Silver Nanoparticle-Immobilized Cotton Fabric Serves as Flexible Surface-Enhanced Raman Scattering Substrate for Detection of Toxin
Abstract
:1. Introduction
2. Results and Discussion
2.1. SEM and EDX Analysis of AgNP@CF Composites
2.2. XRD Analysis
2.3. The Characterization of the AgNP@CF Composites by FTIR Spectroscopy
2.4. Raman Spectroscopy and AgNPs@CF as SERS Substrate
3. Materials and Methods
3.1. Materials
3.2. The Precleaning of the Cotton Fabrics
3.3. In situ Synthesis of AgNPs on Cotton Fabrics
3.4. FTIR Studies of AgNP Composites
3.5. Raman Spectroscopic Measurement
3.6. SEM and EDX Analysis
3.7. XRD Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, J.; Mehta, A. Rapid and sensitive detection of mycotoxins by advanced and emerging analytical methods: A review. Food Sci. Nutr. 2020, 8, 2183–2204. [Google Scholar] [CrossRef] [PubMed]
- Malečková, M.; Vrzal, T.; Olšovská, J. Development of a method for melamine determination in beer and beer-type beverages by GC-MS/MS. Kvasny Prum. 2020, 66, 331. [Google Scholar] [CrossRef]
- Zhou, Q.; Tan, X.C.; Guo, X.J.; Huang, Y.J.; Zhai, H.Y. Preparation and characterization of molecularly imprinted solid-phase extraction column coupled with high-performance liquid chromatography for selective determination of melamine. R. Soc. Open Sci. 2018, 5, 180750. [Google Scholar] [CrossRef]
- Sushma, U.; Srivastava, K.A.; Krishnan, H.M. Melamine Detection in Food matrices employing Chicken Antibody (IgY): A Comparison between Colorimetric and Chemiluminescent Methods. Curr. Anal. Chem. 2019, 15, 668–677. [Google Scholar] [CrossRef]
- de Koning, S.; Janssen, H.-G.; Brinkman, U.A.T. Modern Methods of Sample Preparation for GC Analysis. Chroma 2009, 69, 33–78. [Google Scholar] [CrossRef]
- Domínguez, I.; Garrido Frenich, A.; Romero-González, R. Mass spectrometry approaches to ensure food safety. Anal. Methods 2020, 12, 1148–1162. [Google Scholar] [CrossRef]
- Miseo, E.V.; Bradley, M.S. 2022 Review of spectroscopic instrumentation. Spectroscopy 2022, 37, 40–54. [Google Scholar] [CrossRef]
- Schulz, H.; Baranska, M. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib. Spectrosc. 2007, 43, 13–25. [Google Scholar] [CrossRef]
- Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14, 28–117. [Google Scholar] [CrossRef]
- Zhang, D.; Pu, H.; Huang, L.; Sun, D.-W. Advances in flexible surface-enhanced Raman scattering (SERS) substrates for nondestructive food detection: Fundamentals and recent applications. Trends Food Sci. Technol. 2021, 109, 690–701. [Google Scholar] [CrossRef]
- Wang, K.; Sun, D.-W.; Pu, H.; Wei, Q. Shell thickness-dependent Au@Ag nanoparticles aggregates for high-performance SERS applications. Talanta 2019, 195, 506–515. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Gong, L.; Wang, W.; Gong, Z.; Wang, D.; Fan, M. Surface-enhanced Raman spectroscopy for on-site analysis: A review of recent developments. Luminescence 2020, 35, 808–820. [Google Scholar] [CrossRef] [PubMed]
- Heleg-Shabtai, V.; Sharabi, H.; Zaltsman, A.; Ron, I.; Pevzner, A. Surface-enhanced Raman spectroscopy (SERS) for detection of VX and HD in the gas phase using a hand-held Raman spectrometer. Analyst 2020, 145, 6334–6341. [Google Scholar] [CrossRef] [PubMed]
- Perumal, J.; Wang, Y.; Attia, A.B.E.; Dinish, U.S.; Olivo, M. Towards a point-of-care SERS sensor for biomedical and agri-food analysis applications: A review of recent advancements. Nanoscale 2021, 13, 553–580. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.-C.; Tsai, H.-C.; Chin, Y.-C.; Huang, W.-S.; Chiu, Y.-C.; Hsu, T.-C.; Chia, Z.-C.; Hung, T.-C.; Huang, C.-C.; Hsieh, Y.-T. Concave Double-Walled AgAuPd Nanocubes for Surface-Enhanced Raman Spectroscopy Detection and Catalysis Applications. ACS Appl. Nano Mater. 2021, 4, 10103–10115. [Google Scholar] [CrossRef]
- Li, C.; Huang, Y.; Li, X.; Zhang, Y.; Chen, Q.; Ye, Z.; Alqarni, Z.; Bell, S.E.J.; Xu, Y. Towards practical and sustainable SERS: A review of recent developments in the construction of multifunctional enhancing substrates. J. Mater. Chem. C 2021, 9, 11517–11552. [Google Scholar] [CrossRef]
- Yaseen, T.; Pu, H.; Sun, D.-W. Effects of Ions on Core-Shell Bimetallic Au@Ag NPs for Rapid Detection of Phosalone Residues in Peach by SERS. Food Anal. Methods 2019, 12, 2094–2105. [Google Scholar] [CrossRef]
- Zong, C.; Ge, M.; Pan, H.; Wang, J.; Nie, X.; Zhang, Q.; Zhao, W.; Liu, X.; Yu, Y. In situ synthesis of low-cost and large-scale flexible metal nanoparticle–polymer composite films as highly sensitive SERS substrates for surface trace analysis. RSC Adv. 2019, 9, 2857–2864. [Google Scholar] [CrossRef] [PubMed]
- Baruah, B. In situ and facile synthesis of silver nanoparticles on baby wipes and their applications in catalysis and SERS. RSC Adv. 2016, 6, 5016–5023. [Google Scholar] [CrossRef]
- Sun, J.; Gong, L.; Gong, Z.; Wang, D.; Yin, X.; Fan, M. Facile fabrication of a large-area and cost-effective PDMS-SERS substrate by sandpaper template-assisted lithography. Anal. Methods 2019, 11, 4917–4922. [Google Scholar] [CrossRef]
- Li, D.; Zhu, Z.; Sun, D.-W. Visualization of the in situ distribution of contents and hydrogen bonding states of cellular level water in apple tissues by confocal Raman microscopy. Analyst 2020, 145, 897–907. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Li, B.; Liu, X.; Chen, J.; Mu, T.; Zhu, L.; Guo, J.; Ma, X. Performance enhancement of paper-based SERS chips by shell-isolated nanoparticle-enhanced Raman spectroscopy. J. Mater. Sci. Technol. 2019, 35, 2207–2212. [Google Scholar] [CrossRef]
- Zeng, F.; Duan, W.; Zhu, B.; Mu, T.; Zhu, L.; Guo, J.; Ma, X. Paper-Based Versatile Surface-Enhanced Raman Spectroscopy Chip with Smartphone-Based Raman Analyzer for Point-of-Care Application. Anal. Chem. 2019, 91, 1064–1070. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Senapati, S.; Nanda, K.K. “Rinse, Repeat”: An Efficient and Reusable SERS and Catalytic Platform Fabricated by Controlled Deposition of Silver Nanoparticles on Cellulose Paper. ACS Sustain. Chem. Eng. 2019, 7, 14089–14101. [Google Scholar] [CrossRef]
- Liu, J.; Si, T.; Zhang, L.; Zhang, Z. Mussel-Inspired Fabrication of SERS Swabs for Highly Sensitive and Conformal Rapid Detection of Thiram Bactericides. Nanomaterials 2019, 9, 1331. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Zou, S.; Ma, L.; Wang, S.; Liao, J.; Zhang, Z. Surface-Enhanced Raman Scattering Detection of Pesticide Residues Using Transparent Adhesive Tapes and Coated Silver Nanorods. ACS Appl. Mater. Interfaces 2018, 10, 9129–9135. [Google Scholar] [CrossRef]
- Huang, W.C.; Cheng, K.F.; Shyu, J.Y. Flexible SERS substrate of silver nanoparticles on cotton swabs for rapid in situ detection of melamine. Nanoscale Adv. 2022, 4, 1164–1172. [Google Scholar] [CrossRef]
- Qin, Y.; Ji, X.; Jing, J.; Liu, H.; Wu, H.; Yang, W. Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloids Surf. A 2010, 372, 172–176. [Google Scholar] [CrossRef]
- Phongtongpasuk, S.; Poadang, S.; Yongvanich, N. Environmental-friendly Method for Synthesis of Silver Nanoparticles from Dragon Fruit Peel Extract and their Antibacterial Activities. Energy Procedia 2016, 89, 239–247. [Google Scholar] [CrossRef]
- Andra, S.; Balu, S.K.; Jeevanandam, J.; Muthalagu, M.; Danquah, M.K. Surface cationization of cellulose to enhance durable antibacterial finish in phytosynthesized silver nanoparticle treated cotton fabric. Cellulose 2021, 28, 5895–5910. [Google Scholar] [CrossRef]
- Diwakar, B.S.; Govindh, B.; Sekhar, D.C.; Bhavani, P.; Swaminadham, V.; Reddy, K.A. Room temperature dielectric and antibacterial behavior of thiosemicarbazide capped low dimension Silver and Gold nanoparticles. Int. J. Nano Dimens. 2017, 8, 274–283. [Google Scholar]
- Huang, H.; Shende, C.; Sengupta, A.; Inscore, F.; Brouillette, C.; Smith, W.; Farquharson, S. Surface-enhanced Raman spectra of melamine and other chemicals using a 1550 nm (retina-safe) laser. J. Raman Spectrosc. 2012, 43, 701–705. [Google Scholar] [CrossRef]
- Chen, L.-M.; Liu, Y.-N. Surface-Enhanced Raman Detection of Melamine on Silver-Nanoparticle-Decorated Silver/Carbon Nanospheres: Effect of Metal Ions. ACS Appl. Mater. Interfaces 2011, 3, 3091–3096. [Google Scholar] [CrossRef]
- Le Ru, E.C.; Blackie, E.; Meyer, M.; Etchegoin, P.G. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C 2007, 111, 13794–13803. [Google Scholar] [CrossRef]
- Li, L.; Chin, W.S. Rapid and sensitive SERS detection of melamine in milk using Ag nanocube array substrate coupled with multivariate analysis. Food Chem. 2021, 357, 129717. [Google Scholar] [CrossRef] [PubMed]
- Xing, H.; Zheng, B.; Li, X.; Dang, X.; Zhang, H.; Tian, F.; Hu, X. Sensitive SERS detection of melamine and cyromazine in raw milk using aptamer-based in situ silver nanoparticles synthesis. Results Chem. 2022, 4, 100266. [Google Scholar] [CrossRef]
- Cuong, N.M.; Cao, D.T.; Thu, V.T.; Ngan, L.T.-Q. Direct detection of melamine in liquid milk and infant formula using surface-enhanced Raman scattering combined with silver nanodendrites. Optik 2021, 243, 167504. [Google Scholar] [CrossRef]
- Chen, X.; Hu, Y.; Gao, J.; Zhang, Y.; Li, S. Interaction of Melamine Molecules with Silver Nanoparticles Explored by Surface-Enhanced Raman Scattering and Density Functional Theory Calculations. Appl. Spectrosc. 2013, 67, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Tian, Y.; Ma, P.; Yu, A.; Zhang, H.; Chen, Y. Determination of melamine and malachite green by surface-enhanced Raman scattering spectroscopy using starch-coated silver nanoparticles as substrates. Anal. Methods 2015, 7, 8116–8122. [Google Scholar] [CrossRef]
- Li, X.; Feng, S.; Hu, Y.; Sheng, W.; Zhang, Y.; Yuan, S.; Zeng, H.; Wang, S.; Lu, X. Rapid Detection of Melamine in Milk Using Immunological Separation and Surface Enhanced Raman Spectroscopy. J. Food Sci. 2015, 80, C1196–C1209. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Wang, J.; Ma, Z.; Kong, D.; Jiang, S.; Luo, D.; Liu, Y.J. Graphene Oxide-Coated Metal–Insulator–Metal SERS Substrates for Trace Melamine Detection. Nanomaterials 2022, 12, 1202. [Google Scholar] [CrossRef]
- Athauda, T.J.; Hari, P.; Ozer, R.R. Tuning Physical and Optical Properties of ZnO Nanowire Arrays Grown on Cotton Fibers. ACS Appl. Mater. Interfaces 2013, 5, 6237–6246. [Google Scholar] [CrossRef]
- He, J.; Kunitake, T.; Nakao, A. Facile In Situ Synthesis of Noble Metal Nanoparticles in Porous Cellulose Fibers. Chem. Mater. 2003, 15, 4401–4406. [Google Scholar] [CrossRef]
- Ma, P.; Liang, F.; Sun, Y.; Jin, Y.; Chen, Y.; Wang, X.; Zhang, H.; Gao, D.; Song, D. Rapid determination of melamine in milk and milk powder by surface-enhanced Raman spectroscopy and using cyclodextrin-decorated silver nanoparticles. Microchim. Acta 2013, 180, 1173–1180. [Google Scholar] [CrossRef]
- Lee, C.H.; Tian, L.; Singamaneni, S. Paper-Based SERS Swab for Rapid Trace Detection on Real-World Surfaces. ACS Appl. Mater. Interfaces 2010, 2, 3429–3435. [Google Scholar] [CrossRef]
Samples | Raman (cm−1) | SERS (cm−1) | AEF (5.0 mM) | SERS (cm−1) | AEF (1.0 mM) | SERS (cm−1) | AEF (0.1 mM) |
---|---|---|---|---|---|---|---|
100 mM | 677 | - | - | - | - | - | - |
AgNP@CF-1 | - | 694 | 0.45 × 102 ± 2.2 | 689 | 1.35 × 102 ± 3.0 | 685 | 4.45 × 102 ± 34 |
AgNP@CF-2 | - | 684 | 0.84 × 102 ± 2.3 | 700 | 2.58 × 102 ± 3.0 | 687 | 8.15 × 102 ± 24 |
AgNP@CF-3 | - | 686 | 1.17 × 102 ± 2.8 | 696 | 4.73 × 102 ± 9.5 | 687 | 9.18 × 102 ± 30 |
Sl. # | SERS Substrate | LOD (M) | Reference |
---|---|---|---|
1 | Ag nanocube | 7.9 × 10−8 | [35] |
2 | Ag/C/AgNps | 5.0 × 10−8 | [33] |
3 | CS-ATS-Ag cotton swabs | 1.6 × 10−6 | [27] |
4 | MEL-T31-AgNPs | 7.9 × 10−7 | [36] |
5 | Fern-like silver nanodendrites (AgNDs) | 1.6 × 10−7 | [37] |
6 | Ag colloid | 8.0 × 10−3 | [38] |
7 | Starch-coated AgNPs | 1.6 × 10−8 | [39] |
8 | Silver dendrite | 7.9 × 10−4 | [40] |
9 | Ag/SiO2/Au/Si substrate | 1.0 × 10−9 | [41] |
10 | CD-AgNPs | 2.4 × 10−8 | [42] |
11 | AgNP@wipe | 1.0 × 10−3 | [19] |
12 | AgNP@CF | 1.0 × 10−4 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baruah, B.; Woods, M. Silver Nanoparticle-Immobilized Cotton Fabric Serves as Flexible Surface-Enhanced Raman Scattering Substrate for Detection of Toxin. Inorganics 2024, 12, 170. https://doi.org/10.3390/inorganics12060170
Baruah B, Woods M. Silver Nanoparticle-Immobilized Cotton Fabric Serves as Flexible Surface-Enhanced Raman Scattering Substrate for Detection of Toxin. Inorganics. 2024; 12(6):170. https://doi.org/10.3390/inorganics12060170
Chicago/Turabian StyleBaruah, Bharat, and Michael Woods. 2024. "Silver Nanoparticle-Immobilized Cotton Fabric Serves as Flexible Surface-Enhanced Raman Scattering Substrate for Detection of Toxin" Inorganics 12, no. 6: 170. https://doi.org/10.3390/inorganics12060170
APA StyleBaruah, B., & Woods, M. (2024). Silver Nanoparticle-Immobilized Cotton Fabric Serves as Flexible Surface-Enhanced Raman Scattering Substrate for Detection of Toxin. Inorganics, 12(6), 170. https://doi.org/10.3390/inorganics12060170