Mononuclear Fe(III) Schiff Base Complex with Trans-FeO4N2 Chromophore of o-Aminophenol Origin: Synthesis, Characterisation, Crystal Structure, and Spin State Investigation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structure
Complex 1 (170 K) | (Pr3NH)[Fe(L)2] (150 K) [22] | [Fe(L)(HL)]2 (150 K) [23] |
---|---|---|
Fe1-O1 1.988(2) | 1.9851(19) | 2.078(2) 2.091(2) |
Fe1-O2A 1.963(5) | 1.947(2) | 1.926(2) 1.915(2) |
Fe1-O3 2.031(2) | 2.004(2) | 2.083(2) 2.067(2) |
Fe1-O4 1.958(2) | 1.948(2) | 1.912(2) 1.919(2) |
Fe1-N1A 2.144(4) | 2.117(5) | 2.108(3) 2.133(2) |
Fe1-N2A 2.139(4) | 2.167(4) | 2.105(2) 2.127(3) |
O1-Fe1-N1A 76.70(12) | 75.75(12) | 77.69(8) 76.36(8) |
O2A-Fe1-N1A 87.85(19) | 89.79(12) | 88.39(9) 86.75(9) |
O3-Fe1-N2A 75.99(12) | 72.00(13) | 77.53(9) 76.68(9) |
O4-Fe1-N2A 85.89(13) | 90.18(14) | 88.13(9) 87.05(9) |
O1-Fe1-O2A 164.43(17) | 163.68(9) | 164.13(8) 159.80(8) |
O4-Fe1-O3 161.85(11) | 161.80(10) | 164.00(8) 161.23(9) |
D-H···A | D-H | D···A | H···A | DHA |
---|---|---|---|---|
O5A-H5A1···O1 | 0.84 | 1.85 | 2.386(4) | 173 |
N3-H1N3···O5A | 1.07 | 1.66 | 2.720(5) | 173 |
N3-H1N3···O5B | 1.07 | 2.02 | 2.804(14) | 127 |
N4-H1N4···O3 | 0.92 | 1.88 | 2.796(4) | 173 |
N4-H1N4···O2B | 0.92 | 2.57 | 3.023(3) | 122 |
2.2. Magnetic Properties
2.3. Mössbauer Spectroscopy
77 K | 300 K | |
---|---|---|
δ (mms−1) | 0.50(4) | 0.40(5) |
ΔEQ (mms−1) | 0.00(5) | 0.00(5) |
Γ (mms−1) | 4.50(30) | 1.50(30) |
3. Experimental Section
3.1. Materials and Methods
3.2. Synthesis
3.2.1. Synthesis of the Ligand 2-{(E)-[2-hydroxyphenyl)imino]methyl}phenol (H2L)
3.2.2. Synthesis of the Complex (Et3NH)2[Fe(L)2](ClO4)·MeOH (1)
3.3. Single Crystal Structure Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schiff, H. Mittheilungen Aus Dem Universitätslaboratorium in Pisa: Eine Neue Reihe Organischer Basen. Justus Liebigs Ann. Chem. 1864, 131, 118–119. [Google Scholar] [CrossRef]
- Moutet, J.C.; Ourari, A. Electrocatalytic Epoxidation and Oxidation with Dioxygen Using Manganese(III) Schiff-Base Complexes. Electrochim. Acta 1997, 42, 2525–2531. [Google Scholar] [CrossRef]
- Dixit, P.S.; Srinivasan, K. Effect of a Clay Support on the Catalytic Epoxidation Activity of a Manganese(III)-Schiff Base Complex. Inorg. Chem. 1988, 27, 4507–4509. [Google Scholar] [CrossRef]
- Kessissoglou, D.P.; Butler, W.M.; Pecoraro, V.L. Characterization of Mono- and Binuclear Manganese(II) Schiff Base Complexes with Metal-Disulfide Ligation. Inorg. Chem. 1987, 26, 495–503. [Google Scholar] [CrossRef]
- Itagaki, M.; Hagiya, K.; Kamitamari, M.; Masumoto, K.; Suenobu, K.; Yamamoto, Y. Highly Efficient Chiral Copper Schiff-Base Catalyst for Asymmetric Cyclopropanation of 2,5-Dimethyl-2,4-Hexadiene. Tetrahedron 2004, 60, 7835–7843. [Google Scholar] [CrossRef]
- Sureshan, C.A.; Bhattacharya, P.K. Synthesis, Characterisation and Homogeneous Catalytic Activity Study of Mn(II) and Fe(III) Ternary Complexes. J. Mol. Catal. A Chem. 1998, 136, 285–291. [Google Scholar] [CrossRef]
- Ramnauth, R.; Al-Juaid, S.; Motevalli, M.; Parkin, B.C.; Sullivan, A.C. Synthesis, Structure, and Catalytic Oxidation Chemistry from the First Oxo-Imido Schiff Base Metal Complexes. Inorg. Chem. 2004, 43, 4072–4079. [Google Scholar] [CrossRef]
- Miyasaka, H.; Matsumoto, N.; Okawa, H.; Re, N.; Gallo, E.; Floriani, C. Complexes Derived from the Reaction of Manganese(III) Schiff Base Complexes and Hexacyanoferrate(III): Syntheses, Multidimensional Network Structures, and Magnetic Properties. J. Am. Chem. Soc. 1996, 118, 981–994. [Google Scholar] [CrossRef]
- Gütlich, P.; Goodwin, H.A. Spin Crossover—An Overall Perspective. In Spin Crossover in Transition Metal Compounds I. Topics in Current Chemistry; Gütlich, P., Goodwin, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 233. [Google Scholar] [CrossRef]
- Takahashi, K.; Kawamukai, K.; Mochida, T.; Sakurai, T.; Ohta, H.; Yamamoto, T.; Einaga, Y.; Mori, H.; Shimura, Y.; Sakakibara, T.; et al. Antiferromagnetic Transition in a Novel Star-Shaped High-Spin Fe(III) Tetranuclear Cluster from a Mononuclear Coordination Anion Featuring π-Extended Schiff Base Ligands. Chem. Lett. 2015, 44, 840–842. [Google Scholar] [CrossRef]
- Trávnícek, Z.; Sindelár, Ζ. Crystal Structure of Ammonium Bis(2-Hydroxyphenyl-Salicylaldimine- O,N,O′) Iron (III) Monohydrate. Z. Kristallogr. NCS 1997, 212, 125–126. [Google Scholar] [CrossRef]
- Takahashi, K.; Kawamukai, K.; Okai, M.; Mochida, T.; Sakurai, T.; Ohta, H.; Yamamoto, T.; Einaga, Y.; Shiota, Y.; Yoshizawa, K. A New Family of Anionic FeIII Spin Crossover Complexes Featuring a Weak-Field N2O4 Coordination Octahedron. Chem. Eur. J. 2016, 22, 1253–1257. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, S.M.; Mohamed, G.G.; Zayed, M.A.; El-Ela, M.S.A. Spectroscopic Study of Molecular Structures of Novel Schiff Base Derived from O-Phthaldehyde and 2-Aminophenol and Its Coordination Compounds Together with Their Biological Activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009, 73, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Jana, N.C.; Patra, M.; Brandão, P.; Panja, A. Synthesis, Structure and Diverse Coordination Chemistry of Cobalt(III) Complexes Derived from a Schiff Base Ligand and Their Biomimetic Catalytic Oxidation of o-Aminophenols. Polyhedron 2019, 164, 23–34. [Google Scholar] [CrossRef]
- Tesfaye, D.; Linert, W.; Gebrezgiabher, M.; Bayeh, Y.; Elemo, F.; Sani, T.; Kalarikkal, N.; Thomas, M. Iron(II) Mediated Supramolecular Architectures with Schiff Bases and Their Spin-Crossover Properties. Molecules 2023, 28, 1012. [Google Scholar] [CrossRef] [PubMed]
- Senthil Kumar, K.; Bayeh, Y.; Gebretsadik, T.; Elemo, F.; Gebrezgiabher, M.; Thomas, M.; Ruben, M. Spin-Crossover in Iron(II)-Schiff Base Complexes. Dalton. Trans. 2019, 48, 15321–15337. [Google Scholar] [CrossRef] [PubMed]
- Bayeh, Y.; Osuský, P.; Yutronkie, N.J.; Gyepes, R.; Sergawie, A.; Hrobárik, P.; Clérac, R.; Thomas, M. Spin State of Two Mononuclear Iron(II) Complexes of a Tridentate Bis(Imino)Pyridine N-Donor Ligand: Experimental and Theoretical Investigations. Polyhedron 2022, 227, 30–32. [Google Scholar] [CrossRef]
- Madhu, N.T.; Salitros, I.; Schramm, F.; Klyatskaya, S.; Fuhr, O.; Ruben, M. Above Room Temperature Spin Transition in a Series of Iron(II) Bis(Pyrazolyl)Pyridine Compounds. Comptes Rendus Chim. 2008, 11, 1166–1174. [Google Scholar] [CrossRef]
- Bayeh, Y.; Suryadevara, N.; Schlittenhardt, S.; Gyepes, R.; Sergawie, A.; Hrobárik, P.; Linert, W.; Ruben, M.; Thomas, M. Investigations on the Spin States of Two Mononuclear Iron(II) Complexes Based on N-Donor Tridentate Schiff Base Ligands Derived from Pyridine-2,6-Dicarboxaldehyde. Inorganics 2022, 10, 98. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Cryst. Sect. B 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Tunç, T.; Sarı, M.; Sadıkoğlu, M.; Büyükgüngör, O. Synthesis, Crystal Structure and Spectroscopic Studies of 2-{(E)-[2-Hydroxyphenyl)Imino]Methyl} Phenol Schiff Base Molecule. J. Chem. Cryst. 2009, 39, 672–676. [Google Scholar] [CrossRef]
- Herchel, R.; Nemec, I.; Machata, M.; Trávníček, Z. Experimental and Theoretical Investigations of Magnetic Exchange Pathways in Structurally Diverse Iron(III) Schiff-Base Complexes. Inorg. Chem. 2015, 54, 8625–8638. [Google Scholar] [CrossRef] [PubMed]
- Dutta, A.K.; Biswas, S.; Dutta, S.; Dawe, L.N.; Lucas, C.R.; Adhikary, B. Syntheses, Structural, Spectroscopic and Magnetic Properties of Polynuclear Fe(III) Complexes Containing N and O Donor Ligands. Inorg. Chim. Acta 2016, 444, 141–149. [Google Scholar] [CrossRef]
- Llunell, M.; Casanova, D.; Cirera, J.; Alemany, P.; Alvarez, S.; SHAPE. Program for the Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and Associated Tools; Version 2.1; University of Barcelona: Barcelona, Spain, 2013; pp. 1–35. [Google Scholar]
- Schünemann, V.; Winkler, H. Structure and Dynamics of Biomolecules Studied by Mossbauer Spectroscopy. Rep. Prog. Phys. 2000, 63, 263–353. [Google Scholar] [CrossRef]
- Mørup, S. Magnetic Relaxation Phenomena. In Mössbauer Spectroscopy and Transition Metal Chemistry; Springer: Berlin/Heidelberg, Germany, 2011; pp. 209–234. [Google Scholar] [CrossRef]
- Gunnlaugsson, H.P. Spreadsheet Based Analysis of Mössbauer Spectra. Hyperfine Interact. 2016, 237, 13–18. [Google Scholar] [CrossRef]
- Oxford Diffraction. CrysAlisPRO, (Version 1.171.41.93a); Oxford Diffraction Ltd.: Oxford, UK, 2020. [Google Scholar]
- Sheldrick, G.M. SHELXT-Integrated Space-Group and Crystal-Structure Determination. Acta Cryst. Sect. A Found. Crystallogr. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Farrugia, L.J. WinGX and ORTEP for Windows an update. J. Appl. Cryst. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Brandenburg, K. DIAMOND; Crystal Impact GbR: Bonn, Germany, 2007. [Google Scholar]
Empirical formula | C39 H54ClFeN4O9 |
Formula weight | 814.16 |
Temperature | 173(2) K |
Wavelength | 0.71073 A |
Crystal system, space group | Monoclinic, P21/c |
Unit cell dimensions [Å, °] | a = 17.0219(6) α = 90 b = 15.1654(3) β = 117.540(4) c = 17.7368(6) γ = 90 |
Volume [Å3] | 4059.8(3) |
Z, Calculated density [Mg/m3] | 4, 1.332 |
Absorption coefficient | 0.495 |
F(000) | 1724 |
Crystal size [mm] | 0.578 × 0.343 × 0.199 |
θ range for data collection [°] | 2.918 to 26.000 |
Limiting indices | −20 ≤ h ≤ 20, −18 ≤ k ≤ 18, −20 ≤ l ≤ 21 |
Reflections collected / unique | 41,409/7954 [R(int) = 0.0247] |
Completeness to θ = 26.000 | 99.8 % |
Absorption correction | Analytical |
Max. and min. transmission | 0.931 and 0.813 |
Refinement method | Full-matrix least-squares on F2 |
Data / restraints / parameters | 7954/0/566 |
Goodness-of-fit on F2 | 1.044 |
Final R indices [I>2σ(I)] | R1 = 0.0631, wR2 = 0.1717 |
R indices (all data) | R1 = 0.0783, wR2 = 0.1830 |
Largest diff. peak and hole [e.Å−3] | 0.972 and −0.506 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tesfaye, D.; Braun, J.; Gebrezgiabher, M.; Kuchár, J.; Černák, J.; Sani, T.; Gismelseed, A.; Hochdörffer, T.; Schünemann, V.; Anson, C.E.; et al. Mononuclear Fe(III) Schiff Base Complex with Trans-FeO4N2 Chromophore of o-Aminophenol Origin: Synthesis, Characterisation, Crystal Structure, and Spin State Investigation. Inorganics 2024, 12, 159. https://doi.org/10.3390/inorganics12060159
Tesfaye D, Braun J, Gebrezgiabher M, Kuchár J, Černák J, Sani T, Gismelseed A, Hochdörffer T, Schünemann V, Anson CE, et al. Mononuclear Fe(III) Schiff Base Complex with Trans-FeO4N2 Chromophore of o-Aminophenol Origin: Synthesis, Characterisation, Crystal Structure, and Spin State Investigation. Inorganics. 2024; 12(6):159. https://doi.org/10.3390/inorganics12060159
Chicago/Turabian StyleTesfaye, Dawit, Jonas Braun, Mamo Gebrezgiabher, Juraj Kuchár, Juraj Černák, Taju Sani, Abbasher Gismelseed, Tim Hochdörffer, Volker Schünemann, Christopher E. Anson, and et al. 2024. "Mononuclear Fe(III) Schiff Base Complex with Trans-FeO4N2 Chromophore of o-Aminophenol Origin: Synthesis, Characterisation, Crystal Structure, and Spin State Investigation" Inorganics 12, no. 6: 159. https://doi.org/10.3390/inorganics12060159
APA StyleTesfaye, D., Braun, J., Gebrezgiabher, M., Kuchár, J., Černák, J., Sani, T., Gismelseed, A., Hochdörffer, T., Schünemann, V., Anson, C. E., Powell, A. K., & Thomas, M. (2024). Mononuclear Fe(III) Schiff Base Complex with Trans-FeO4N2 Chromophore of o-Aminophenol Origin: Synthesis, Characterisation, Crystal Structure, and Spin State Investigation. Inorganics, 12(6), 159. https://doi.org/10.3390/inorganics12060159