Accomplishment of α-Chymotrypsin on Photodynamic Effect of Octa-Substituted Zn(II)- and Ga(III)-Phthalocyanines against Melanoma Cells
Abstract
:1. Introduction
2. Results
2.1. Synthesis
2.2. Spectrophotometric Study
2.3. Proteolytic Activity
2.4. Photo-Safety Validation
2.5. Photodynamic Therapeutic Efficacy
3. Discussion
4. Materials and Methods
4.1. Phthalocyanines and Chemicals
4.1.1. Synthesis of 2,3,9,10,16,17,23,24-Octakis-[(2-N-pyridiloxy) Phthalocyaninato] Zinc(II) Complex (6)
4.1.2. Synthesis of 2,3,9,10,16,17,23,24-Octakis-{[2-(N-methyl) Pyridiloxy] Phthalocyaninato} Zinc(II) Octaiodide (ZnPc1)
4.2. Proteolytic Activity Measurements
4.3. Photo-Physicochemical Study
4.4. Cell Cultures
4.5. Light Sources
4.6. Phototoxicity Study
4.7. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lopes, J.; Rodrigues, C.M.P.; Gaspar, M.M.; Reis, C.P. How to Treat Melanoma? The Current Status of Innovative Nanotechnological Strategies and the Role of Minimally Invasive Approaches like PTT and PDT. Pharmaceutics 2022, 14, 1817. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, A.F.; De Almeida, D.R.Q.; Terra, L.F.; Baptista, M.S.; Labriola, L. Photodynamic therapy in cancer treatment—An update review. J. Cancer Metastasis Treat. 2019, 5, 25. [Google Scholar] [CrossRef]
- Bacellar, I.; Tsubone, T.; Pavani, C.; Baptista, M. Photodynamic Efficiency: From Molecular Photochemistry to Cell Death. Int. J. Mol. Sci. 2015, 16, 20523–20559. [Google Scholar] [CrossRef]
- Gunaydin, G.; Gedik, M.E.; Ayan, S. Photodynamic Therapy for the Treatment and Diagnosis of Cancer–A Review of the Current Clinical Status. Front. Chem. 2021, 9, 686303. [Google Scholar] [CrossRef] [PubMed]
- Crous, A.; Chizenga, E.; Hodgkinson, N.; Abrahamse, H. Targeted Photodynamic Therapy: A Novel Approach to Abolition of Human Cancer Stem Cells. Int. J. Opt. 2018, 2018, 1–9. [Google Scholar] [CrossRef]
- Ömeroğlu, İ.; Durmuş, M. Water-soluble phthalocyanine photosensitizers for photodynamic therapy. Turk. J. Chem. 2023, 47, 837–863. [Google Scholar] [CrossRef]
- Güzel, E.; Koçyigit, Ü.M.; Taslimi, P.; Erkan, S.; Taskin, O.S. Biologically active phthalocyanine metal complexes: Preparation, evaluation of α-glycosidase and anticholinesterase enzyme inhibition activities, and molecular docking studies. J. Biochem. Mol. Toxicol. 2021, 35, 22765. [Google Scholar] [CrossRef] [PubMed]
- González-Titos, A.; Hernández-Camarero, P.; Barungi, S.; Marchal, J.A.; Kenyon, J.; Perán, M. Trypsinogen and chymotrypsinogen: Potent anti-tumor agents. Expert Opin. Biol. Ther. 2021, 21, 1609–1621. [Google Scholar] [CrossRef] [PubMed]
- Blagosklonny, M.V. Selective protection of normal cells from chemotherapy, while killing drug-resistant cancer cells. Oncotarget 2023, 14, 193–206. [Google Scholar] [CrossRef]
- Rudzińska, M.; Daglioglu, C.; Savvateeva, L.V.; Kaci, F.N.; Antoine, R.; Zamyatnin Jr, A.A. Current Status and Perspectives of Protease Inhibitors and Their Combination with Nanosized Drug Delivery Systems for Targeted Cancer Therapy. Drug Des. Devel. Ther. 2021, 15, 9–20. [Google Scholar] [CrossRef]
- Gierlich, P.; Mata, A.I.; Donohoe, C.; Brito, R.M.M.; Senge, M.O.; Gomes-da-Silva, L.C. Ligand-Targeted Delivery of Photosensitizers for Cancer Treatment. Molecules 2020, 25, 5317. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, N.; Sevilla, A. Current Advances in Photodynamic Therapy (PDT) and the Future Potential of PDT-Combinatorial Cancer Therapies. Int. J. Mol. Sci. 2024, 25, 1023. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Bian, Y.; Yuan, M.; Zhu, Y.; Liu, S.; Ding, H.; Gai, S.; Yang, P.; Cheng, Z.; Lin, J. L-buthionine sulfoximine encapsulated hollow calcium peroxide as a chloroperoxidase nanocarrier for enhanced enzyme dynamic therapy. Biomaterials 2022, 289, 121746. [Google Scholar] [CrossRef] [PubMed]
- Zuluaga, M.F.; Gabriel, D.; Lange, N. Enhanced prostate cancer targeting by modified protease sensitive photosensitizer prodrugs. Mol. Pharm. 2012, 9, 1570–1579. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.Y.; Swierczewska, M.; Lee, S.; Chen, X. Protease-activated drug development. Theranostics 2012, 2, 156–178. [Google Scholar] [CrossRef]
- Qin, X.; Wu, C.; Niu, D.; Qin, L.; Wang, X.; Wang, Q.; Li, Y. Peroxisome inspired hybrid enzyme nanogels for chemodynamic and photodynamic therapy. Nat. Commun. 2021, 12, 5243–5315. [Google Scholar] [CrossRef]
- López-Otín, C.; Bond, J.S. Proteases: Multifunctional enzymes in life and disease. J. Biol. Chem. 2008, 283, 30433–30437. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Stefflova, K.; Niedre, M.J.; Wilson, B.C.; Chance, B.; Glickson, J.D.; Zheng, G. Protease-triggered photosensitizing beacon based on singlet oxygen quenching and activation. J. Am. Chem Soc. 2004, 126, 11450–11451. [Google Scholar] [CrossRef] [PubMed]
- Hackbarth, S.; Ermilov, E.A.; Röder, B. Interaction of Pheophorbide a molecule covalently linked to DAB dendrimers. Opt. Commun. 2005, 248, 295–306. [Google Scholar] [CrossRef]
- Choi, Y.; Weissleder, R.; Tung, C.-H. Selective antitumor effect of novel protease-mediated photodynamic agent. Cancer Res. 2006, 66, 7225–7229. [Google Scholar] [CrossRef]
- Leipner, J.; Saller, R. Systemic enzyme therapy in oncology: Effect and mode of action. Drugs 2000, 59, 769–780. [Google Scholar] [CrossRef] [PubMed]
- Chandanwale, A.; Langade, D.; Sonawane, D.; Gavai, P. A Randomized, Clinical Trial to Evaluate Efficacy and Tolerability of Trypsin: Chymotrypsin as Compared to Serratiopeptidase and Trypsin: Bromelain: Rutoside in Wound Management. Adv. Ther. 2017, 34, 180–198. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, X.; Wu, Y.; Chen, Y.; Guo, Y.; Jana, D.; Wang, D.; Yuan, W.; Zhao, Y. Tumor extracellular matrix-targeted nanoscavengers reverse suppressive microenvironment for cocktail therapy. Mater. Today 2022, 61, 78–90. [Google Scholar] [CrossRef]
- Jiao, J.; He, J.; Li, M.; Yang, J.; Yang, H.; Wang, X.; Yang, S. A porphyrin-based metallacage for enhanced photodynamic therapy. Nanoscale 2022, 14, 6373–6383. [Google Scholar] [CrossRef] [PubMed]
- Wöhrle, D.; Eskes, M.; Shigehara, K.; Yamada, A. A Simple Synthesis of 4,5-Disubstituted 1,2-Dicyanobenzenes and 2,3,9,10,16,17,23,24- Octasubstituted Phthalocyanines. Synthesis 1993, 1993, 194–196. [Google Scholar] [CrossRef]
- Mantareva, V.; Kussovski, V.; Angelov, I.; Wöhrle, D.; Dimitrov, R.; Popova, E.; Dimitrov, S. Non-aggregated Ga(III)-phthalocyanines in the photodynamic inactivation of planktonic and biofilm cultures of pathogenic microorganisms. Photochem. Photobiol. Sci. 2011, 10, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Mantareva, V.; Iliev, I.; Sulikovska, I.; Durmuş, M.; Genova, T. Collagen Hydrolysate Effects on Photodynamic Efficiency of Gallium (III) Phthalocyanine on Pigmented Melanoma Cells. Gels 2023, 9, 475. [Google Scholar] [CrossRef] [PubMed]
- Angelov, I.; Mantareva, V.; Kussovski, V.; Wohrle, D.; Borisova, E.; Avramov, L. Improved antimicrobial therapy with cationic tetra- and octa-substituted phthalocyanines. In Proceedings of the 15th International School on Quantum Electronics: Laser Physics and Applications, Bourgas, Bulgaria, 15–19 September 2008; SPIE: Philadelphia, PA, USA, 2008; Volume 7027, pp. 378–385. [Google Scholar]
- Mantareva, V.; Angelov, I.; Kussovski, V.; Wöhrle, D.; Dimitrov, S. Metallophthalocyanines as photodynamic sensitizers for treatment of pathogenic bacteria: Synthesis and singlet oxygen formation. Comp. Rend. Acad. Bulg. Sci. 2009, 62, 1521–1526. [Google Scholar]
- Mack, J.; Kobayashi, N.; Stillman, M.J. Re-examination of the emission properties of alkoxy- and thioalkyl-substituted phthalocyanines. J. Inorg. Biochem. 2010, 104, 310–317. [Google Scholar] [CrossRef]
- Farhadian, S.; Shareghi, B.; Saboury, A.A. Exploring the thermal stability and activity of α-chymotrypsin in the presence of spermine. J. Biomol. Struct. Dyn. 2016, 35, 435–448. [Google Scholar] [CrossRef]
- Barut, B.; Demirbas, Ü. Synthesis, anti-cholinesterease, α-glucosidase inhibitory, antioxidant and DNA nuclease properties of non-peripheral triclosan substituted metal-free, copper (II), and nickel (II) phthalocyanines. J. Organomet. Chem. 2020, 23, 121423. [Google Scholar] [CrossRef]
- Patel, S. A critical review on serine protease: Key immune manipulator and pathology mediator. Allergol. Immunopathol. 2017, 45, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Antalis, T.M.; Buzza, M.S. Extracellular: Plasma Membrane Proteases—Serine Proteases. Encycl. Cell Biol. 2016, 650–660. [Google Scholar] [CrossRef]
- Vizovisek, M.; Ristanovic, D.; Menghini, S.; Christiansen, M.G.; Schuerle, S. The Tumor Proteolytic Landscape: A Challenging Frontier in Cancer Diagnosis and Therapy. Int. J. Mol. Sci. 2021, 22, 2514. [Google Scholar] [CrossRef] [PubMed]
- Biasutti, M.A.; Posadaz, A.; Garcıa, N.A. A comparative kinetic study on the singlet molecular oxygen-mediated photoxidation of a- and b-chymotrypsins. J. Peptide Res. 2003, 62, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Altrogge, L.M.; Monard, D. An assay for high-sensitivity detection of thrombin activity and determination of proteases activating or inactivating protease-activated receptors. Anal. Biochem. 2000, 277, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; De Li, S.; Li, Z.G.; Zhu, Y.C.; Yi, X.J.; Li, S.M. The expression of protease-activated receptors in esophageal carcinoma cells: The relationship between changes in gene expression and cell proliferation, apoptosis in vitro and growing ability in vivo. Cancer Cell Int. 2018, 18, 81. [Google Scholar] [CrossRef]
- Johnson, A.J.; Kline, D.L.; Alkjaersig, N. Assay methods and standard preparations for plasmin, plasminogen and urokinase in purified systems. Thromb. Diath. Haemorrh. 1969, 21, 259–272. [Google Scholar] [PubMed]
- Gousterova, A.; Goshev, I.; Christov, P.; Tsvetkova, R.; Nedkov, P. Characterisation of Collagenolytic Enzymes Produced by Thermophylic Actinomycetes. Biotechnol. Biotechnol. Equip. 2003, 17, 81–8632. [Google Scholar] [CrossRef]
- Hamad, O.A.; Kareem, R.O.; Omer, P.K. Recent Developments in Synthesize, Properties, Characterization, and Application of Phthalocyanine and Metal Phthalocyanine. J. Chem. Rev. 2024, 6, 39–75. [Google Scholar]
- Ogunsipe, A.; Chen, J.-Y.; Nyokong, T. Photophysical and photochemical studies of zinc(II) phthalocyanine derivatives—Effects of substituents and solvents. New J. Chem. 2004, 28, 822–827. [Google Scholar] [CrossRef]
- Gürel, E.; Pişkin, M.; Altun, S.; Odabaş, Z.; Durmuş, M. The novel mesityloxy substituted metallo-phthalocyanine dyes with long fluorescence lifetimes and high singlet oxygen quantum yields. J. Photochem. Photobiol. A Chem. 2016, 315, 42–51. [Google Scholar] [CrossRef]
- Brannon, J.H.; Madge, D. Picosecond laser photophysics. Group 3A phthalocyanines. J. Am. Chem. Soc. 1980, 102, 62–65. [Google Scholar] [CrossRef]
- Ogunsipe, A.; Nyokong, T. Photophysical and photochemical studies of sulphonated non-transition metal phthalocyanines in aqueous and non-aqueous media. J. Photochem. Photobiol. A Chem. 2005, 173, 211–220. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantareva, V.; Braikova, D.; Vilhelmova-Ilieva, N.; Angelov, I.; Iliev, I. Accomplishment of α-Chymotrypsin on Photodynamic Effect of Octa-Substituted Zn(II)- and Ga(III)-Phthalocyanines against Melanoma Cells. Inorganics 2024, 12, 204. https://doi.org/10.3390/inorganics12080204
Mantareva V, Braikova D, Vilhelmova-Ilieva N, Angelov I, Iliev I. Accomplishment of α-Chymotrypsin on Photodynamic Effect of Octa-Substituted Zn(II)- and Ga(III)-Phthalocyanines against Melanoma Cells. Inorganics. 2024; 12(8):204. https://doi.org/10.3390/inorganics12080204
Chicago/Turabian StyleMantareva, Vanya, Diana Braikova, Neli Vilhelmova-Ilieva, Ivan Angelov, and Ivan Iliev. 2024. "Accomplishment of α-Chymotrypsin on Photodynamic Effect of Octa-Substituted Zn(II)- and Ga(III)-Phthalocyanines against Melanoma Cells" Inorganics 12, no. 8: 204. https://doi.org/10.3390/inorganics12080204
APA StyleMantareva, V., Braikova, D., Vilhelmova-Ilieva, N., Angelov, I., & Iliev, I. (2024). Accomplishment of α-Chymotrypsin on Photodynamic Effect of Octa-Substituted Zn(II)- and Ga(III)-Phthalocyanines against Melanoma Cells. Inorganics, 12(8), 204. https://doi.org/10.3390/inorganics12080204