Synthesis and Structural Engineering of Transition Metal Sulfides: Advances in Improving Hydrogen Evolution Reaction Catalytic Efficiency
Abstract
:1. Introduction
2. The Introduction of the Hydrogen Evolution Reaction (HER)
2.1. The Electrocatalytic Mechanism of HER
2.2. Electrolytic Water Performance Evaluation Parameters
2.2.1. Overpotential
2.2.2. Tafel
2.2.3. Electrochemical Impedance
2.2.4. Turnover Frequency
3. Transition Metal Sulfide Catalysts
3.1. Basic Properties of Transition Metal Sulfides (TMSs)
3.2. Synthesis of Transition Metal Sulfides
3.2.1. Hydrothermal Process
3.2.2. Electrochemical Deposition Method
3.2.3. Liquid-Phase Stripping Method
3.2.4. Chemical Vapor Deposition (CVD)
3.2.5. Other Methods
3.2.6. Comparison of Synthesis Methods
3.3. Performance Optimization of Excessive Metal Sulfides
3.3.1. Doping Engineering
3.3.2. Engineering Vacancy Defects
3.3.3. Constructing Heterostructures
3.3.4. Ternary Sulfides
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peng, X.; Pi, C.; Zhang, X.; Li, S.; Huo, K.; Chu, P.K. Recent progress of transition metal nitrides for efficient electrocatalytic water splitting. Sustain. Energy Fuels 2019, 3, 366–381. [Google Scholar] [CrossRef]
- Su, H.; Jiang, J.; Li, N.; Gao, Y.; Ge, L. NiCu alloys anchored defect-rich NiFe layered double-hydroxides as efficient electrocatalysts for overall water splitting. Chem. Eng. J. 2022, 446, 137226. [Google Scholar] [CrossRef]
- Li, S.; Gao, Y.; Li, N.; Ge, L.; Bu, X.; Feng, P. Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy Environ. Sci. 2021, 14, 1897–1927. [Google Scholar] [CrossRef]
- Wang, S.; Han, X.; Zhang, Y.; Tian, N.; Ma, T.; Huang, H. Inside-and-Out Semiconductor Engineering for CO2 Photoreduction: From Recent Advances to New Trends. Small Struct. 2021, 2, 2000061. [Google Scholar] [CrossRef]
- Li, X.-L.; He, R.-B.; Dai, Y.-J.; Li, S.-S.; Xiao, N.; Wang, A.-X.; Gao, Y.-Q.; Li, N.; Gao, J.-F.; Zhang, L.-H.; et al. Design and fabrication of Co9S8/Zn0.5Cd0.5S hollow nanocages with significantly enhanced photocatalytic hydrogen production activity. Chem. Eng. J. 2020, 400, 125474. [Google Scholar] [CrossRef]
- Li, X.-L.; Yang, G.-Q.; Li, S.-S.; Xiao, N.; Li, N.; Gao, Y.-Q.; Lv, D.; Ge, L. Novel dual co-catalysts decorated Au@HCS@PdS hybrids with spatially separated charge carriers and enhanced photocatalytic hydrogen evolution activity. Chem. Eng. J. 2020, 379, 122350. [Google Scholar] [CrossRef]
- Li, S.; Wang, L.; Liu, S.; Xu, B.; Xiao, N.; Gao, Y.; Song, W.; Ge, L.; Liu, J. In Situ Synthesis of Strongly Coupled Co2P-CdS Nanohybrids: An Effective Strategy To Regulate Photocatalytic Hydrogen Evolution Activity. ACS Sustain. Chem. Eng. 2018, 6, 9940–9950. [Google Scholar] [CrossRef]
- Jiang, J.; Li, F.; Su, H.; Gao, Y.; Li, N.; Ge, L. Flower-like NiCo2S4/NiFeP/NF composite material as an effective electrocatalyst with high overall water splitting performance. Chin. Chem. Lett. 2022, 33, 4367–4374. [Google Scholar] [CrossRef]
- Feng, B.; Guo, R.; Cai, Q.; Song, Y.; Li, N.; Fu, Y.; Chen, D.-L.; Zhang, J.; Zhu, W.; Zhang, F. Construction of isolated Ni sites on nitrogen-doped hollow carbon spheres with Ni–N3 configuration for enhanced reduction of nitroarenes. Nano Res. 2022, 15, 6001–6009. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, L.; Ma, W.; Wan, H.; Zhang, X.; Zhang, X.; Jiang, S.; Zheng, J.Y.; Zhou, Z. In Situ Anchoring Massive Isolated Pt Atoms at Cationic Vacancies of α-NixFe1−x(OH)2 to Regulate the Electronic Structure for Overall Water Splitting. Adv. Funct. Mater. 2022, 32, 2203342. [Google Scholar] [CrossRef]
- Tang, T.; Wang, Z.; Guan, J. A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction. Chin. J. Catal. 2022, 43, 636–678. [Google Scholar] [CrossRef]
- Li, H.; Han, X.; Jiang, S.; Zhang, L.; Ma, W.; Ma, R.; Zhou, Z. Controllable fabrication and structure evolution of hierarchical 1T-MoS2 nanospheres for efficient hydrogen evolution. Green Energy Environ. 2022, 7, 314–323. [Google Scholar] [CrossRef]
- Li, X.; Song, S.; Gao, Y.; Ge, L.; Song, W.; Ma, T.; Liu, J. Identification of the Charge Transfer Channel in Cobalt Encapsulated Hollow Nitrogen-Doped Carbon Matrix@CdS Heterostructure for Photocatalytic Hydrogen Evolution. Small 2021, 17, 2101315. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Shen, G.; Liu, X.; Ning, B.; Shi, C.; Pan, L.; Zhang, X.; Huang, Z.-F.; Zou, J.-J. Self-supporting NiFe LDH-MoSx integrated electrode for highly efficient water splitting at the industrial electrolysis conditions. Chin. J. Catal. 2021, 42, 1732–1741. [Google Scholar] [CrossRef]
- Zhang, Q.; Guan, J. Atomically dispersed catalysts for hydrogen/oxygen evolution reactions and overall water splitting. J. Power Sources 2020, 471, 228446. [Google Scholar] [CrossRef]
- Peng, J.; Dong, W.; Wang, Z.; Meng, Y.; Liu, W.; Song, P.; Liu, Z. Recent advances in 2D transition metal compounds for electrocatalytic full water splitting in neutral media. Mater. Today Adv. 2020, 8, 100081. [Google Scholar] [CrossRef]
- Li, X.; Li, N.; Gao, Y.; Ge, L. Design and applications of hollow-structured nanomaterials for photocatalytic H2 evolution and CO2 reduction. Chin. J. Catal. 2022, 43, 679–707. [Google Scholar] [CrossRef]
- Li, X.; Liu, Q.; Deng, F.; Huang, J.; Han, L.; He, C.; Chen, Z.; Luo, Y.; Zhu, Y. Double-defect-induced polarization enhanced OV-BiOBr/Cu2−xS high-low junction for boosted photoelectrochemical hydrogen evolution. Appl. Catal. B Environ. 2022, 314, 121502. [Google Scholar] [CrossRef]
- Li, S.; Wang, L.; Su, H.; Hong, A.N.; Wang, Y.; Yang, H.; Ge, L.; Song, W.; Liu, J.; Ma, T.; et al. Electron Redistributed S-Doped Nickel Iron Phosphides Derived from One-Step Phosphatization of MOFs for Significantly Boosting Electrochemical Water Splitting. Adv. Funct. Mater. 2022, 32, 2200733. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, L.; Li, X.; Gao, Y.; Li, N.; Lu, G.; Ge, L. Synthesis of ternary Ni2P@UiO-66-NH2/Zn0.5Cd0.5S composite materials with significantly improved photocatalytic H2 production performance. Chin. J. Catal. 2022, 43, 1295–1305. [Google Scholar] [CrossRef]
- Guan, J.; Bai, X.; Tang, T. Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions. Nano Res. 2022, 15, 818–837. [Google Scholar] [CrossRef]
- Xu, H.; Shang, H.; Wang, C.; Du, Y. Ultrafine Pt-Based Nanowires for Advanced Catalysis. Adv. Funct. Mater. 2020, 30, 2000793. [Google Scholar] [CrossRef]
- Xu, H.; Shang, H.; Wang, C.; Du, Y. Low-Dimensional Metallic Nanomaterials for Advanced Electrocatalysis. Adv. Funct. Mater. 2020, 30, 2006317. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, L.; Zhao, Z.-J.; Li, A.; Chang, X.; Gong, J. Synergism of Geometric Construction and Electronic Regulation: 3D Se-(NiCo)S/(OH) Nanosheets for Highly Efficient Overall Water Splitting. Adv. Mater. 2018, 30, 1705538. [Google Scholar] [CrossRef]
- Wu, Q.; Gao, Q.; Sun, L.; Guo, H.; Tai, X.; Li, D.; Liu, L.; Ling, C.; Sun, X. Facilitating active species by decorating CeO2 on Ni3S2 nanosheets for efficient water oxidation electrocatalysis. Chin. J. Catal. 2021, 42, 482–489. [Google Scholar] [CrossRef]
- Zhao, J.; Ren, X.; Sun, X.; Zhang, Y.; Wei, Q.; Liu, X.; Wu, D. In situ evolution of surface Co2CrO4 to CoOOH/CrOOH by electrochemical method: Toward boosting electrocatalytic water oxidation. Chin. J. Catal. 2021, 42, 1096–1101. [Google Scholar] [CrossRef]
- Xu, Y.; Ren, K.; Xu, R. In situ formation of amorphous Fe-based bimetallic hydroxides from metal-organic frameworks as efficient oxygen evolution catalysts. Chin. J. Catal. 2021, 42, 1370–1378. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, F.; Xue, H.; Gao, J.; Peng, Y.; Song, W.; Ge, L. Mechanism investigation of PtPd decorated Zn0.5Cd0.5S nanorods with efficient photocatalytic hydrogen production combining with kinetics and thermodynamics. Chin. J. Catal. 2021, 42, 1677–1688. [Google Scholar] [CrossRef]
- Peng, X.; Qasim, A.M.; Jin, W.; Wang, L.; Hu, L.; Miao, Y.; Li, W.; Li, Y.; Liu, Z.; Huo, K.; et al. Ni-doped amorphous iron phosphide nanoparticles on TiN nanowire arrays: An advanced alkaline hydrogen evolution electrocatalyst. Nano Energy 2018, 53, 66–73. [Google Scholar] [CrossRef]
- Huang, C.; Pi, C.; Zhang, X.; Ding, K.; Qin, P.; Fu, J.; Peng, X.; Gao, B.; Chu, P.K.; Huo, K. In Situ Synthesis of MoP Nanoflakes Intercalated N-Doped Graphene Nanobelts from MoO3–Amine Hybrid for High-Efficient Hydrogen Evolution Reaction. Small 2018, 14, 1800667. [Google Scholar] [CrossRef]
- Li, Y.; Hu, L.; Zheng, W.; Peng, X.; Liu, M.; Chu, P.K.; Lee, L.Y.S. Ni/Co-based nanosheet arrays for efficient oxygen evolution reaction. Nano Energy 2018, 52, 360–368. [Google Scholar] [CrossRef]
- Xiao, Y.; Xiong, C.; Chen, M.-M.; Wang, S.; Fu, L.; Zhang, X. Structure modulation of two-dimensional transition metal chalcogenides: Recent advances in methodology, mechanism and applications. Chem. Soc. Rev. 2023, 52, 1215–1272. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wu, H.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. A mini-review on ZnIn2S4-Based photocatalysts for energy and environmental application. Green Energy Environ. 2022, 7, 176–204. [Google Scholar] [CrossRef]
- Xue, Y.; Ji, Y.; Wang, X.; Wang, H.; Chen, X.; Zhang, X.; Tian, J. Heterostructuring noble-metal-free 1T’ phase MoS2 with g-C3N4 hollow nanocages to improve the photocatalytic H2 evolution activity. Green Energy Environ. 2023, 8, 864–873. [Google Scholar] [CrossRef]
- Wang, S.; Geng, Z.; Bi, S.; Wang, Y.; Gao, Z.; Jin, L.; Zhang, C. Recent advances and future prospects on Ni3S2-Based electrocatalysts for efficient alkaline water electrolysis. Green Energy Environ. 2024, 9, 659–683. [Google Scholar] [CrossRef]
- Yu, J.; Le, T.A.; Tran, N.Q.; Lee, H. Earth-Abundant Transition-Metal-Based Bifunctional Electrocatalysts for Overall Water Splitting in Alkaline Media. Chem.—A Eur. J. 2020, 26, 6423–6436. [Google Scholar] [CrossRef]
- Lin, L.; Sherrell, P.; Liu, Y.; Lei, W.; Zhang, S.; Zhang, H.; Wallace, G.G.; Chen, J. Engineered 2D Transition Metal Dichalcogenides—A Vision of Viable Hydrogen Evolution Reaction Catalysis. Adv. Energy Mater. 2020, 10, 1903870. [Google Scholar] [CrossRef]
- Rao, T.; Wang, H.; Zeng, Y.-J.; Guo, Z.; Zhang, H.; Liao, W. Phase Transitions and Water Splitting Applications of 2D Transition Metal Dichalcogenides and Metal Phosphorous Trichalcogenides. Adv. Sci. 2021, 8, 2002284. [Google Scholar] [CrossRef]
- Hong, J.; Chen, X.; Li, P.; Koshino, M.; Li, S.; Xu, H.; Hu, Z.; Ding, F.; Suenaga, K. Multiple 2D Phase Transformations in Monolayer Transition Metal Chalcogenides. Adv. Mater. 2022, 34, 2200643. [Google Scholar] [CrossRef]
- Yu, J.; Seo, S.; Luo, Y.; Sun, Y.; Oh, S.; Nguyen, C.T.K.; Seo, C.; Kim, J.-H.; Kim, J.; Lee, H. Efficient and Stable Solar Hydrogen Generation of Hydrophilic Rhenium-Disulfide-Based Photocatalysts via Chemically Controlled Charge Transfer Paths. ACS Nano 2020, 14, 1715–1726. [Google Scholar] [CrossRef]
- Xie, L.; Wang, L.; Liu, X.; Zhao, W.; Liu, S.; Huang, X.; Zhao, Q. Tetra-Coordinated W2S3 for Efficient Dual-pH Hydrogen Production. Angew. Chem. Int. Ed. 2024, 63, e202316306. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Pan, J.; Chen, K.; Chao, W.; Zhuang, Z.; Feng, S.; Chen, J.; Xie, L.; Wang, L.; Zhao, Q. MoSx nanowire networks derived from [Mo3S13]2−clusters for efficient electrocatalytic hydrogen evolution. Nano Res. 2024, 17, 6910–6915. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, F.; Sun, N.; Xie, L.; Zhi, T.; Zhang, Q.; Luo, Z.; Liu, X.; Liu, S.; Zhao, Q. Boosting hydrogen evolution on MoS2 via synergistic regulation of interlayer dislocations and interlayer spacing. Chem. Eng. J. 2023, 474, 145792. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Sun, M.-L.; Ren, J.-T.; Yuan, Z.-Y. Circumventing Challenges: Design of Anodic Electrocatalysts for Hybrid Water Electrolysis Systems. Adv. Energy Mater. 2023, 13, 2203568. [Google Scholar] [CrossRef]
- Ren, J.-T.; Chen, L.; Wang, L.; Song, X.-L.; Kong, Q.-H.; Yuan, Z.-Y. Multifunctional metal-phosphide-based electrocatalysts for highly efficient solar hydrogen production integrated devices. J. Mater. Chem. A 2023, 11, 2899–2909. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, R.; Lv, Z.; Liu, J.; Zhou, H.; Xu, C. Green hydrogen: A promising way to the carbon-free society. Chin. J. Chem. Eng. 2022, 43, 2–13. [Google Scholar] [CrossRef]
- Mahmood, N.; Yao, Y.; Zhang, J.-W.; Pan, L.; Zhang, X.; Zou, J.-J. Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes: Mechanisms, Challenges, and Prospective Solutions. Adv. Sci. 2018, 5, 1700464. [Google Scholar] [CrossRef]
- Gong, Y.; Yao, J.; Wang, P.; Li, Z.; Zhou, H.; Xu, C. Perspective of hydrogen energy and recent progress in electrocatalytic water splitting. Chinese J. Chem. Eng. 2022, 43, 282–296. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R.; White, H.S. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Wei, C.; Rao, R.R.; Peng, J.; Huang, B.; Stephens, I.E.L.; Risch, M.; Xu, Z.J.; Shao-Horn, Y. Recommended Practices and Benchmark Activity for Hydrogen and Oxygen Electrocatalysis in Water Splitting and Fuel Cells. Adv. Mater. 2019, 31, 1806296. [Google Scholar] [CrossRef]
- Kong, D.; Cha, J.J.; Wang, H.; Lee, H.R.; Cui, Y. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 2013, 6, 3553–3558. [Google Scholar] [CrossRef]
- Wirth, S.; Harnisch, F.; Weinmann, M.; Schröder, U. Comparative study of IVB–VIB transition metal compound electrocatalysts for the hydrogen evolution reaction. Appl. Catal. B Environ. 2012, 126, 225–230. [Google Scholar] [CrossRef]
- Kibsgaard, J.; Jaramillo, T.F. Molybdenum Phosphosulfide: An Active, Acid-Stable, Earth-Abundant Catalyst for the Hydrogen Evolution Reaction. Angew. Chem. Int. Ed. 2014, 53, 14433–14437. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Zhou, Y.; Li, Y.; Guo, S.; Huang, X. MoS2 Nanosheet Assembling Superstructure with a Three-Dimensional Ion Accessible Site: A New Class of Bifunctional Materials for Batteries and Electrocatalysis. Chem. Mater. 2016, 28, 2074–2080. [Google Scholar] [CrossRef]
- Bao, S.-J.; Li, C.M.; Zang, J.-F.; Cui, X.-Q.; Qiao, Y.; Guo, J. New Nanostructured TiO2 for Direct Electrochemistry and Glucose Sensor Applications. Adv. Funct. Mater. 2008, 18, 591–599. [Google Scholar] [CrossRef]
- Zhang, C.; Cai, X.; Qian, Y.; Jiang, H.; Zhou, L.; Li, B.; Lai, L.; Shen, Z.; Huang, W. Electrochemically Synthesis of Nickel Cobalt Sulfide for High-Performance Flexible Asymmetric Supercapacitors. Adv. Sci. 2018, 5, 1700375. [Google Scholar] [CrossRef]
- Wang, J.; Zhong, H.-X.; Wang, Z.-L.; Meng, F.-L.; Zhang, X.-B. Integrated Three-Dimensional Carbon Paper/Carbon Tubes/Cobalt-Sulfide Sheets as an Efficient Electrode for Overall Water Splitting. ACS Nano 2016, 10, 2342–2348. [Google Scholar] [CrossRef]
- Shen, J.; Wu, J.; Wang, M.; Dong, P.; Xu, J.; Li, X.; Zhang, X.; Yuan, J.; Wang, X.; Ye, M.; et al. Surface Tension Components Based Selection of Cosolvents for Efficient Liquid Phase Exfoliation of 2D Materials. Small 2016, 12, 2741–2749. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Wang, Y.X.; Zeng, L.Y.; Yang, J.Z.; Song, X.L.; Rao, W.W.; Li, H.H.; Ning, Y.P.; He, H.B.; Li, T.; et al. Prevalence and Correlation of Anxiety, Insomnia and Somatic Symptoms in a Chinese Population During the COVID-19 Epidemic. Front. Psychiatry 2020, 11. [Google Scholar] [CrossRef]
- Zhou, D.; Yin, J.Z. Steer the Rheology of Solvent with Little Surfactan to Exfoliate MoS2 Nanosheet by Liquid Phase Exfoliation Method. Nano 2020, 15, 2050118. [Google Scholar] [CrossRef]
- Li, X.Z.; Fang, Y.Y.; Wang, J.; Wei, B.; Qi, K.; Hoh, H.Y.; Hao, Q.Y.; Sun, T.; Wang, Z.C.; Yin, Z.Y.; et al. High-Yield Electrochemical Production of Large-Sized and Thinly Layered NiPS3 Flakes for Overall Water Splitting. Small 2019, 15, e1902427. [Google Scholar] [CrossRef]
- Yun, Q.B.; Ge, Y.Y.; Shi, Z.Y.; Liu, J.W.; Wang, X.X.; Zhang, A.; Huang, B.; Yao, Y.; Luo, Q.X.; Zhai, L.; et al. Recent Progress on Phase Engineering of Nanomaterials. Chem. Rev. 2023, 123, 13489–13692. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Yuan, G.; Gao, L.; Yang, J.; Chhowalla, M.; Gharahcheshmeh, M.H.; Gleason, K.K.; Choi, Y.S.; Hong, B.H.; Liu, Z. Chemical vapour deposition. Nat. Rev. Methods Primers 2021, 1, 5. [Google Scholar] [CrossRef]
- Tanwar, S.; Arya, A.; Gaur, A.; Sharma, A.L. Transition metal dichalcogenide (TMDs) electrodes for supercapacitors: A comprehensive review. J. Phys.-Condens. Matter 2021, 33, 303002. [Google Scholar] [CrossRef] [PubMed]
- Shim, G.W.; Hong, W.; Yang, S.Y.; Choi, S.Y. Tuning the catalytic functionality of transition metal dichalcogenides grown by chemical vapour deposition. J. Mater. Chem. A 2017, 5, 14950–14968. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, K.; Wang, F.; Shifa, T.A.; Wen, Y.; Wang, F.; Xu, K.; Wang, Z.; Jiang, C.; He, J. Dendritic growth of monolayer ternary WS2(1−x)Se2x flakes for enhanced hydrogen evolution reaction. Nanoscale 2017, 9, 5641–5647. [Google Scholar] [CrossRef]
- Shi, Z.; Qi, X.; Zhang, Z.; Song, Y.; Zhang, J.; Guo, C.; Xu, W.; Liu, K.; Zhu, Z. Interface engineering of cobalt–sulfide–selenium core–shell nanostructures as bifunctional electrocatalysts toward overall water splitting. Nanoscale 2021, 13, 6890–6901. [Google Scholar] [CrossRef]
- Chen, W.; Wei, W.; Wang, K.; Cui, J.; Zhu, X.; Ostrikov, K. Partial sulfur vacancies created by carbon–nitrogen deposition of MoS2 for high-performance overall electrocatalytic water splitting. Nanoscale 2021, 13, 14506–14517. [Google Scholar] [CrossRef]
- Balamurugan, K.; Rajakumaran, R.; Chen, S.M.; Chen, T.W.; Huang, P.J. Co-precipitation synthesis and characterization of rare-earth pyrochlore Gadolinium stannate; A novel electrocatalyst for the determination of furazolidone in water samples. Int. J. Electrochem. Sci. 2021, 16, 210368. [Google Scholar] [CrossRef]
- Yao, N.; Li, P.; Zhou, Z.; Meng, R.; Cheng, G.; Luo, W. Nitrogen Engineering on 3D Dandelion-Flower-Like CoS2 for High-Performance Overall Water Splitting. Small 2019, 15, 1901993. [Google Scholar] [CrossRef]
- Lu, A.Y.; Yang, X.L.; Tseng, C.C.; Min, S.X.; Lin, S.H.; Hsu, C.L.; Li, H.N.; Idriss, H.C.; Kuo, J.L.; Huang, K.W.; et al. High-Sulfur-Vacancy Amorphous Molybdenum Sulfide as a High Current Electrocatalyst in Hydrogen Evolution. Small 2016, 12, 5530–5537. [Google Scholar] [CrossRef]
- Hu, J.; Huang, B.; Zhang, C.; Wang, Z.; An, Y.; Zhou, D.; Lin, H.; Leung, M.K.H.; Yang, S. Engineering stepped edge surface structures of MoS2 sheet stacks to accelerate the hydrogen evolution reaction. Energy Environ. Sci. 2017, 10, 593–603. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Xiao, W.; Xi, P.X.; Xi, S.B.; Du, Y.H.; Gao, D.Q.; Ding, J. Activating and Optimizing Activity of CoS2 for Hydrogen Evolution Reaction through the Synergic Effect of N Dopants and S Vacancies. ACS Energy Lett. 2017, 2, 1022–1028. [Google Scholar] [CrossRef]
- Prasannachandran, R.; Vineesh, T.V.; Lithin, M.B.; Nandakishore, R.; Shaijumon, M.M. Phosphorene-quantum-dot-interspersed few-layered MoS2hybrids as efficient bifunctional electrocatalysts for hydrogen and oxygen evolution. Chem. Commun. 2020, 56, 8623–8626. [Google Scholar] [CrossRef] [PubMed]
- Souleymen, R.; Wang, Z.T.; Qiao, C.; Naveed, M.; Cao, C.B. Microwave-assisted synthesis of graphene-like cobalt sulfide freestanding sheets as an efficient bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A 2018, 6, 7592–7607. [Google Scholar] [CrossRef]
- Luo, X.H.; Zhou, Q.L.; Du, S.; Li, J.; Zhong, J.W.; Deng, X.L.; Liu, Y.L. Porous Co9S8/Nitrogen, Sulfur-Doped Carbon@Mo2C Dual Catalyst for Efficient Water Splitting. ACS Appl. Mater. Interfaces 2018, 10, 22291–22302. [Google Scholar] [CrossRef]
- Shang, D.; Li, D.; Chen, B.; Luo, B.; Huang, Y.; Shi, W. 2D–2D SnS2/Covalent Organic Framework Heterojunction Photocatalysts for Highly Enhanced Solar-Driven Hydrogen Evolution without Cocatalysts. ACS Sustain. Chem. Eng. 2021, 9, 14238–14248. [Google Scholar] [CrossRef]
- Zhu, W.; Ren, M.; Hu, N.; Zhang, W.; Luo, Z.; Wang, R.; Wang, J.; Huang, L.; Suo, Y.; Wang, J. Traditional NiCo2S4 Phase with Porous Nanosheets Array Topology on Carbon Cloth: A Flexible, Versatile and Fabulous Electrocatalyst for Overall Water and Urea Electrolysis. ACS Sustain. Chem. Eng. 2018, 6, 5011–5020. [Google Scholar] [CrossRef]
- Wang, B.; Hu, Y.; Yu, B.; Zhang, X.J.; Yang, D.X.; Chen, Y.F. Heterogeneous CoFe-Co8FeS8 nanoparticles embedded in CNT networks as highly efficient and stable electrocatalysts for oxygen evolution reaction. J. Power Sources 2019, 433, 126688. [Google Scholar] [CrossRef]
- Ahn, I.-K.; Joo, W.; Lee, J.-H.; Kim, H.G.; Lee, S.-Y.; Jung, Y.; Kim, J.-Y.; Lee, G.-B.; Kim, M.; Joo, Y.-C. Metal-organic Framework-driven Porous Cobalt Disulfide Nanoparticles Fabricated by Gaseous Sulfurization as Bifunctional Electrocatalysts for Overall Water Splitting. Sci. Rep. 2019, 9, 19539. [Google Scholar] [CrossRef]
- Anjum, M.A.R.; Okyay, M.S.; Kim, M.; Lee, M.H.; Park, N.; Lee, J.S. Bifunctional sulfur-doped cobalt phosphide electrocatalyst outperforms all-noble-metal electrocatalysts in alkaline electrolyzer for overall water splitting. Nano Energy 2018, 53, 286–295. [Google Scholar] [CrossRef]
- Feng, X.T.; Jiao, Q.Z.; Cui, H.R.; Yin, M.M.; Li, Q.; Zhao, Y.; Li, H.S.; Zhou, W.; Feng, C.H. One-Pot Synthesis of NiCo2S4 Hollow Spheres via Sequential Ion Exchange as an Enhanced Oxygen Bifunctional Electrocatalyst in Alkaline Solution. ACS Appl. Mater. Interfaces 2018, 10, 29521–29531. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Hou, D.; Zhou, Y.; Zhou, W.; Li, G.; Tang, Z.; Li, L.; Chen, S. MoS2 nanosheet-coated CoS2 nanowire arrays on carbon cloth as three-dimensional electrodes for efficient electrocatalytic hydrogen evolution. J. Mater. Chem. A 2015, 3, 22886–22891. [Google Scholar] [CrossRef]
- Amiinu, I.S.; Pu, Z.; Liu, X.; Owusu, K.A.; Monestel, H.G.R.; Boakye, F.O.; Zhang, H.; Mu, S. Multifunctional Mo–N/C@MoS2 Electrocatalysts for HER, OER, ORR, and Zn–Air Batteries. Adv. Funct. Mater. 2017, 27, 1702300. [Google Scholar] [CrossRef]
- Ye, Z.F.; Yang, J.; Li, B.; Shi, L.; Ji, H.X.; Song, L.; Xu, H.X. Amorphous Molybdenum Sulfide/Carbon Nanotubes Hybrid Nanospheres Prepared by Ultrasonic Spray Pyrolysis for Electrocatalytic Hydrogen Evolution. Small 2017, 13, 1700111. [Google Scholar] [CrossRef]
- Li, D.J.; Maiti, U.N.; Lim, J.; Choi, D.S.; Lee, W.J.; Oh, Y.; Lee, G.Y.; Kim, S.O. Molybdenum Sulfide/N-Doped CNT Forest Hybrid Catalysts for High-Performance Hydrogen Evolution Reaction. Nano Lett. 2014, 14, 1228–1233. [Google Scholar] [CrossRef]
- Lee, W.J.; Lim, J.; Kim, S.O. Nitrogen Dopants in Carbon Nanomaterials: Defects or a New Opportunity? Small Methods 2017, 1, 1600014. [Google Scholar] [CrossRef]
- Wang, J.Y.; Ouyang, T.; Li, N.; Ma, T.Y.; Liu, Z.Q. N co-doped carbon nanotube-encapsulated core-shelled CoS2@Co nanoparticles: Efficient and stable bifunctional catalysts for overall water splitting. Sci. Bull. 2018, 63, 1130–1140. [Google Scholar] [CrossRef]
- Li, X.T.; Duan, X.G.; Han, C.; Fan, X.B.; Li, Y.; Zhang, F.B.; Zhang, G.L.; Peng, W.C.; Wang, S.B. Chemical activation of nitrogen and sulfur co-doped graphene as defect-rich carbocatalyst for electrochemical water splitting. Carbon 2019, 148, 540–549. [Google Scholar] [CrossRef]
- Zang, Y.P.; Niu, S.W.; Wu, Y.S.; Zheng, X.S.; Cai, J.Y.; Yee, J.; Xie, Y.F.; Liu, Y.; Zhou, J.B.; Zhu, J.F.; et al. Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability. Nat. Commun. 2019, 10, 1217. [Google Scholar] [CrossRef]
- Zheng, F.Y.; Li, R.S.; Ge, S.Y.; Xu, W.R.; Zhang, Y.C. Nitrogen and phosphorus co-doped carbon networks derived from shrimp shells as an efficient oxygen reduction catalyst for microbial fuel cells. J. Power Sources 2020, 446, 227356. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, S.W.; Zang, Y.P.; Liu, R.R.; Liu, G.Q.; Wang, G.Z.; Zhang, Y.X.; Zhang, H.M.; Zhao, H.J. Co/Co9S8@S,N-doped porous graphene sheets derived from S, N dual organic ligands assembled Co-MOFs as superior electrocatalysts for full water splitting in alkaline media. Nano Energy 2016, 30, 93–102. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Tran, D.T.; Doan, T.L.L.; Kim, D.H.; Kim, N.H.; Lee, J.H. Rational Design of Core@shell Structured CoSx@Cu2MoS4 Hybridized MoS2/N,S-Codoped Graphene as Advanced Electrocatalyst for Water Splitting and Zn-Air Battery. Adv. Energy Mater. 2020, 10, 1903289. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Liu, Y.C.; Xia, B.R.; Sun, C.Q.; Liu, Y.G.; Liu, P.T.; Gao, D.Q. Facile one-step synthesis of phosphorus-doped CoS2as efficient electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 2018, 259, 955–961. [Google Scholar] [CrossRef]
- Tan, Y.; Yin, Y.J.; Yin, X.H.; Lan, C.H.; Wang, Y.; Hu, F.L.; Huang, Q.; Mi, Y. A “Superaerophobic” Se-Doped CoS2 Porous Nanowires Array for Cost-Saving Hydrogen Evolution. Catalysts 2021, 11, 169. [Google Scholar] [CrossRef]
- Cabán-Acevedo, M.; Stone, M.L.; Schmidt, J.R.; Thomas, J.G.; Ding, Q.; Chang, H.C.; Tsai, M.L.; He, J.H.; Jin, S. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 2015, 14, 1245–1251. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Liu, Y.C.; Sun, C.Q.; Xi, P.X.; Peng, S.L.; Gao, D.Q.; Xue, D.S. Accelerated Hydrogen Evolution Reaction in CoS2 by Transition-Metal Doping. ACS Energy Lett. 2018, 3, 779–786. [Google Scholar] [CrossRef]
- Xu, J.; Shao, G.L.; Tang, X.; Lv, F.; Xiang, H.Y.; Jing, C.F.; Liu, S.; Dai, S.; Li, Y.G.; Luo, J.; et al. Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution. Nat. Commun. 2022, 13, 2193. [Google Scholar] [CrossRef]
- Wang, X.; Wu, J.; Zhang, Y.W.; Sun, Y.; Ma, K.K.; Xie, Y.; Zheng, W.H.; Tian, Z.; Kang, Z.; Zhang, Y. Vacancy Defects in 2D Transition Metal Dichalcogenide Electrocatalysts: From Aggregated to Atomic Configuration. Adv. Mater. 2023, 35, e2206576. [Google Scholar] [CrossRef]
- Sofer, Z.; Zuo, Y.; Antonatos, N.; Dekanovsky, L.; Luxa, J.; Elliott, J.D.; Gianolio, D.; Saturala, J.; Guzzetta, F.; Mourdikoudis, S.; et al. Defect Engineering in Two-Dimensional Layered PdTe2 for Enhanced Hydrogen Evolution Reaction. ACS Catal. 2023, 13, 2601–2609. [Google Scholar] [CrossRef]
- Liu, Y.; Bui, H.T.D.; Jadhav, A.R.; Yang, T.; Saqlain, S.; Luo, Y.; Yu, J.; Kumar, A.; Wang, H.; Wang, L.; et al. Revealing the Synergy of Cation and Anion Vacancies on Improving Overall Water Splitting Kinetics. Adv. Funct. Mater. 2021, 31, 2010718. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.D.; Huang, H.J.; Chen, W.; Cui, Y.; Li, Y.H.; Mao, W.W.; Zhu, X.B.; Li, X.A. Spatial Relation Controllable Di-Defects Synergy Boosts Electrocatalytic Hydrogen Evolution Reaction over VSe2 Nanoflakes in All pH Electrolytes. Small 2022, 18, e2204557. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Y.W.; Si, H.N.; Zhang, Q.H.; Wu, J.; Gao, L.; Wei, X.F.; Sun, Y.; Liao, Q.L.; Zhang, Z.; et al. Single-Atom Vacancy Defect to Trigger High-Efficiency Hydrogen Evolution of MoS2. J. Am. Chem. Soc. 2020, 142, 4298–4308. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Yao, J.H.; Xie, F.; Wang, X.Q.; Wan, H.; Shen, X.J.; Zhang, L.L.; Jiao, M.G.; Zhou, Z. Optimizing electronic structure through point defect engineering for enhanced electrocatalytic energy conversion. Green Energy Environ. 2025, 10, 109–131. [Google Scholar] [CrossRef]
- Shao, G.L.; Xu, J.; Gao, S.S.; Zhang, Z.; Liu, S.; Zhang, X.; Zhou, Z. Unsaturated bi-heterometal clusters in metal-vacancy sites of 2D MoS2 for efficient hydrogen evolution. Carbon Energy 2024, 6, e417. [Google Scholar] [CrossRef]
- Wang, G.J.; Guo, X.M.; Chen, H.Y.; Zhu, Y.Z.; Min, Y. Ce3+-Induced metal vacancies engineering of NiSe2 with needle-like structure for alkaline hydrogen evolution. Appl. Surf. Sci. 2023, 640, 158364. [Google Scholar] [CrossRef]
- Zhou, Y.; Song, E.H.; Zhou, J.D.; Lin, J.H.; Ma, R.G.; Wang, Y.W.; Qiu, W.J.; Shen, R.X.; Suenaga, K.; Liu, Q.; et al. Auto-optimizing Hydrogen Evolution Catalytic Activity of ReS2 through Intrinsic Charge Engineering. ACS Nano 2018, 12, 4486–4493. [Google Scholar] [CrossRef]
- Zhou, G.; Guo, Z.J.; Shan, Y.; Wu, S.Y.; Zhang, J.L.; Yan, K.; Liu, L.Z.; Chu, P.K.; Wu, X.L. High-efficiency hydrogen evolution from seawater using hetero-structured T/Td phase ReS2 nanosheets with cationic vacancies. Nano Energy 2019, 55, 42–48. [Google Scholar] [CrossRef]
- Han, X.; Niu, M.; Luo, Y.; Li, R.; Dan, J.; Hong, Y.; Wu, X.; Trukhanov, A.V.; Ji, W.; Wang, Y.; et al. Atomically engineering metal vacancies in monolayer transition metal dichalcogenides. Nat. Synth. 2024, 3, 586–594. [Google Scholar] [CrossRef]
- Sun, L.; Zhao, S.Z.; Gao, S.R.; Zhu, R.H.; Tan, Y.R.; Tang, X.L.; Yi, H.H. Recent advances of metal vacancies in energy and environmental catalysis: Synthesis, characterization, and roles. Green Energy Environ. 2025, 10, 84–108. [Google Scholar] [CrossRef]
- He, W.J.; Zhang, R.; Zhang, J.Y.; Wang, F.Q.; Li, Y.; Zhao, J.L.; Chen, C.; Liu, H.; Xin, H.L. Promoting the water dissociation of nickel sulfide electrocatalyst through introducing cationic vacancies for accelerated hydrogen evolution kinetics in alkaline media. J. Catal. 2022, 410, 112–120. [Google Scholar] [CrossRef]
- Zeng, P.; Meng, Y.; Liu, Z.; Sun, G.Q.; Li, X.Y.; Yang, X.Y.; Ye, C.F.; Li, Y.; Liu, J.P.; Chen, L.H.; et al. N-Doping Coupled with Co-Vacancies Activating Sulfur Atoms and Narrowing Bandgap for CoS Toward Synergistically Accelerating Hydrogen Evolution. Small 2023, 19, e2301279. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.J.; He, Q.; Jiang, H.L.; Lin, Y.X.; Zhang, Y.K.; Habib, M.; Chen, S.M.; Song, L. Electronic Structure Reconfiguration toward Pyrite NiS2 via Engineered Heteroatom Defect Boosting Overall Water Splitting. ACS Nano 2017, 11, 11574–11583. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.H.; Wang, K.H.; Tan, X.; Liu, X.; Wang, G.X.; Xie, G.W.; Jiang, L.H. Defect-enriched multistage skeleton morphology Ni-Fe-P-Ni3S2 heterogeneous catalyst on Ni foam for efficient overall water splitting. Chem. Eng. J. 2021, 424, 130390. [Google Scholar] [CrossRef]
- Cao, Y.W.; Li, L.; Yu, X.X.; Tahir, M.; Xiang, Z.Y.; Kong, W.; Lu, Z.; Xing, X.; Song, Y. Engineering Vacancies at the 2D Nanocrystals for Robust Bifunctional Electrocatalysts. ACS Appl. Mater. Interfaces 2022, 14, 56725–56734. [Google Scholar] [CrossRef]
- Jin, J.; Wang, X.Y.; Hu, Y.; Zhang, Z.; Liu, H.B.; Yin, J.; Xi, P.X. Precisely Control Relationship between Sulfur Vacancy and H Absorption for Boosting Hydrogen Evolution Reaction. Nano-Micro Lett. 2024, 16. [Google Scholar] [CrossRef]
- Lee, J.; Heo, J.; Lim, H.Y.; Seo, J.; Kim, Y.; Kim, J.; Kim, U.; Choi, Y.; Kim, S.H.; Yoon, Y.J.; et al. Defect-Induced in Situ Atomic Doping in Transition Metal Dichalcogenides via Liquid-Phase Synthesis toward Efficient Electrochemical Activity. ACS Nano 2020, 14, 17114–17124. [Google Scholar] [CrossRef]
- Tan, C.L.; Luo, Z.M.; Chaturvedi, A.; Cai, Y.Q.; Du, Y.H.; Gong, Y.; Huang, Y.; Lai, Z.C.; Zhang, X.; Zheng, L.R.; et al. Preparation of High-Percentage 1T-Phase Transition Metal Dichalcogenide Nanodots for Electrochemical Hydrogen Evolution. Adv. Mater. 2018, 30, 1705509. [Google Scholar] [CrossRef]
- Li, X.Z.; Fang, Y.Y.; Wang, J.; Fang, H.Y.; Xi, S.B.; Zhao, X.X.; Xu, D.Y.; Xu, H.M.; Yu, W.; Hai, X.; et al. Ordered clustering of single atomic Te vacancies in atomically thin PtTe2 promotes hydrogen evolution catalysis. Nat. Commun. 2021, 12, 2351. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Z.; Qiu, Y.; Zhang, J.; Liu, G.; Zheng, W.; Feng, W.; Cao, W.; Hu, P.; Hu, W. Controlled growth of vertical 3D MoS2(1−x)Se2x nanosheets for an efficient and stable hydrogen evolution reaction. J. Mater. Chem. A 2016, 4, 18060–18066. [Google Scholar] [CrossRef]
- Lai, Z.; Chaturvedi, A.; Wang, Y.; Tran, T.H.; Liu, X.; Tan, C.; Luo, Z.; Chen, B.; Huang, Y.; Nam, G.-H.; et al. Preparation of 1T′-Phase ReS2xSe2(1-x) (x = 0–1) Nanodots for Highly Efficient Electrocatalytic Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2018, 140, 8563–8568. [Google Scholar] [CrossRef]
- Kwon, I.S.; Kwak, I.H.; Debela, T.T.; Kim, J.Y.; Yoo, S.J.; Kim, J.G.; Park, J.; Kang, H.S. Phase-Transition Mo1−xVxSe2 Alloy Nanosheets with Rich V-Se Vacancies and Their Enhanced Catalytic Performance of Hydrogen Evolution Reaction. ACS Nano 2021, 15, 14672–14682. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.H.; Fan, X.F.; Singh, D.J.; Zheng, W.T. Modulation of Hydrogen Evolution Catalytic Activity of Basal Plane in Monolayer Platinum and Palladium Dichalcogenides. ACS Omega 2018, 3, 10058–10065. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.Q.; Xia, B.R.; Wang, Y.Y.; Xiao, W.; Xi, P.X.; Xue, D.S.; Ding, J. Dual-Native Vacancy Activated Basal Plane and Conductivity of MoSe2 with High-Efficiency Hydrogen Evolution Reaction. Small 2018, 14, e1704150. [Google Scholar] [CrossRef] [PubMed]
- Xia, B.R.; Wang, T.T.; Jiang, X.D.; Zhang, T.M.; Li, J.; Xiao, W.; Xi, P.X.; Gao, D.Q.; Xue, D.S.; Ding, J. Ar2+ Beam Irradiation-Induced Multivancancies in MoSe2 Nanosheet for Enhanced Electrochemical Hydrogen Evolution. ACS Energy Lett. 2018, 3, 2167–2172. [Google Scholar] [CrossRef]
- Shao, Z.Y.; Zhu, Q.; Sun, Y.; Zhang, Y.; Jiang, Y.L.; Deng, S.Q.; Zhang, W.; Huang, K.K.; Feng, S.H. Phase-Reconfiguration-Induced NiS/NiFe2O4 Composite for Performance-Enhanced Zinc-Air Batteries. Adv. Mater. 2022, 34, 2110172. [Google Scholar] [CrossRef]
- Li, X.; Kou, Z.K.; Xi, S.B.; Zang, W.J.; Yang, T.; Zhang, L.; Wang, J. Porous NiCo2S4/FeOOH nanowire arrays with rich sulfide/hydroxide interfaces enable high OER activity. Nano Energy 2020, 78, 105230. [Google Scholar] [CrossRef]
- Azadmanjiri, J.; Srivastava, V.K.; Kumar, P.; Wang, J.; Yu, A.M. Graphene-supported 2D transition metal oxide heterostructures. J. Mater. Chem. A 2018, 6, 13509–13537. [Google Scholar] [CrossRef]
- Li, Y.X.; Yin, J.; An, L.; Lu, M.; Sun, K.; Zhao, Y.Q.; Gao, D.Q.; Cheng, F.Y.; Xi, P.X. FeS2/CoS2 Interface Nanosheets as Efficient Bifunctional Electrocatalyst for Overall Water Splitting. Small 2018, 14, e1801070. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Zhang, T.; Zhang, J.H.; Fan, H.; He, C.; Song, J.X. 3D 1T-MoS2/CoS2 Heterostructure via Interface Engineering for Ultrafast Hydrogen Evolution Reaction. Small 2020, 16, e2002850. [Google Scholar] [CrossRef]
- Guo, Y.; Shang, C.; Wang, E. An efficient CoS2/CoSe2 hybrid catalyst for electrocatalytic hydrogen evolution. J. Mater. Chem. A 2017, 5, 2504–2507. [Google Scholar] [CrossRef]
- Xie, W.J.; Liu, K.; Shi, G.D.; Fu, X.L.; Chen, X.J.; Fan, Z.X.; Liu, M.; Yuan, M.J.; Wang, M. CoS2 nanowires supported graphdiyne for highly efficient hydrogen evolution reaction. J. Energy Chem. 2021, 60, 272–278. [Google Scholar] [CrossRef]
- Tang, B.; Yu, Z.G.; Zhang, Y.; Tang, C.; Seng, H.L.; Seh, Z.W.; Zhang, Y.-W.; Pennycook, S.J.; Gong, H.; Yang, W. Metal–organic framework-derived hierarchical MoS2/CoS2 nanotube arrays as pH-universal electrocatalysts for efficient hydrogen evolution. J. Mater. Chem. A 2019, 7, 13339–13346. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, C.X.; Jiang, L.; Lin, H.; An, Y.M.; Zhou, D.; Leung, M.K.H.; Yang, S.H. Nanohybridization of MoS2 with Layered Double Hydroxides Efficiently Synergizes the Hydrogen Evolution in Alkaline Media. Joule 2017, 1, 383–393. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, J.; Wang, J.S.; Ruan, Y.J.; Ji, X.; Xu, K.; Chen, C.; Wan, H.Z.; Miao, L.; Jiang, J.J. Interface engineering: The Ni(OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy 2017, 37, 74–80. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, Y.Y. Nickel Hydr(oxy)oxide Nanoparticles on Metallic MoS2 Nanosheets: A Synergistic Electrocatalyst for Hydrogen Evolution Reaction. Adv. Sci. 2018, 5, 1700644. [Google Scholar] [CrossRef]
- Chen, Y.N.; Xu, S.M.; Li, Y.C.; Jacob, R.J.; Kuang, Y.D.; Liu, B.Y.; Wang, Y.L.; Pastel, G.; Salamanca-Riba, L.G.; Zachariah, M.R.; et al. FeS2 Nanoparticles Embedded in Reduced Graphene Oxide toward Robust, High-Performance Electrocatalysts. Adv. Energy Mater. 2017, 7, 1700482. [Google Scholar] [CrossRef]
- Kuo, T.R.; Chen, W.T.; Liao, H.J.; Yang, Y.H.; Yen, H.C.; Liao, T.W.; Wen, C.Y.; Lee, Y.C.; Chen, C.C.; Wang, D.Y. Improving Hydrogen Evolution Activity of Earth-Abundant Cobalt-Doped Iron Pyrite Catalysts by Surface Modification with Phosphide. Small 2017, 13, 1603356. [Google Scholar] [CrossRef]
- Sun, L.; Xu, H.Z.; Cheng, Z.Y.; Zheng, D.H.; Zhou, Q.N.; Yang, S.K.; Lin, J.J. A heterostructured WS2/WSe2 catalyst by heterojunction engineering towards boosting hydrogen evolution reaction. Chem. Eng. J. 2022, 443, 136348. [Google Scholar] [CrossRef]
- Nguyen, H.T.T.; Adofo, L.A.; Yang, S.H.; Kim, H.J.; Choi, S.H.; Kirubasankar, B.; Cho, B.W.; Ben-Smith, A.; Kang, J.H.; Kim, Y.M.; et al. 1T’ RexMo1−xS2-2H MoS2 Lateral Heterojunction for Enhanced Hydrogen Evolution Reaction Performance. Adv. Funct. Mater. 2023, 33, 2209572. [Google Scholar] [CrossRef]
- Le, K.T.; Pham, N.N.T.; Liao, Y.-S.; Ranjan, A.; Lin, H.-Y.; Chen, P.-H.; Nguyen, H.; Lu, M.Y.; Lee, S.G.; Wu, J.M. Piezoelectricity of strain-induced overall water splitting of Ni(OH)2/MoS2 heterostructure. J. Mater. Chem. A 2023, 11, 3481–3492. [Google Scholar] [CrossRef]
- Cheng, Z.H.; Xiao, Y.K.; Wu, W.P.; Zhang, X.Q.; Fu, Q.; Zhao, Y.; Qu, L.T. All-pH-Tolerant In-Plane Heterostructures for Efficient Hydrogen Evolution Reaction. ACS Nano 2021, 15, 11417–11427. [Google Scholar] [CrossRef] [PubMed]
- Long, X.; Li, G.X.; Wang, Z.L.; Zhu, H.Y.; Zhang, T.; Xiao, S.; Guo, W.Y.; Yang, S.H. Metallic Iron-Nickel Sulfide Ultrathin Nanosheets As a Highly Active Electrocatalyst for Hydrogen Evolution Reaction in Acidic Media. J. Am. Chem. Soc. 2015, 137, 11900–11903. [Google Scholar] [CrossRef]
- Piontek, S.; Andronescu, C.; Zaichenko, A.; Konkena, B.; Puring, K.J.; Marler, B.; Antoni, H.; Sinev, I.; Muhler, M.; Mollenhauer, D.; et al. Influence of the Fe:Ni Ratio and Reaction Temperature on the Efficiency of (FexNi1−x)9S8 Electrocatalysts Applied in the Hydrogen Evolution Reaction. ACS Catal. 2018, 8, 987–996. [Google Scholar] [CrossRef]
- Jiang, Y.Q.; Qian, X.; Zhu, C.L.; Liu, H.Y.; Hou, L.X. Nickel Cobalt Sulfide Double-Shelled Hollow Nanospheres as Superior Bifunctional Electrocatalysts for Photovoltaics and Alkaline Hydrogen Evolution. ACS Appl. Mater. Interfaces 2018, 10, 9379–9389. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Liu, X.; Han, D.; Song, X.; Shi, L.; Song, Y.; Niu, S.; Xie, Y.; Cai, J.; Wu, S.; et al. Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. Nat. Commun. 2018, 9, 1425. [Google Scholar] [CrossRef] [PubMed]
- Sheng, G.; Chen, J.; Li, Y.; Ye, H.; Hu, Z.; Fu, X.-Z.; Sun, R.; Huang, W.; Wong, C.-P. Flowerlike NiCo2S4 Hollow Sub-Microspheres with Mesoporous Nanoshells Support Pd Nanoparticles for Enhanced Hydrogen Evolution Reaction Electrocatalysis in Both Acidic and Alkaline Conditions. ACS Appl. Mater. Interfaces 2018, 10, 22248–22256. [Google Scholar] [CrossRef]
- Cheng, Y.; Yuan, P.; Xu, X.; Guo, S.; Pang, K.; Guo, H.; Zhang, Z.; Wu, X.; Zheng, L.; Song, R. S-Edge-rich MoxSy arrays vertically grown on carbon aerogels as superior bifunctional HER/OER electrocatalysts. Nanoscale 2019, 11, 20284–20294. [Google Scholar] [CrossRef]
Acidic Environment | Alkaline Environment | |
---|---|---|
Volmer adsorption reaction | M + H3O+ + e−→M-H* + H2O | M + H2O + e−→M-H* + OH− |
Heyrovsky desorption reaction | M-H* + H3O+ + e−→M + H2 + H2O | M-H* + H2O + e−→M + H2 + H2O |
Tafel desorption reaction | 2M-H*→2M + H2 | 2M-H*→M + H2 |
Method | Crystallinity | Morphological Control | Cost | Scale | Typical Product | Applicable Scenarios |
---|---|---|---|---|---|---|
Hydrothermal Method | Medium | High | Low | Pilot Scale | CoS Nanospheres | Controllable Synthesis in Laboratory |
Chemical Vapor Deposition (CVD) | High | Precise | High | Small | 1T-MoS2 Thin Film | Preparation of High-quality Two-dimensional Materials |
Liquid-phase Exfoliation | Low | Limited | Medium | Small | Monolayer WS2 | Basic Research (Edge Sites) |
Electrochemical Deposition | Medium | Substrate-dependent | Low | Pilot Scale | Ni-Co-S/GF Array | Direct Modification of Electrodes |
Catalyst | Chemical Formula | Sulfur Content (wt%) | Metal Valence State | Electrical Conductivity | Typical η10 (mV) | Applicable System | Stability (h) |
---|---|---|---|---|---|---|---|
MoS2 | Mo:S = 1:2 | 66.7% | Mo4+ | Semiconductor | 39 | HER | 50 |
CoS2 | Co:S = 1:2 | 66.7% | Co3+ | Metalloid | 28 | Bifunctional | 1 |
Ni3S2 | Ni:S = 3:2 | 40% | Ni2+/Ni3+ | Metal Conductor | 35 | OER | 100 |
FeS2 | Fe:S = 1:2 | 66.7% | Fe2+ | Semiconductor | 105 | HER | 80 |
Catalysts | Electrolyte | Overpotential (mV) | Tafel Slope (mV dec−1) | Ref. |
---|---|---|---|---|
Mo-N/C@MoS2 | 1.0 M KOH | 117 | 64.3 | [84] |
NiCo2S4NS/CC | 1.0 M KOH | 181 | 130.5 | [78] |
Mo4S16@GCA | 1.0 M KOH | 105.35 | [148] | |
Co/Co9S8@SNGS | 0.1 M KOH | 350 | 96.1 | [92] |
Co9S8-NSC@Mo2C | 1.0 M KOH | 89 | 86.7 | [76] |
CoSx@Cu2MoS4-MoS2/NSG | 0.1 M KOH | 118.1 | 41.1 | [93] |
MoS2/NiCo-LDH | 1.0 M KOH | 78 | 76.6 | [134] |
Ni(OH)2/MoS2@CC | 1.0 M KOH | 80 | 60 | [135] |
Nickel hydro(oxy)oxide- metallic MoS2 | 1.0 M KOH | 73 | 77 | [136] |
FeS2-rGO | 0.5 M H2SO4 | 139 | 66 | [137] |
P/Co-FeS2 | 0.5 M H2SO4 | 90 | 41 | [138] |
FeNiS | 0.5 M H2SO4 | 105 | 40 | [143] |
Fe4.5Ni4.5S8 | 0.5 M H2SO4 | 146 | 80 | [144] |
NiCo2S4 | 1.0 M KOH | 89.7 | 60.4 | [145] |
N-NiCo2S4 | 1.0 M KOH | 41 | 37 | [146] |
NiCo2S4/Pd | 1.0 M KOH | 83 | 123 | [147] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Y.; Gao, Z.; Xiang, H. Synthesis and Structural Engineering of Transition Metal Sulfides: Advances in Improving Hydrogen Evolution Reaction Catalytic Efficiency. Inorganics 2025, 13, 84. https://doi.org/10.3390/inorganics13030084
Ding Y, Gao Z, Xiang H. Synthesis and Structural Engineering of Transition Metal Sulfides: Advances in Improving Hydrogen Evolution Reaction Catalytic Efficiency. Inorganics. 2025; 13(3):84. https://doi.org/10.3390/inorganics13030084
Chicago/Turabian StyleDing, Yanhong, Zhichao Gao, and Haiyan Xiang. 2025. "Synthesis and Structural Engineering of Transition Metal Sulfides: Advances in Improving Hydrogen Evolution Reaction Catalytic Efficiency" Inorganics 13, no. 3: 84. https://doi.org/10.3390/inorganics13030084
APA StyleDing, Y., Gao, Z., & Xiang, H. (2025). Synthesis and Structural Engineering of Transition Metal Sulfides: Advances in Improving Hydrogen Evolution Reaction Catalytic Efficiency. Inorganics, 13(3), 84. https://doi.org/10.3390/inorganics13030084