Ce–Metal–Organic Framework-Derived CeO2–GO: An Efficient Electrocatalyst for Oxygen Evolution Reaction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Electrocatalysts
2.2. OER Activity
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Zhao, L.; Yu, X.; Liu, X.; Zhang, X.; Liu, H.; Zhou, W. Water Splitting: From electrode to green energy system. Nano Micro Lett. 2020, 12, 131. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, E.; An, X.; Hao, X.; Jiang, Z.; Guan, G. Transition metal-based catalysts for electrochemical water splitting at high current density: Current status and perspectives. Nanoscale 2021, 13, 12788. [Google Scholar] [CrossRef] [PubMed]
- Jana, J.; Thi Ngo, Y.L.; Chung, J.S.; Huan Hur, H. Contribution of carbon dot nanoparticles in electrocatalysis: Development in energy conversion process. J. Electrochem. Sci. Technol. 2020, 11, 220–237. [Google Scholar] [CrossRef]
- Ji, Q.; Zou, L.; Liu, H.; Yong, J.; Chen, J.; Song, Z.; Gao, J. Bimetallic nanoparticles embedded in N-doped carbon nanotubes derived from metal-organic frameworks as efficient electrocatalysts for oxygen evolution reaction. J. Solid State Chem. 2021, 303, 122515. [Google Scholar] [CrossRef]
- Lin, Z.J.; Lü, J.; Hong, M.; Cao, R. Metal–organic frameworks based on flexible ligands (FL-MOFs): Structures and applications. Chem. Soc. Rev. 2014, 43, 5867–5895. [Google Scholar] [CrossRef] [Green Version]
- Wen, Y.; Zhang, P.; Sharma, V.K.; Ma, X.; Zhou, H.C. Metal-organic frameworks for environmental applications. Cell Rep. Phys. Sci. 2021, 2, 100348. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Q.L.; Zou, R.; Xu, Q. Metal-organic frameworks for energy applications. Chem 2017, 2, 52–80. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Xiao, X.; Guo, X.; Yao, H.; Pang, H. Synthesis of “Quasi-Ce-MOF” electrocatalysts for enhanced urea oxidation reaction performance. ACS Sustain. Chem. Eng. 2020, 8, 8675–8680. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, S.; Kim, H.K.; Tsang, D.C.W.; Lee, S.S. Metal organic frameworks as potent treatment media for odorants and volatiles. Environ. Res. 2019, 168, 336–356. [Google Scholar] [CrossRef]
- Xu, G.; Zhu, C.; Gao, G. Recent progress of advanced conductive metal–organic frameworks: Precise synthesis, electrochemical energy storage applications, and future challenges. Small 2022, 18, 2203140. [Google Scholar] [CrossRef]
- Wu, H.B.; Lou, X.W. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges. Sci. Adv. 2017, 3, eaap9252. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Xiong, D.; Gao, X.; Liu, L. The oxygen evolution reaction enabled by transition metal phosphide and chalcogenide pre-catalysts with dynamic changes. Chem. Commun. 2019, 55, 8744–8763. [Google Scholar] [CrossRef]
- Wan, K.; Luo, J.; Zhou, C.; Zhang, T.; Arbiol, J.; Lu, X.; Mao, B.W.; Zhang, X.; Fransaer, J. Hierarchical porous Ni3S4 with enriched high-valence Ni sites as a robust electrocatalyst for efficient oxygen evolution reaction. Adv. Funct. Mater. 2019, 29, 1900315. [Google Scholar] [CrossRef] [Green Version]
- Wan, K.; Luo, J.; Zhang, X.; Subramanian, P.; Fransaer, J. Sulfur-modified nickel selenide as an efficient electrocatalyst for the oxygen evolution reaction. J. Energy Chem. 2021, 62, 198–203. [Google Scholar] [CrossRef]
- Li, P.; Chen, R.; Tian, S.; Xiong, Y. Efficient oxygen evolution catalysis triggered by nickel phosphide nanoparticles compositing with reduced graphene oxide with controlled architecture. ACS Sustain. Chem. Eng. 2019, 7, 9566–9573. [Google Scholar] [CrossRef]
- Sing, C.; Mukhopadhyay, S.; Hod, I. Metal–organic framework derived nanomaterials for electrocatalysis: Recent developments for CO2 and N2 reduction. Nano Converg. 2021, 8, 1. [Google Scholar] [CrossRef]
- Tan, X.; Wu, Y.; Lin, X.; Zeb, A.; Xu, X.; Luo, Y.; Liu, J. Application of MOF-derived transition metal oxides and composites as anodes for lithium-ion batteries. Inorg. Chem. Front. 2020, 7, 4939–4955. [Google Scholar] [CrossRef]
- Qin, X.; Kim, D.; Piao, Y. Metal-organic frameworks-derived novel nanostructured electrocatalysts for oxygen evolution reaction. Carbon Energy 2021, 3, 66–100. [Google Scholar] [CrossRef]
- Ullah, N.; Ullah, S.; Khan, S.; Guziejewski, D.; Mirceski, V. A review: Metal-organic framework based electrocatalysts for methanol electro-oxidation reaction. Int. J. Hydrogen Energy 2023, 48, 3340–3354. [Google Scholar] [CrossRef]
- Tran, T.Q.N.; Park, B.J.; Yun, W.H.; Duong, T.N.; Yoon, H.H. Metal–organic framework–derived Ni@C and NiO@C as anode catalysts for urea fuel cells. Sci. Rep. 2020, 10, 278. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Cheng, N.; Lushington, A.; Sun, X. Recent progress on MOF-derived nanomaterials as advanced electrocatalysts in fuel cells. Catalysts 2016, 6, 116. [Google Scholar] [CrossRef] [Green Version]
- Han, C.; Zhu, X.; Ding, J.; Miao, T.; Huang, S.; Qian, J. MOF-derived Pt/ZrO2 carbon electrocatalyst for efficient hydrogen evolution. Inorg. Chem. 2022, 61, 18350–18354. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Yang, M.; Du, Z.; Liu, X.; Dai, X.; Lin, K.; Bao, X.Q.; Li, H.; Xiong, D. Metal–organic framework derived bimetal oxide CuCoO2 as efficient electrocatalyst for the oxygen evolution reaction. Dalton Trans. 2022, 51, 5997–6006. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, D.; Roy, S. Development of low-ppm CO sensors using pristine CeO2 nanospheres with high surface area. ACS Omega 2018, 3, 4433–4440. [Google Scholar] [CrossRef] [Green Version]
- Song, X.Z.; Zhu, W.Y.; Wang, X.F.; Tan, Z. Recent advances of CeO2-based electrocatalysts for oxygen and hydrogen evolution as well as nitrogen reduction. ChemElectroChem 2021, 8, 996–1020. [Google Scholar] [CrossRef]
- Rohini, B.S.; Nagabhushana, H.; Darshan, G.P.; Basavaraj, R.B.; Sharma, S.C.; Sudarmani, R. Fabricated CeO2 nanopowders as a novel sensing platform for advanced forensic, electrochemical and photocatalytic applications. Appl. Nanosci. 2017, 7, 815–833. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Liu, B.; Xiao, S.; Li, H.; Wang, Y.; Cai, D.; Wang, D.; Wang, L.; Liu, Y.; Li, Q.; et al. High performance humidity sensors based on CeO2 nanoparticles. Sens. Actuators B 2015, 215, 125–132. [Google Scholar] [CrossRef]
- Tamizhdurai, P.; Sakthinathan, S.; Chen, S.M.; Shanthi, K.; Sivasanker, S.; Sangeetha, P. Environmentally friendly synthesis of CeO2 nanoparticles for the catalytic oxidation of benzyl alcohol to benzaldehyde and selective detection of nitrite. Sci. Rep. 2017, 7, 46372. [Google Scholar] [CrossRef] [Green Version]
- Maheswari, N.; Muralidharan, G. Hexagonal CeO2 nanostructures: An efficient electrode material for supercapacitors. Dalton Trans. 2016, 45, 14352–14362. [Google Scholar] [CrossRef]
- Charbgoo, F.; Ahmad, M.B.; Darroudi, M. Cerium oxide nanoparticles: Green synthesis and biological applications. Int. J. Nanomed. 2017, 12, 1401–1413. [Google Scholar] [CrossRef] [Green Version]
- Sridharan, M.; Maiyalagan, T.; Panomsuwan, G.; Techapiesancharoenkij, R. Enhanced electrocatalytic activity of cobalt-doped ceria embedded on nitrogen, sulfur-doped reduced graphene oxide as an electrocatalyst for oxygen reduction reaction. Catalysts 2022, 12, 6. [Google Scholar] [CrossRef]
- Siddeeg, S.M. A novel synthesis of TiO2/GO nanocomposite for the uptake of Pb2+ and Cd2+ from wastewater. Mater. Res. Exp. 2020, 7, 025038. [Google Scholar] [CrossRef]
- Huang, L.; Yang, H.; Zhang, Y.; Xiao, W. Study on synthesis and antibacterial properties of Ag NPs/GO nanocomposites. J. Nanomater. 2016, 2016, 5685967. [Google Scholar] [CrossRef] [Green Version]
- Shahriari, S.; Sastry, M.; Panjikar, S.; Singh Raman, R.K. Graphene and graphene oxide as a support for biomolecules in the development of biosensors. Nanotechnol. Sci. Appl. 2021, 14, 197–220. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Y.; Pan, Y.; Liu, C.J. Fabrication of palladium/graphene oxide composite by plasma reduction at room temperature. Nanoscale Res. Lett. 2012, 7, 234. [Google Scholar] [CrossRef] [Green Version]
- Czepa, W.; Pakulski, D.; Witomska, S.; Patroniak, V.; Ciesielski, A.; Samorí, P. Graphene oxide-mesoporous SiO2 hybrid composite for fast and efficient removal of organic cationic contaminants. Carbon 2020, 158, 193–201. [Google Scholar] [CrossRef]
- Azimi, F.; Nabizadeh, R.; Hassanvand, M.S.; Rastkari, N.; Nazmara, S.; Naddafi, K. Photochemical degradation of toluene in gas-phase under UV/visible light graphene oxide –TiO2 nanocomposite: Influential operating factors, optimization, and modeling. J. Environ. Health Sci. Eng. 2019, 17, 671–683. [Google Scholar] [CrossRef]
- Lei, M.; Wang, Z.B.; Li, J.S.; Tang, H.L.; Liu, W.J.; Wang, Y.G. CeO2 nanocubes-graphene oxide as durable and highly active catalyst support for proton exchange membrane fuel cell. Sci. Rep. 2014, 4, 7415. [Google Scholar] [CrossRef] [Green Version]
- Simon, R.; Chakraborty, S.; Darshini, K.S.; Mary, N.L. Electrolyte dependent performance of graphene–mixed metal oxide composites for enhanced supercapacitor applications. SN Appl. Sci. 2020, 2, 1898. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, N.; Liang, Y. Preparation of CeO2/Cu-MOF /GO composite for efficient electrocatalytic oxygen evolution reaction. Ionics 2021, 27, 4347–4360. [Google Scholar] [CrossRef]
- Makhafola, M.D.; Modibane, K.D.; Ramohlola, K.E.; Maponya, T.C.; Hata, M.J.; Makgopa, K.; Iwuoha, E.I. Palladinized graphene oxide-MOF induced coupling of Volmer and Heyrovsky mechanisms, for the amplifcation of the electrocatalytic efficiency of hydrogen evolution reaction. Sci. Rep. 2021, 11, 17219. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Guo, B.; Zhang, J.; Hu, C.; Ma, R.; Wang, D.; Wang, J. A bimetallic MOF@graphene oxide composite as an efficient bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. Dalton Trans. 2020, 49, 5730–5735. [Google Scholar] [CrossRef]
- Malik, W.M.A.; Afaq, S.; Mahmood, A.; Niu, L.; Yousaf ur Rehman, M.; Ibrahim, M.; Mohyuddin, A.; Qureshi, A.M.; Ashiq, M.N.; Chughtai, A.H. A facile synthesis of CeO2 from the GO@Ce-MOF precursor and its efficient performance in the oxygen evolution reaction. Front. Chem. 2022, 10, 996560. [Google Scholar] [CrossRef]
- Deng, D.; Chen, N.; Xiao, X.; Du, S.; Wang, Y. Electrochemical performance of CeO2 nanoparticle-decorated graphene oxide as an electrode material for supercapacitor. Ionics 2017, 23, 121–129. [Google Scholar] [CrossRef]
- Kasinath, L.; Byrappa, K. Ceria Boosting on In Situ Nitrogen-Doped Graphene Oxide for Efficient Bifunctional ORR/OER Activity. Front. Chem. 2022, 10, 889579. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, R.; Xie, M.; Xu, Y.; Chen, J.; Jiao, Y. Construction of trifunctional electrode material based on Pt-Coordinated Ce-based metal organic framework. J. Colloid Interface Sci. 2022, 622, 378–389. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Li, X.; Sun, C.; Huang, Z.; Xu, H.; Shen, W. Insights into the pyrolysis processes of Ce-MOFs for preparing highly active catalysts of toluene combustion. Catalysts 2019, 9, 682. [Google Scholar] [CrossRef] [Green Version]
- Kumar, E.; Selvarajan, P.; Balasubramanian, K. Preparation and studies of cerium dioxide(CeO2) nanoparticles by microwave-assisted solution method. Recent Res. Sci. Technol. 2010, 2, 37–41. [Google Scholar]
- Tiwary, C.S.; Sarkar, R.; Kumbhakar, P.; Mitra, A.K. Synthesis and optical characterization of monodispersed Mn2+ doped CdS nanoparticles. Phys. Lett. A 2008, 372, 5825–5830. [Google Scholar] [CrossRef]
- Smirnov, A.; Pinargote, N.W.S.; Peretyagin, N.; Pristinskiy, P.; Peretyagin, P.; Bartolomé, J.F. Zirconia reduced graphene oxide nano-hybrid structure fabricated by the hydrothermal reaction method. Materials 2020, 13, 687. [Google Scholar] [CrossRef] [Green Version]
- Quach, Q.; Abdel-Fattah, T.M. Silver nanoparticles functionalized nanosilica grown over graphene oxide for enhancing antibacterial effect. Nanomaterials 2022, 12, 3341. [Google Scholar] [CrossRef]
- Zhang, K.; Suh, J.M.; Lee, T.H.; Cha, J.H.; Choi, J.W.; Jang, H.W.; Varma, R.S.; Shokouhimehr, M. Copper oxide–graphene oxide nanocomposite: Efficient catalyst for hydrogenation of nitroaromatics in water. Nano Conv. 2019, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Andrijantho, E.; Shoelarta, S.; Subiyanto, G.; Rifki, S. Facile synthesis of graphene from graphite using ascorbic acid as reducing agent. AIP Conf. Proc. 2016, 1725, 020003. [Google Scholar]
- Chibac-scutaru, A.L.; Podasca, V.; Dascalu, J.A.; Melinte, V. Exploring the influence of synthesis parameters on the optical properties for various CeO2 NPs. Nanomaterials 2022, 12, 1402. [Google Scholar] [CrossRef]
- Dezfuli, A.S.; Ganjali, M.R.; Naderi, H.R.; Norouzi, P. A high performance supercapacitor based on a ceria/graphene nanocomposite synthesized by a facile sonochemical method. RSC Adv. 2015, 5, 46050–46058. [Google Scholar] [CrossRef]
- Sisubalan, N.; Karthikeyan, C.; Kumar, V.S.; Varaprasad, K.; Hameed, A.S.H.; Vanajothi, R.; Sadiku, R. Biocidal activity of Ba2+-doped CeO2 NPs against Streptococcus mutans and Staphylococcus aureus bacterial strains. RSC Adv. 2021, 11, 30623–30634. [Google Scholar] [CrossRef]
- Wang, N.; Wang, S.; Yang, J.; Xiao, P.; Zhu, J. Promotion effect of Ce doping on catalytic performance of LaMnO3 for CO oxidation. Catalysts 2022, 12, 1409. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, M.; Li, Z.; Liao, W.; Chen, B.; Yang, T.; Hu, R.; Yang, Y.; Meng, S. Highly sensitive and convenient aptasensor based on Au NPs@Ce-TpBpy COF for quantitative determination of zearalenone. RSC Adv. 2022, 12, 17312. [Google Scholar] [CrossRef]
- Guo, Z.; Zhao, X.; Chen, G.; Zhao, W.; Liu, T.; Hu, R.; Jiang, X. Controllable synthesis of magic cube-like Ce-MOF-derived Pt/CeO2 catalysts for formaldehyde oxidation. Nanoscale 2022, 14, 12713–12721. [Google Scholar] [CrossRef]
- Jiao, Z.; Zhou, G.; Zhang, H.; Shen, Y.; Zhang, X.; Li, J.; Gao, X. Effect of calcination temperature on catalytic performance of CeCu oxide in removal of quinoline by wet hydrogen peroxide oxidation from water. J. Braz. Chem. Soc. 2018, 29, 2233–2243. [Google Scholar] [CrossRef]
- Fu, Z.; Qi, P.; Liu, H.; Zhang, Q.; Zhao, Y.; Feng, X. Influence of oxidative properties of CexZr1-x O2 catalyst on partial oxidation of dimethyl ether. Catalysts 2022, 12, 1536. [Google Scholar]
- Taratayko, A.; Kolobova, E.; Mamontov, G. Graphene oxide decorated with Ag and CeO2 nanoparticles as a catalyst for room-temperature 4-nitrophenol reduction. Catalysts 2022, 12, 1393. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, L.; Zhao, L.; Qu, l.; Dai, L. Graphene oxide nanoribbon assembly toward moisture powered information storage. Adv. Mater. 2017, 29, 1604972. [Google Scholar] [CrossRef] [PubMed]
- Hanifah, M.F.R.; Jaffar, J.; Othman, M.H.; Ismail, A.F.; Rahman, M.A.; Yusof, N.; Aziz, F.; Salleh, W.N.W.; Ilbeygi, H. Electrocatalytic performance impact of various bimetallic Pt-Pd alloy atomic ratio in robust ternary nanocomposite electroccatalyst toward boosting of methanol electrooxidation reaction. Electrochim. Acta 2022, 403, 139608. [Google Scholar] [CrossRef]
- Kohantorabi, M.; Gholami, M.R. MxNi100x (M = Ag, and Co) nanoparticles supported on CeO2 nanorods derived from Ce–metal organic frameworks as an effective catalyst for reduction of organic pollutants: Langmuir–Hinshelwood kinetics and mechanism. New J. Chem. 2017, 41, 10948–10958. [Google Scholar] [CrossRef]
- Ye, J.; Cheng, D.G.; Chen, F.; Zhan, X. Metal-organic framework-derived CeO2 nanosheets confining ultrasmall Pd nanoclusters catalysts with high catalytic activity. Int. J. Hydrogen Energy 2021, 46, 39892–39902. [Google Scholar] [CrossRef]
- Afza, N.; Shivakumar, M.S.; Alam, M.W.; Kumar, A.N.; Bhatt, A.S.; Murthy, H.C.A.; Ravikumar, C.R.; Mylarappa, M.; Selvanandan, S. Facile hydrothermal synthesis of cerium oxide/rGO nanocomposite for photocatalytic and supercapacitor applications. Appl. Surf. Sci. Adv. 2022, 11, 100307. [Google Scholar] [CrossRef]
- Li, T.; Liu, H. A simple synthesis method of nanocrystals CeO2 modified rGO composites as electrode materials for supercapacitors with long time cycling stability. Powder Technol. 2018, 327, 275–281. [Google Scholar] [CrossRef]
- Pandit, B.; Sankapal, B.R.; Koinkar, P.M. Novel chemical route for CeO2/MWCNTs composite towards highly bendable solid-state supercapacitor device. Sci. Rep. 2019, 9, 5892. [Google Scholar] [CrossRef] [Green Version]
- Zhou, R.; Li, Y.; Wang, R.; Su, G.; Gao, R.; Cao, L.; Dong, B. Two-phase synthesis of Fe doped cerium phosphate ultra-fine nanocrystals for efficient oxygen evolution. New J. Chem. 2022, 46, 2609–2617. [Google Scholar] [CrossRef]
- Aashima; Uppal, S.; Arora, A.; Gautam, S.; Singh, S.; Choudhary, R.J.; Mehta, S.K. Magnetically retrievable Ce-doped Fe3O4 nanoparticles as scaffolds for the removal of azo dyes. RSC Adv. 2019, 9, 23129–23141. [Google Scholar] [CrossRef] [Green Version]
- Nagajyothi, P.C.; Yoo, K.; Eom, I.Y.; Shim, J. CoFe2O4 NPs supported on graphitic carbon nitride as inexpensive electrocatalysts for methanol oxidation reaction. Cerami. Int. 2022, 48, 11623–11628. [Google Scholar] [CrossRef]
- Demir, E.; Akbayrak, S.; Önal, A.M.; Özkar, S. Ceria supported ruthenium (0) nanoparticles: Highly efficient catalysts in oxygen evolution reaction. J. Colloid Interface Sci. 2019, 534, 701–704. [Google Scholar] [CrossRef]
- Sung, M.C.; Lee, G.H.; Kim, D.W. CeO2/Co(OH)2 hybrid electrocatalyst for efficient hydrogen and oxygen evolution reaction. J. Alloys Compd. 2019, 800, 450–455. [Google Scholar] [CrossRef]
- Gao, W.; Xia, Z.; Cao, F.; Ho, J.C.; Jiang, Z.; Qu, Y. Comprehensive understanding of the spatial configurations of CeO2 in NiO for the electrocatalytic oxygen evolution reaction: Embedded or surface-loaded. Adv. Funct. Mater. 2018, 28, 1706056. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, C.; Zhang, Q.; Wang, W.; Pan, P.; Gu, L.; Xu, D.; Bao, J.; Dai, Z. 2D electron gas and oxygen vacancy induced high oxygen evolution performances for advanced Co3O4/CeO2 nanohybrids. Adv. Mater. 2019, 31, 190006. [Google Scholar]
- Kim, J.H.; Shin, K.; Kawashima, K.; Youn, D.H.; Lin, J.; Hong, T.E.; Liu, Y.; Wygant, B.R.; Wang, J.; Henkelman, G.; et al. Enhanced activity promoted by CeOx on a CoOx electrocatalyst for the oxygen evolution reaction. ACS Catal. 2018, 8, 4257–4265. [Google Scholar] [CrossRef]
- Li, T.; Li, S.; Liu, Q.; Tian, Y.; Zhang, Y.; Fu, G.; Tang, Y. Hollow Co3O4/CeO2 heterostructures in situ embedded in N-Doped carbon nanofibers enable outstanding oxygen evolution. ACS Sustain. Chem. Eng. 2019, 7, 17950–17957. [Google Scholar] [CrossRef]
- Kang, Y.; Wang, W.; Li, J.; Mi, Y.; Gong, H.; Lei, Z. 3D Rosa Centifolia-like CeO2 encapsulated with N-doped carbon as an enhanced electrocatalyst for Zn-Air Batteries. J. Colloid Interface Sci. 2020, 578, 796–804. [Google Scholar] [CrossRef]
- Sivanantham, A.; Ganesan, P.; Shanmugam, S. A Synergistic Effect of Co and CeO2 in nitrogen-doped carbon nanostructure for the enhanced oxygen electrode activity and stability. Appl. Catal. B-Environ. 2018, 237, 1148–1159. [Google Scholar] [CrossRef]
- Goswami, C.; Yamada, Y.; Matus, E.V.; Ismagilov, I.Z.; Kerzhentsev, M.; Bharali, P. Elucidating the role of oxide-oxide/carbon interfaces of CuOx-CeO2/C in boosting electrocatalytic performance. Langmuir 2020, 36, 15141–15152. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagajyothi, P.C.; Pavani, K.; Ramaraghavulu, R.; Shim, J. Ce–Metal–Organic Framework-Derived CeO2–GO: An Efficient Electrocatalyst for Oxygen Evolution Reaction. Inorganics 2023, 11, 161. https://doi.org/10.3390/inorganics11040161
Nagajyothi PC, Pavani K, Ramaraghavulu R, Shim J. Ce–Metal–Organic Framework-Derived CeO2–GO: An Efficient Electrocatalyst for Oxygen Evolution Reaction. Inorganics. 2023; 11(4):161. https://doi.org/10.3390/inorganics11040161
Chicago/Turabian StyleNagajyothi, Patnamsetty Chidanandha, Krishnapuram Pavani, Rajavaram Ramaraghavulu, and Jaesool Shim. 2023. "Ce–Metal–Organic Framework-Derived CeO2–GO: An Efficient Electrocatalyst for Oxygen Evolution Reaction" Inorganics 11, no. 4: 161. https://doi.org/10.3390/inorganics11040161
APA StyleNagajyothi, P. C., Pavani, K., Ramaraghavulu, R., & Shim, J. (2023). Ce–Metal–Organic Framework-Derived CeO2–GO: An Efficient Electrocatalyst for Oxygen Evolution Reaction. Inorganics, 11(4), 161. https://doi.org/10.3390/inorganics11040161