Previous Issue
Volume 13, October
 
 

Inorganics, Volume 13, Issue 11 (November 2025) – 8 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
20 pages, 5604 KB  
Article
Unraveling the Fe-Dependent Phase Evolution and Structure of Ni-Fe/γ-Al2O3 Catalysts: A Combined Experimental and Computational Study
by Semyon A. Gulevich, Mariya P. Shcherbakova-Sandu, Eugene P. Meshcheryakov, Yurij A. Abzaev, Sergey A. Guda, Ritunesh Kumar, Akshay K. Sonwane, Sonali Samal, Ajay K. Kushwaha and Irina A. Kurzina
Inorganics 2025, 13(11), 349; https://doi.org/10.3390/inorganics13110349 (registering DOI) - 24 Oct 2025
Abstract
Nickel–iron (Ni-Fe) catalysts are widely used in industry due to their cost-effectiveness and versatile catalytic properties. This work investigates the structural and morphological characteristics of Ni-Fe catalysts supported on γ-Al2O3, synthesized with varying Ni/Fe atomic ratios (from 1:1 to [...] Read more.
Nickel–iron (Ni-Fe) catalysts are widely used in industry due to their cost-effectiveness and versatile catalytic properties. This work investigates the structural and morphological characteristics of Ni-Fe catalysts supported on γ-Al2O3, synthesized with varying Ni/Fe atomic ratios (from 1:1 to 20:1). The catalysts were characterized using a combination of experimental techniques including X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM/TEM), and selected-area electron diffraction (SAED). Theoretical modeling using the USPEX evolutionary algorithm complemented the experimental data by predicting stable Ni-Fe crystal structures. The results revealed uniform metal distribution on the support with particle sizes ranging from 4.1 to 4.5 nm. SAED analysis confirmed the formation of an intermetallic FeNi phase, particularly in samples with higher iron content. This study demonstrates Ni-Fe interaction effects and will be of interest to researchers in catalysis and materials science working on the development of bimetallic systems. Full article
(This article belongs to the Section Inorganic Materials)
18 pages, 4497 KB  
Article
Theoretical Comparison Between Noble Metal (Pd or Ru)-Doped GeS2 Monolayers as Sensitive Materials upon C4F7N Decomposed Gases
by Xinyu Guo, Shouxiao Ma, Yun Liu and Hao Cui
Inorganics 2025, 13(11), 348; https://doi.org/10.3390/inorganics13110348 (registering DOI) - 24 Oct 2025
Abstract
This work comparably investigates the gas sensing potential of noble metal (Pd and Ru)-doped GeS2 monolayers upon three C4F7N decomposed species (FCN, CF3CN, and C2F4) using the first-principles theory, for operation status [...] Read more.
This work comparably investigates the gas sensing potential of noble metal (Pd and Ru)-doped GeS2 monolayers upon three C4F7N decomposed species (FCN, CF3CN, and C2F4) using the first-principles theory, for operation status evaluation in C4F7N-insulated devices. The Pd- and Ru-doping effects on the pristine GeS2 monolayer are analyzed, followed by the adsorption mechanism and sensing performance of two doped monolayers. Our results demonstrate that while Ru doping induces stronger surface interactions with the GeS2 substrate and consequently exhibits superior adsorption strengths upon the three gases, the Pd-doped monolayer shows remarkable advantages in charge transfer capability that leads to exceptional room-temperature sensitivity responses of −99.6% (FCN), −95.0% (CF3CN), and −88.0% (C2F4), thus significantly outperforming the Ru-doped system. Combined with the instantaneous recovery for gas desorption, the Pd-GeS2 monolayer holds significance as an ideal room-temperature sensor to monitor the operation status of C4F7N-insulated devices in power systems. This research provides promising insights into the application of GeS2-based materials for gas sensing in power systems and emphasizes the importance of dopant selection in designing high-performance gas sensing materials, especially for developing advanced electrical equipment monitoring technologies. Full article
Show Figures

Figure 1

23 pages, 5879 KB  
Review
Synthesis, Photophysical Mechanisms, and Applications of Luminescent Organic–Inorganic Hybrid Metal Halides
by Zhenwen Sheng, Suqin Wang, Bo Shao, Yu He, Zhuang Liu, Hui Zhu and Zhi Sheng
Inorganics 2025, 13(11), 347; https://doi.org/10.3390/inorganics13110347 - 24 Oct 2025
Abstract
Organic–inorganic hybrid metal halides (OIMHs) have attracted widespread attention due to their unique chemical properties, excellent electronic performance, and low-cost fabrication processes. These hybrid materials impose fewer size constraints on the organic components, providing an exciting platform for the molecular-level design of new [...] Read more.
Organic–inorganic hybrid metal halides (OIMHs) have attracted widespread attention due to their unique chemical properties, excellent electronic performance, and low-cost fabrication processes. These hybrid materials impose fewer size constraints on the organic components, providing an exciting platform for the molecular-level design of new materials and functionalities. In this review, we discuss the latest progress in OIMHs. Specifically, we summarize recent advances in their structures, synthetic strategies, and luminescence mechanisms, and highlight their applications in light-emitting diodes (LEDs), information encryption and anti-counterfeiting, sensors, and X-ray imaging. Finally, we discuss the challenges related to structural design, mechanistic understanding, and stability, along with perspectives on future opportunities for OIMHs. Full article
(This article belongs to the Special Issue Advanced Inorganic Semiconductor Materials, 3rd Edition)
Show Figures

Figure 1

12 pages, 2734 KB  
Article
Effect of CaO/SiO2 and MgO/Al2O3 on the Metallurgical Properties of Low Boron-Bearing High-Alumina Slag
by Ye Sun, Zuoliang Zhang, Chunlei Wu and Zhenggen Liu
Inorganics 2025, 13(11), 346; https://doi.org/10.3390/inorganics13110346 - 24 Oct 2025
Abstract
For optimizing the operational efficiency and productivity within blast furnace processes, a profound understanding of the viscous flow characteristics of CaO–SiO2–MgO–Al2O3–B2O3 slag systems is of paramount importance. In this study, we conducted a comprehensive [...] Read more.
For optimizing the operational efficiency and productivity within blast furnace processes, a profound understanding of the viscous flow characteristics of CaO–SiO2–MgO–Al2O3–B2O3 slag systems is of paramount importance. In this study, we conducted a comprehensive investigation into the influence of the CaO/SiO2 and MgO/Al2O3 ratios on the viscosity, break point temperature (TBr), and activation energy (Eη) of low boron-bearing high-alumina slag. Concurrently, we elucidated the underlying mechanisms through which these ratios affect the viscous behavior of the slag by employing a combination of analytical techniques, including X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and thermodynamic modeling using the Factsage software. The experimental findings reveal that, as the CaO/SiO2 ratio increases from 1.10 to 1.30, the slag viscosity at 1773 K decreases from 0.316 Pa·s to 0.227 Pa·s, while both the TBr and Eη exhibit an upward trend, rising from 1534 K and 117.01 kJ·mol−1 to 1583 K and 182.86 kJ·mol−1, respectively. Conversely, an elevation in the MgO/Al2O3 ratio from 0.40 to 0.65 results in a reduction in slag viscosity at 1773 K from 0.290 Pa·s to 0.208 Pa·s, accompanied by a decrease in TBr from 1567 K to 1542 K. The observed deterioration in slag flow properties can be attributed to an enhanced polymerization degree of complex viscous structural units within the slag matrix. Ultimately, our study identifies that an optimal viscous performance of the slag is achieved when the CaO/SiO2 ratio is maintained at 1.25 and the MgO/Al2O3 ratio is maintained at 0.55, providing valuable insights for the rational design and control of blast furnace slag systems. Full article
(This article belongs to the Special Issue Mixed Metal Oxides, 3rd Edition)
Show Figures

Figure 1

40 pages, 15076 KB  
Review
Recent Advances in Formaldehyde Catalytic Oxidation Catalysts
by Gaoxin Sun, Yike Gao, Xue Luo, Linshui Lian, Jing He, Shuwen Xie, Jiayi Su, Tiancheng Liu and Leilei Xu
Inorganics 2025, 13(11), 345; https://doi.org/10.3390/inorganics13110345 - 23 Oct 2025
Abstract
Formaldehyde (HCHO), a colorless gas, is currently a toxic gas that seriously endangers human health and the environment. To effectively remove formaldehyde, catalytic oxidation is considered to be the most promising, widely studied, and applied method. This method utilizes a catalyst to promote [...] Read more.
Formaldehyde (HCHO), a colorless gas, is currently a toxic gas that seriously endangers human health and the environment. To effectively remove formaldehyde, catalytic oxidation is considered to be the most promising, widely studied, and applied method. This method utilizes a catalyst to promote the reaction of HCHO with O2, converting it into harmless CO2 and H2O. In recent years, researchers have developed various catalysts, including noble metal catalysts (such as Pt, Pd) and transition-metal catalysts (such as Co3O4, MnO2), to improve the efficiency of formaldehyde oxidation. In experimental studies, by optimizing the composition, structure, and reaction conditions of the catalyst, the conversion rate and selectivity of formaldehyde can be significantly increased. This article reviews the current research status of noble metal catalysts and transition metal catalysts in the field of formaldehyde catalytic oxidation, discusses the main factors affecting the efficiency of formaldehyde catalytic oxidation in experimental studies, and finally explores the overall reaction mechanism of formaldehyde catalytic oxidation. In summary, formaldehyde catalytic oxidation technology has broad application prospects in indoor air purification, industrial waste gas treatment, etc. Full article
Show Figures

Figure 1

20 pages, 4378 KB  
Article
Structural and Magneto-Optical Study on the Tetrahedrally Configured [CoCl2(1-allylimidazole)2] and Molecular Docking to Hypoxia-Inducible Factor-1α
by Hela Ferjani, Bruno Poti e Silva, Faizul Azam, Yasmeen G. Abou El-Reash, Tarek Yousef, Nahal Rouzbeh, Leonhard Rochels, Sabrina Disch, Sascha A. Schäfer and Axel Klein
Inorganics 2025, 13(11), 344; https://doi.org/10.3390/inorganics13110344 - 23 Oct 2025
Abstract
The Co(II) complex [CoCl2(AImd)2] (AImd = 1-allylimidazole) was reinvestigated using a combination of experimental and theoretical methods. The previously reported crystal structure was redetermined and Hirshfeld surface analysis and enrichment ratios were added showing that intermolecular H⋯Cl and π⋯π [...] Read more.
The Co(II) complex [CoCl2(AImd)2] (AImd = 1-allylimidazole) was reinvestigated using a combination of experimental and theoretical methods. The previously reported crystal structure was redetermined and Hirshfeld surface analysis and enrichment ratios were added showing that intermolecular H⋯Cl and π⋯π interactions are the primary forces in the crystal structure, while H⋯H interactions dominate the surface of the molecule, making it rather hydrophobic in keeping with a low solubility in water. A Quantum Theory of Atoms in Molecules (QTAIM)/Non-Covalent Interactions (NCI)-Reduced Density Gradient (RDG) analysis on a dimeric model showed that the energies V(r) of the classical H⋯Cl hydrogen bonds range from −3.64 kcal/mol to −0.75 kcal/mol and were augmented by hydrophobic H⋯C interactions of >1 kcal/mol. T-dependent magnetization measurements reveal paramagnetic behavior with an effective magnetic moment of µeff = 4.66(2) µB. UV-vis absorption spectra in solution showed intense absorptions peaking at 240 nm, corresponding to intraligand π→π* transitions within the 1-allylimidazole moiety and a structured absorption around 600 nm, which is attributed to the spin-allowed d→d transitions of the high-spin Co(II) d7 ion in a distorted tetrahedral geometry. Both assignments were confirmed through TD-DFT calculations on the electronic transitions and agree with the DFT-calculated compositions of the frontier molecular orbitals. Molecular docking to hypoxia-inducible factor-1 alpha (HIF-1α) gave a docking score of −5.48 kcal/mol and showed hydrophobic⋯hydrophobic π-stacking interactions with the Ile233, Leu243, Val338, and Leu262 residues. A higher docking score of −6.11 kcal/mol and predominant hydrophobic⋯hydrophobic interactions with Trp296, His279, and Ile281 were found for HIF-1 inhibiting factor (FIH-1). Full article
Show Figures

Figure 1

11 pages, 2803 KB  
Article
Correlation of EPR and Photoluminescence Analysis for Crystalline Defects in Eu3+/Yb3+-Doped Lutetium Silicate Sol–Gel Powders
by Andrea Danielle Cancino-Moreno, Arturo López-Marure, Stephany Natasha Arellano-Ahumada, Daniel Ramírez-Rosales and Margarita García-Hernández
Inorganics 2025, 13(11), 343; https://doi.org/10.3390/inorganics13110343 - 22 Oct 2025
Viewed by 107
Abstract
Crystalline defects such as oxygen vacancies have been studied little by electron paramagnetic resonance (EPR) spectroscopy for silicate-based luminescent materials. In this study, lutetium oxyorthosilicate powders were prepared by the sol–gel method, using TEOS (silicon source) and rare earth salts as precursors. The [...] Read more.
Crystalline defects such as oxygen vacancies have been studied little by electron paramagnetic resonance (EPR) spectroscopy for silicate-based luminescent materials. In this study, lutetium oxyorthosilicate powders were prepared by the sol–gel method, using TEOS (silicon source) and rare earth salts as precursors. The cross-linking agent, Glymo, contributed silicon atoms to the precursor solution in all systems. The addition of Glymo to Lu2SiO5, Lu2SiO5:Eu and Lu2SiO5:Eu/Yb influenced the morphology and chemical structure of the powders, leading to Lu2Si2O7 formation. The crystalline defects in the lutetium silicate systems were investigated by EPR spectroscopy, and several defects related to oxygen were identified, as well as impurities from the precursors. Photoluminescence emission spectra revealed Eu3+ transitions between 5D07F0, 5D07F1 and 5D07F2 under 258 nm excitation, in addition to oxygen vacancy emissions between 500 and 550 nm. Oxygen vacancies were identified and confirmed by correlating EPR and photoluminescence studies. Full article
(This article belongs to the Special Issue Phosphors: Synthesis, Properties, and Structures)
Show Figures

Figure 1

20 pages, 6093 KB  
Article
An Integrative Biosynthetic Approach to Silver Nanoparticles: Optimization Modeling, and Antimicrobial Assessment
by Emad Abada, Mukul Sharma, Asmaa A. Alharbi, Shifaa O. Alshammari, Amani Alhejely, Yosra Modafer, Wail Alsolami, Ibrahim Y. Y. Sumaily and Mari Sumayli
Inorganics 2025, 13(11), 342; https://doi.org/10.3390/inorganics13110342 - 22 Oct 2025
Viewed by 150
Abstract
Silver nanoparticles (AgNPs) are valued for their antimicrobial properties, but conventional synthesis often involves toxic chemicals. Eco-friendly biosynthesis using silver-tolerant microbes from contaminated sites offers a sustainable alternative. This study biosynthesized and characterized AgNPs using a native Bacillus sp. from contaminated soil in [...] Read more.
Silver nanoparticles (AgNPs) are valued for their antimicrobial properties, but conventional synthesis often involves toxic chemicals. Eco-friendly biosynthesis using silver-tolerant microbes from contaminated sites offers a sustainable alternative. This study biosynthesized and characterized AgNPs using a native Bacillus sp. from contaminated soil in the Jazan region, Saudi Arabia, and developed predictive models for optimizing synthesis and antimicrobial activity. AgNPs were synthesized under optimized conditions (1.0 mM AgNO3, 4.0 mL supernatant, pH 8, 85 °C). Characterization using UV–Vis, SEM, TEM, XRD, and FTIR assessed size, shape, structure, and chemistry. Gaussian and second models evaluated yield and inhibition zones based on AgNP concentration, microorganism type, and MIC. The AgNPs were spherical with diameters of 5–10 nm. The optimal nanoparticle yield occurs when the parameters are at their optimal values; C0 = 1.0 mM, V0 = 4.0 mL, pH0 = 8, T0 = 85 °C. XRD confirmed their crystalline nature, and FTIR showed biomolecular capping agents for stabilization. The Gaussian model accurately predicted synthesis efficiency, validated by 3D plots matching experimental data. The AgNPs showed strong antimicrobial activity against Gram-positive (Bacillus subtilis) (ATCC6051), Staphylococcus aureus (ATCC12600), Gram-negative bacteria Escherichia coli (ATCC11775) and fungi Candida albicans (ATCC10231); with E. coli having the lowest MIC (1.87 μg/mL). The inhibition zone model closely matched observed data. Biosynthesized AgNPs using silver-tolerant Bacillus sp. demonstrated potent antimicrobial effects and provide a green alternative to chemical synthesis. Integrating modeling optimizes biosynthesis and predicts biological performance, supporting future nanobiotechnology and antimicrobial applications. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop