Large, Uniform Size Temperature-sensitive Hydrogel Beads. J. Polym. Sci. Part A Polym. Chem. 1992, 30, 505–507. [Google Scholar] [CrossRef]
- Müller, A.; Krickemeyer, E.; Bögge, H.; Schmidtmann, M.; Peters, F. Organizational Forms of Matter: An Inorganic Super Fullerene and Keplerate Based on Molybdenum Oxide. Angew. Chemie Int. Ed. 1999, 37, 3359–3363. [Google Scholar] [CrossRef]
- Grzhegorzhevskii, K.V.; Shevtsev, N.S.; Abushaeva, A.R.; Chezganov, D.S.; Ostroushko, A.A. Prerequisites and Prospects for the Development of Novel Systems Based on the Keplerate Type Polyoxomolybdates for the Controlled Release of Drugs and Fluorescent Molecules. Russ. Chem. Bull. 2020, 69, 804–814. [Google Scholar] [CrossRef]
- Ostroushko, A.A.; Gagarin, I.D.; Grzhegorzhevskii, K.V.; Gette, I.F.; Vlasov, D.A.; Ermoshin, A.A.; Antosyuk, O.N.; Shikhova, S.V.; Danilova, I.G. The Physicochemical Properties and Influence on Living Organisms of Nanocluster Polyoxomolybdates as Prospective Bioinspired Substances (Based on Materials from the Plenary Lecture). J. Mol. Liq. 2020, 301, 110910. [Google Scholar] [CrossRef]
- Fazylova, V.; Shevtsev, N.; Mikhailov, S.; Kim, G.; Ostroushko, A.; Grzhegorzhevskii, K. Fundamental Aspects of Xanthene Dye Aggregation on the Surfaces of Nanocluster Polyoxometalates: H- to J-Aggregate Switching. Chem. A Eur. J. 2020, 26, 5685–5693. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yuan, Z.; Huang, L.; Kang, J.; Jiang, R.; Zhong, H. Titanium Dioxide Photocatalytic Polymerization of Acrylamide for Gel Electrophoresis (TIPPAGE) of Proteins and Structural Identification by Mass Spectrometry. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ostroushko, A.A.; Vazhenin, V.A.; Tonkushina, M.O. Features of Thermophotoinitiated Degradation of Nanocluster Polyoxomolybdate Mo132 and Its Polymer-Containing Composites. Russ. J. Inorg. Chem. 2017, 62, 483–488. [Google Scholar] [CrossRef]
- Mansurov, R.R.; Pavlova, I.A.; Safronov, A.P. Adhesion of Polymer to TiO 2 Particles Decreases Photocatalytic Activity of Polyelectrolyte Hydrogel Photocatalyst. Chem. Sel. 2022, 7, e202202775. [Google Scholar] [CrossRef]
- Shankar, A.; Safronov, A.P.; Mikhnevich, E.A.; Beketov, I.V.; Kurlyandskaya, G.V. Ferrogels Based on Entrapped Metallic Iron Nanoparticles in a Polyacrylamide Network: Extended Derjaguin–Landau–Verwey–Overbeek Consideration, Interfacial Interactions and Magnetodeformation. Soft Matter 2017, 13, 3359–3372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansurov, R.R.; Zverev, V.S.; Safronov, A.P. Dynamics of Diffusion-Limited Photocatalytic Degradation of Dye by Polymeric Hydrogel with Embedded TiO2 Nanoparticles. J. Catal. 2021, 406, 9–18. [Google Scholar] [CrossRef]
- Serrano-Aroca, Á.; Ruiz-Pividal, J.F.; Llorens-Gámez, M. Enhancement of Water Diffusion and Compression Performance of Crosslinked Alginate Films with a Minuscule Amount of Graphene Oxide. Sci. Rep. 2017, 7, 11684. [Google Scholar] [CrossRef]
- Ong, S.A.; Min, O.M.; Ho, L.N.; Wong, Y.S. Comparative Study on Photocatalytic Degradation of Mono Azo Dye Acid Orange 7 and Methyl Orange under Solar Light Irradiation. Water. Air. Soil Pollut. 2012, 223, 5483–5493. [Google Scholar] [CrossRef]
- Okuda, M.; Tsuruta, T.; Katayama, K. Lifetime and Diffusion Coefficient of Active Oxygen Species Generated in TiO2 Sol Solutions. Phys. Chem. Chem. Phys. 2009, 11, 2287–2292. [Google Scholar] [CrossRef]
- Ding, L.; Li, M.; Zhao, Y.; Zhang, H.; Shang, J.; Zhong, J.; Sheng, H.; Chen, C.; Zhao, J. The Vital Role of Surface Brönsted Acid/Base Sites for the Photocatalytic Formation of Free ·OH Radicals. Appl. Catal. B Environ. 2020, 266, 118634. [Google Scholar] [CrossRef]
- Nakamura, R.; Okamura, T.; Ohashi, N.; Imanishi, A.; Nakato, Y. Molecular Mechanisms of Photoinduced Oxygen Evolution, PL Emission, and Surface Roughening at Atomically Smooth (110) and (100) n-TiO2 (Rutile) Surfaces in Aqueous Acidic Solutions. J. Am. Chem. Soc. 2005, 127, 12975–12983. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, P.; Chen, Z.; Song, W.; Ji, H.; Ma, W.; Chen, C.; Zhao, J. Hydrogen-Bond Bridged Water Oxidation on {001} Surfaces of Anatase TiO2. J. Phys. Chem. C 2017, 121, 2251–2257. [Google Scholar] [CrossRef]
- Quesada-Pérez, M.; Maroto-Centeno, J.A.; Forcada, J.; Hidalgo-Alvarez, R. Gel Swelling Theories: The Classical Formalism and Recent Approaches. Soft Matter 2011, 7, 10536–10547. [Google Scholar] [CrossRef]
- Kurlyandskaya, G.V.; Svalov, A.V.; Burgoa Beitia, A.; Safronov, A.P.; Blyakhman, F.A.; Fernández, E.; Beketov, I.V. Magnetoimpedance Biosensor Prototype for Ferrogel Detection. J. Magn. Magn. Mater. 2017, 441, 650–655. [Google Scholar] [CrossRef]
- Ostroushko, A.A.; Tonkushina, M.O. Destruction of Porous Spherical Mo132 Nanocluster Polyoxometallate of Keplerate Type in Aqueous Solutions. Russ. J. Phys. Chem. A 2016, 90, 436–442. [Google Scholar] [CrossRef]
- Tereshchenko, K.A.; Shiyan, D.A.; Grzhegorzhevskii, K.V.; Lyulinskaya, Y.L.; Okhotnikov, G.O.; Ulitin, N.V.; Khursan, S.L.; Abramov, P.A. Kinetics and Mechanism of a Self- Oscilation Reaction of Keplerate-Type Polyoxomolibdate Degradation in an Aqueous Solution. J. Struct. Chem. 2022, 63, 2004–2019. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Y.; Zhao, Y.; Chen, W.; Wang, J.; He, L.; Su, Z.; Wang, E.; Kang, Z. Keplerate-Type Polyoxometalate/Semiconductor Composite Electrodes with Light-Enhanced Conductivity towards Highly Efficient Photoelectronic Devices. J. Mater. Chem. A 2016, 4, 14025–14032. [Google Scholar] [CrossRef]
- Turo, M.J.; Chen, L.; Moore, C.E.; Schimpf, A.M. Co2+-Linked [NaP5W30O110]14-: A Redox-Active Metal Oxide Framework with High Electron Density. J. Am. Chem. Soc. 2019, 141, 4553–4557. [Google Scholar] [CrossRef]
- Evangelisti, L.; Melandri, S.; Negri, F.; Coreno, M.; Prince, K.C.; Maris, A. UPS, XPS, NEXAFS and Computational Investigation of Acrylamide Monomer. Photochem 2022, 2, 463–478. [Google Scholar] [CrossRef]
- Martsinovich, N.; Jones, D.R.; Troisi, A. Electronic Structure of TiO2 Surfaces and Effect of Molecular Adsorbates Using Different DFT Implementations. J. Phys. Chem. C 2010, 114, 22659–22670. [Google Scholar] [CrossRef]
- López, R.; Gómez, R. Band-Gap Energy Estimation from Diffuse Reflectance Measurements on Sol-Gel and Commercial TiO2: A Comparative Study. J. Sol-Gel Sci. Technol. 2012, 61, 1–7. [Google Scholar] [CrossRef]
- Safronov, A.P.; Istomina, A.S.; Terziyan, T.V.; Polyakova, Y.I.; Beketov, I.V. Influence of Interfacial Adhesion and the Nonequilibrium Glassy Structure of a Polymer on the Enthalpy of Mixing of Polystyrene-Based Filled Composites. Polym. Sci. Ser. A 2012, 54, 214–223. [Google Scholar] [CrossRef]
- Grzhegorzhevskii, K.V.; Zelenovskiy, P.S.; Koryakova, O.V.; Ostroushko, A.A. Thermal Destruction of Giant Polyoxometalate Nanoclusters: A Vibrational Spectroscopy Study. Inorg. Chim. Acta 2019, 489, 287–300. [Google Scholar] [CrossRef]
Sample | Gel#1 | Gel#2 | Gel#3 | Gel#4 | Gel#5 | Gel#6 | Gel#7 | Gel#8 |
---|---|---|---|---|---|---|---|---|
Condition | 10 min UV | ×2BIS-AAm; 5 min UV | ×2BIS-AAm; 10 min UV | {Mo132}, 0.5 g·L−1; 10 min UV | {Mo132}, 1.0 g·L−1; 10 min UV | {Mo132}, 0.5 g·L−1; 15 min UV | {Mo132}, 0.5 g·L−1; TiO2, 1.0 g·L−1; 15 min UV | {Mo132}, 0.5 g·L−1; TiO2, 1.0 g·L−1; 15 min UV + 7 h UV |
R, nm | 2.5 | 5.6 | 2.2 | 5.0 | 6.3 | 3.0 | 10.7 | 2.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansurov, R.; Pavlova, I.; Shabadrov, P.; Levchenko, A.; Krinochkin, A.; Kopchuk, D.; Nikonov, I.; Prokofyeva, A.; Safronov, A.; Grzhegorzhevskii, K. TiO2-Embedded Biocompatible Hydrogel Production Assisted with Alginate and Polyoxometalate Polyelectrolytes for Photocatalytic Application. Inorganics 2023, 11, 92. https://doi.org/10.3390/inorganics11030092
Mansurov R, Pavlova I, Shabadrov P, Levchenko A, Krinochkin A, Kopchuk D, Nikonov I, Prokofyeva A, Safronov A, Grzhegorzhevskii K. TiO2-Embedded Biocompatible Hydrogel Production Assisted with Alginate and Polyoxometalate Polyelectrolytes for Photocatalytic Application. Inorganics. 2023; 11(3):92. https://doi.org/10.3390/inorganics11030092
Chicago/Turabian StyleMansurov, Renat, Irina Pavlova, Pavel Shabadrov, Anastasiya Levchenko, Alexey Krinochkin, Dmitry Kopchuk, Igor Nikonov, Anna Prokofyeva, Alexander Safronov, and Kirill Grzhegorzhevskii. 2023. "TiO2-Embedded Biocompatible Hydrogel Production Assisted with Alginate and Polyoxometalate Polyelectrolytes for Photocatalytic Application" Inorganics 11, no. 3: 92. https://doi.org/10.3390/inorganics11030092
APA StyleMansurov, R., Pavlova, I., Shabadrov, P., Levchenko, A., Krinochkin, A., Kopchuk, D., Nikonov, I., Prokofyeva, A., Safronov, A., & Grzhegorzhevskii, K. (2023). TiO2-Embedded Biocompatible Hydrogel Production Assisted with Alginate and Polyoxometalate Polyelectrolytes for Photocatalytic Application. Inorganics, 11(3), 92. https://doi.org/10.3390/inorganics11030092