Next Issue
Volume 13, April
Previous Issue
Volume 13, February
 
 

Inorganics, Volume 13, Issue 3 (March 2025) – 32 articles

Cover Story (view full-size image): Solid electrolytes such as polymer electrolytes are a promising option for improving the performance of environmentally friendly batteries. Hydrogen–oxygen fuel cells that produce only water under power generation are attracting widespread attention, with them requiring proton conductors as electrolytes. Fluoropolymer electrolytes have been utilized for hydrogen–oxygen fuel cells below temperatures of 100 °C; however, they are not applicable over the working temperature. Of late, proton conductive polyoxometalate (POM) inorganic clusters have been utilized to prepare POM–polymer composites using single crystals. Such POM–polymer composites possess distinct compositions and structures and exhibit improved proton conductivity as promising high-performance solid electrolytes. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
21 pages, 8014 KiB  
Article
Independent Acidic pH Reactivity of Non-Iron-Fenton Reaction Catalyzed by Copper-Based Nanoparticles for Fluorescent Dye Oxidation
by Zakia H. Alhashem, Hasna Abdullah Alali, Shehab A. Mansour, Maha A. Tony and Ashraf H. Farha
Inorganics 2025, 13(3), 97; https://doi.org/10.3390/inorganics13030097 - 20 Mar 2025
Viewed by 156
Abstract
The process of hydrogen peroxide decomposition, facilitated by copper oxide nanoparticles, produces reactive oxidants that possess the ability to oxidize multiple pollutants. CuO/Cu2O hybrid nanoparticles were successfully synthesized through a thermal decomposition route and applied as a heterogeneous catalytic oxidant for [...] Read more.
The process of hydrogen peroxide decomposition, facilitated by copper oxide nanoparticles, produces reactive oxidants that possess the ability to oxidize multiple pollutants. CuO/Cu2O hybrid nanoparticles were successfully synthesized through a thermal decomposition route and applied as a heterogeneous catalytic oxidant for a fluorescent dye, namely Basic Violet 10 (BV10) dye. The microstructure and morphology of the prepared catalyst were evaluated via X-ray diffraction (XRD) and a field-emission scanning electron microscope (FE-SEM), respectively. The produced nanoparticles (NPs) were induced through ultraviolet light as a green photodecomposition technology. The system parameters were investigated, and the optimal initial NP concentration, H2O2 concentration, and pH were assessed. The highest removal rate corresponding to 82% was achieved when 40 and 400 mg/L of NPs and H2O2 were introduced, respectively. The system could operate at various pH values, and the alkaline pH (8.0) was efficient in proceeding with the oxidation system that overcomes the limitation of the homogeneous acidic Fenton catalyst. The introduced catalyst demonstrated consistent sustainability, achieving a notable removal rate of 68% even after six consecutive cycles of use. This innovative technique’s accomplishment examines the feasibility of utilizing copper as a replacement for iron in the Fenton reaction, demonstrating efficacy over an extended pH range. Finally, the temperature effectiveness of the reaction showed that the reaction is exothermic in nature, working at a low energy barrier (20.4 kJ/mol) and following the pseudo-second-order kinetic model. Full article
Show Figures

Figure 1

14 pages, 2546 KiB  
Article
Hollow-Structured Carbon-Coated CoxNiySe2 Assembled with Ultrasmall Nanoparticles for Enhanced Sodium-Ion Battery Performance
by Chao Wang, Weijie Si and Xiongwu Kang
Inorganics 2025, 13(3), 96; https://doi.org/10.3390/inorganics13030096 - 20 Mar 2025
Viewed by 150
Abstract
Transition metal selenides are considered one of the most promising materials for sodium-ion battery anodes due to their excellent theoretical capacity. However, it remains challenging to suppress the volume variation and the resulted capacity decay during the charge–discharge process. Herein, hollow-structured CoNiSe2 [...] Read more.
Transition metal selenides are considered one of the most promising materials for sodium-ion battery anodes due to their excellent theoretical capacity. However, it remains challenging to suppress the volume variation and the resulted capacity decay during the charge–discharge process. Herein, hollow-structured CoNiSe2 dual transition metal selenides wrapped in a carbon shell (HS-CoxNiySe2@C) were deliberately designed and prepared through sequential coating of polyacrylonitrile (PAN), ion exchange of ZIF-67 with Ni2+ metal ions, and carbonization/selenization. The hollow structure was evidenced by transmission electron microscopy, and the crystalline structure was confirmed by X-ray diffraction. The ample internal space of HS-CoxNiySe2@C effectively accommodated volume expansion during the charge and discharge processes, and the large surface area enabled sufficient contact between the electrode and electrolyte and shortened the diffusion path of sodium ions for a feasible electrochemical reaction. The surface area and ionic conductivity of HS-CoxNiySe2@C were strongly dependent on the ratio of Co to Ni. The synergistic effect between Co and Ni enhanced the conductivity and electron mobility of HS-CoxNiySe2@C, thereby improving charge transfer efficiency. By taking into account the structural advantages and rational metal selenide ratios, significant improvements can be achieved in the cycling performance, rate performance, and overall electrochemical stability of sodium-ion batteries. The optimized HS-CoxNiySe2@C demonstrated excellent performance, and the reversible capacity remained at 334 mAh g−1 after 1000 cycles at a high current of 5.0 A g−1. Full article
Show Figures

Graphical abstract

19 pages, 2363 KiB  
Article
The Effect of Central Metal Ions (Dy, Er, Ni, and V) on the Structural and HSA-Binding Properties of 2-Hydroxy-3-methoxybenzaldehyde Semicarbazone Complexes
by Violeta Jevtovic, Jelena M. Živković, Aleksandra A. Rakić, Aljazi Abdullah Alrashidi, Maha Awjan Alreshidi, Elham A. Alzahrani, Odeh A. O. Alshammari, Mostafa Aly Hussien and Dušan Dimić
Inorganics 2025, 13(3), 95; https://doi.org/10.3390/inorganics13030095 - 20 Mar 2025
Viewed by 167
Abstract
2-Hydroxy-3-methoxybenzaldehyde semicarbazone (HMBS) is a multidentate ligand with interesting coordination behavior that depends on the central metal ion and the overall complex geometry. In this contribution, the structural characteristics of five HMBS-containing complexes with different metal ions (Dy, Er, Ni, and V) were [...] Read more.
2-Hydroxy-3-methoxybenzaldehyde semicarbazone (HMBS) is a multidentate ligand with interesting coordination behavior that depends on the central metal ion and the overall complex geometry. In this contribution, the structural characteristics of five HMBS-containing complexes with different metal ions (Dy, Er, Ni, and V) were investigated. Four binuclear and one mononuclear complex were selected from the Cambridge Structural Database. The crystallographic structures and intermolecular interactions in the solid state were analyzed, and the effect of central metal ions was elucidated. The different contributions of the most numerous contacts were explained by examining additional ligands in the structure. Density functional theory (DFT) optimizations were performed for the selected complexes, and the applicability of different computational methods was discussed. The Quantum Theory of Atoms in Molecules (QTAIMs) approach was employed to identify and quantify interactions in nickel and vanadium complexes, highlighting the role of weak intermolecular interactions between ligands in stabilizing the overall structure. Molecular docking studies of the interaction between these complexes and Human Serum Albumin (HSA) demonstrated that all compounds bind within the active pocket of the protein. The overall size and presence of aromatic rings emerged as key factors in the formation of stabilizing interactions. Full article
(This article belongs to the Special Issue Advances in Metal Ion Research and Applications)
Show Figures

Figure 1

16 pages, 4666 KiB  
Article
Studies on the Effect of Diamine Elongation in Copper(II) Complexes with NNO Tridentate Schiff Base Ligands
by Chiara Canovi, Francesco Genua, Kevin D’Addazio, Lara Gigli, Alessandra Forni, Petr Michálek, Mauro Carcelli, Dominga Rogolino and Luca Rigamonti
Inorganics 2025, 13(3), 94; https://doi.org/10.3390/inorganics13030094 - 19 Mar 2025
Viewed by 125
Abstract
The copper(II) complexes of general formula [Cu(GL2H,H)(Cl)] (A4A6, G = NO2, H and OMe, respectively), bearing NNO tridentate Schiff base ligands (GL2H,H) derived from the mono-condensation of 1,3-diaminopropane [...] Read more.
The copper(II) complexes of general formula [Cu(GL2H,H)(Cl)] (A4A6, G = NO2, H and OMe, respectively), bearing NNO tridentate Schiff base ligands (GL2H,H) derived from the mono-condensation of 1,3-diaminopropane and G-substituted salicylaldehydes, are here reported. The elongation of the diamine with one additional carbon atom with respect to the triad derived from ethylenediamine [Cu(GL1H,H)(Cl)] (A1A3, G = NO2, H and OMe, respectively) led to different synthetic procedures, with the difficult isolation of A6 that could be obtained only in few crystals suitable for X-ray diffractions. Operating in acidic conditions to promote the coordination of chloride and expulsion of pyridine from the complex [Cu(GL2H,H)(py)](ClO4) (G = NO2) allows for obtaining A4. On the other hand, structural rearrangement occurs when G = H, yielding the dinuclear species [Cu2(μ-saltn)(HL2H,H)](ClO4)⋅0.5MeOH (D5⋅0.5MeOH) instead of the desired A5, which can be obtained by avoiding the use of HCl and operating in the excess of LiCl. Finally, A4 and A5 were investigated as cytotoxic agents against malignant (MDA-MB-231 and 22-Rv1) and healthy (HaCaT) cell lines, and the ability of the most promising A5 to be internalized and interact with cellular targets was studied. Full article
(This article belongs to the Special Issue State-of-the-Art Inorganic Chemistry in Italy)
Show Figures

Graphical abstract

13 pages, 3701 KiB  
Article
Novel 3-Ethoxysalicylaldehyde Lanthanide Complexes Obtained by Decomposition of Salen-Type Ligands
by Paula Mediavilla, Antonio Ribeiro, Ángel Gutiérrez, Santiago Herrero and Mari Carmen Torralba
Inorganics 2025, 13(3), 93; https://doi.org/10.3390/inorganics13030093 - 19 Mar 2025
Viewed by 123
Abstract
Three new asymmetrically coordinated lanthanide derivatives based on the bicompartmental salen-type ligands N,N′-bis(3-ethoxysalicylidene)propylene-1,3-diamine (H2EtOsalpr) and 3-ethoxysalicylaldehyde (HEtvain) have been synthesized and structurally and photophysically characterized. All the compounds show dimeric structures of the [...] Read more.
Three new asymmetrically coordinated lanthanide derivatives based on the bicompartmental salen-type ligands N,N′-bis(3-ethoxysalicylidene)propylene-1,3-diamine (H2EtOsalpr) and 3-ethoxysalicylaldehyde (HEtvain) have been synthesized and structurally and photophysically characterized. All the compounds show dimeric structures of the general formula [Ln(H2EtOsalpr)(NO3)2(Etvain)]2 (Ln = Nd, Eu, Dy), with each salen-type ligand bridging two lanthanide ions. The Etvain ligand comes from the H2EtOsalpr decomposition being coordinated to the corresponding lanthanide. The Nd(III) derivative shows fluorescence emission in the NIR region, but for the Eu(III) and Dy(III) compounds, only a broad band, attributed to the ligand emission, was observed. Full article
(This article belongs to the Section Coordination Chemistry)
Show Figures

Figure 1

18 pages, 2709 KiB  
Article
Employing Molecular Dynamics Simulations to Explore the Behavior of Diphenylalanine Dipeptides in Graphene-Based Nanocomposite Systems
by Elena Markopoulou, Panagiotis Nikolakis, Gregory Savvakis and Anastassia N. Rissanou
Inorganics 2025, 13(3), 92; https://doi.org/10.3390/inorganics13030092 - 19 Mar 2025
Viewed by 435
Abstract
Utilizing all-atom molecular dynamics simulations, in the current study, we examine how three different graphene-based nanosheets (pristine graphene, graphene oxide and edge-functionalized graphene) impact the self-assembly mechanism of diphenylalanine dipeptides in aqueous solutions. By comparing the conformational properties and dynamics of diphenylalanine dipeptides [...] Read more.
Utilizing all-atom molecular dynamics simulations, in the current study, we examine how three different graphene-based nanosheets (pristine graphene, graphene oxide and edge-functionalized graphene) impact the self-assembly mechanism of diphenylalanine dipeptides in aqueous solutions. By comparing the conformational properties and dynamics of diphenylalanine dipeptides in the presence of each nanosheet, we elucidate the effects of the existence of functional groups, their type, and their position on the formed nanostructures. We quantify the interaction energy between diphenylalanine dipeptides and the nanosheets, analyzing various energetic components, to gain insights into the driving forces for the assembly procedure in the nanocomposite systems. Dipeptides readily coat nanosheets due to their high surface affinity. Subsequent diphenylalanine self-assembly is determined by the nanofiller type: in the systems with graphene oxide and edge functionalized graphene, there is an increase of the interfacial layer thickness, while in the system with pristine graphene a structure extended on top of the coating layer is formed. Additionally, we monitor how dipeptides facilitate the dispersion of graphene-based nanosheets in aqueous solution. The findings of this work enhance our understanding of the interplay between diphenylalanine dipeptides and graphene-based nanosheets, paving the way for the rational design of novel materials with tailored properties for specific applications. Full article
(This article belongs to the Special Issue Carbon Nanomaterials for Advanced Technology)
Show Figures

Graphical abstract

20 pages, 4358 KiB  
Article
The Conversion Polymorphism of Perovskite Phases in the BiCrO3–BiFeO3 System
by Alexei A. Belik
Inorganics 2025, 13(3), 91; https://doi.org/10.3390/inorganics13030091 - 18 Mar 2025
Viewed by 169
Abstract
Perovskite-type materials containing Bi3+ cations at A sites are interesting from the viewpoints of applications and fundamental science as the lone pair of Bi3+ cations often stabilizes polar, ferroelectric structures. This can be illustrated by a lot of discoveries of different [...] Read more.
Perovskite-type materials containing Bi3+ cations at A sites are interesting from the viewpoints of applications and fundamental science as the lone pair of Bi3+ cations often stabilizes polar, ferroelectric structures. This can be illustrated by a lot of discoveries of different new functionalities in bulk and thin films of BiFeO3 and its derivatives. In this work, we investigated solid solutions of BiCr1−xFexO3 with 0.1 ≤ x ≤ 0.4 prepared by a high-pressure (HP) method and post-synthesis annealing at ambient pressure (AP). HP-BiCr1−xFexO3 modifications with 0.1 ≤ x ≤ 0.3 were mixtures of two phases with space groups C2/c and Pbam, and the amount of the C2/c phase decreased with increasing x. The amount of the C2/c phase was also significantly decreased in AP-BiCr1−xFexO3 modifications, and the C2/c phase almost disappeared in AP-BiCr1−xFexO3 with 0.2 ≤ x ≤ 0.3. Fundamental, strong reflections of HP-BiCr1−xFexO3 and AP-BiCr1−xFexO3 were almost unchanged; on the other hand, weak superstructure reflections were different and showed clear signs of strong anisotropic broadening and incommensurate positions. These structural features prevented us from determining their room-temperature structures. On the other hand, HP-BiCr1−xFexO3 and AP-BiCr1−xFexO3 showed high-temperature structural phase transitions to the GdFeO3-type Pnma modification at Tsrt = 450 K (x = 0.1), Tsrt = 480 K (x = 0.2), Tsrt = 510 K (x = 0.3), and Tsrt = 546 K (x = 0.4). Crystal structures of the GdFeO3-type Pnma modifications of all the samples were investigated by synchrotron powder X-ray diffraction. Magnetic properties of HP-BiCr1−xFexO3 and AP-BiCr1−xFexO3 were quite close to each other (HP vs. AP), and the x = 0.2 samples demonstrated negative magnetization phenomena without signs of the exchange bias effect. Full article
(This article belongs to the Special Issue Photoelectric Research in Advanced Energy Materials)
Show Figures

Graphical abstract

16 pages, 6437 KiB  
Article
Cd(II)-Based Coordination Polymers and Supramolecular Complexes Containing Dianiline Chromophores: Synthesis, Crystal Structures, and Photoluminescence Properties
by Nicoleta Craciun, Elena Melnic, Anatolii V. Siminel, Natalia V. Costriucova, Diana Chisca and Marina S. Fonari
Inorganics 2025, 13(3), 90; https://doi.org/10.3390/inorganics13030090 - 18 Mar 2025
Viewed by 140
Abstract
Five new coordination compounds that included three coordination polymers and two supramolecular complexes were obtained by reactions of different cadmium salts (tetrafluoroborate, nitrate, and perchlorate) with dianiline chromophores, 4,4′-diaminodiphenylmethane (ddpm), and 4,4′-diaminodiphenylethane (ddpe). The crystal structures were studied by single-crystal X-ray analysis. The [...] Read more.
Five new coordination compounds that included three coordination polymers and two supramolecular complexes were obtained by reactions of different cadmium salts (tetrafluoroborate, nitrate, and perchlorate) with dianiline chromophores, 4,4′-diaminodiphenylmethane (ddpm), and 4,4′-diaminodiphenylethane (ddpe). The crystal structures were studied by single-crystal X-ray analysis. The coordination arrays with the ddpm chromophore included {[Cd(OH)(H2O)(ddpm)2](BF4)}n (1) as a one-dimensional (1D) coordination garland chain, {[Cd(NO3)(ddpm)2](H2O)(NO3)}n (2) as a two-dimensional (2D) coordination layer, and [Cd(bpy)2(ddpm)2](ddpm)(NO3)2 (3) as a supramolecular complex. The products with the ddpe chromophore were identified as {[Cd(phen)2(ddpe)](ClO4)2}n (4) in the form of a linear coordination chain and [Cd(phen)3](ClO4)2(ddpe)0.5(CH3CN)0.5 (5) as a supramolecular complex. The extension of coordination arrays in 1, 2, and 4 was achieved via dianiline ligands as bidentate linkers and additionally via bridging of nitrate anions in 2. The diversification of products became possible due to usage of 2,2′-bipyridine (bpy) and 1,10-phenanthroline (phen) as co-ligands forming the terminal corner fragments [Cd(bpy)2]2+, [Cd(phen)2]2+, and [Cd(phen)3]2+ in 35, respectively. The assembling of coordination entities occurred via the interplay of hydrogen bonds with the participation of amino groups, water molecules, and inorganic anions. Two dianilines were powerful luminophores in the crystalline phase, while the photoluminescence in 15 was considerably weaker than in the pure ddpm and ddpe luminophores and redistributed along the spectrum. Full article
(This article belongs to the Section Coordination Chemistry)
Show Figures

Graphical abstract

15 pages, 4763 KiB  
Article
The Synthesis of NiY Zeolite via the Acid Hydrolysis of Ethyl Silicate and Its Catalytic Performance in the Degradation of Benzyl Phenyl Ethers
by Bosen Zhou, Zhengbo Lai, Yuanyuan Li, Hualan Zhou, Ye Tian, Yibo Zhao and Ming Xia
Inorganics 2025, 13(3), 89; https://doi.org/10.3390/inorganics13030089 - 17 Mar 2025
Viewed by 149
Abstract
The siliceous precursor was hydrolyzed from tetraethylorthosilicate (TEOS) under acidic conditions, followed by the addition of sodium aluminate and sodium hydroxide. Y zeolite was subsequently obtained through hydrothermal crystallization under alkaline conditions. Key synthesis parameters, including reactant molar ratios, crystallization temperature, and time, [...] Read more.
The siliceous precursor was hydrolyzed from tetraethylorthosilicate (TEOS) under acidic conditions, followed by the addition of sodium aluminate and sodium hydroxide. Y zeolite was subsequently obtained through hydrothermal crystallization under alkaline conditions. Key synthesis parameters, including reactant molar ratios, crystallization temperature, and time, were systematically varied to optimize the synthesis conditions. The synthesized products were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption analysis, and inductively coupled plasma (ICP) elemental analysis. Well-crystallized Y zeolite with a silica-alumina ratio (SAR) of 5.55 was successfully synthesized via TEOS hydrolysis catalyzed by sulfuric acid at a low crystallization temperature of 85 °C. The catalytic performance of benzyl phenyl ether, a lignin model compound, over NiY catalyst was evaluated in a high-pressure reactor. The results indicate that the catalytic efficiency of Y zeolite synthesized using TEOS as the silicon source under acidic hydrolysis conditions is significantly superior to Y zeolite prepared using alkaline silica sol as the silicon source. Full article
Show Figures

Figure 1

12 pages, 6351 KiB  
Article
MoS2/MgAl-LDH Composites for the Photodegradation of Rhodamine B Dye
by Jingjing Dai, Guofei Li, Yuanyuan Wang, Cancan Zhang, Hui Nan and Guijun Yang
Inorganics 2025, 13(3), 88; https://doi.org/10.3390/inorganics13030088 - 17 Mar 2025
Viewed by 161
Abstract
During the process of producing potassium fertilizer from salt lake resources, a large amount of waste liquid brine, rich in raw materials such as magnesium chloride, is generated. In this work, a MoS2/MgAl-LDH composite material was constructed using the secondary hydrothermal [...] Read more.
During the process of producing potassium fertilizer from salt lake resources, a large amount of waste liquid brine, rich in raw materials such as magnesium chloride, is generated. In this work, a MoS2/MgAl-LDH composite material was constructed using the secondary hydrothermal technique. Characterizations including X-ray diffractometer (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) confirmed the distribution of MoS2 nanosheets on the surface of MgAl-LDH. Under full-spectrum irradiation, the degradation efficiency of Rhodamine B reached 85.5%, which was 69.2% higher than that of MgAl-LDH alone. The results from the electrochemical, UV-Vis, and XPS-VB tests indicate that the internal electric field accelerated the separation and transportation of charge carriers between MoS2 and MgAl-LDH. These findings demonstrate the great potential of MoS2/MgAl-LDH as a photocatalyst in the degradation of organic dyes, which will aid in the green recycling utilization of magnesium resources from salt lake by-products. Full article
(This article belongs to the Special Issue Photoelectric Research in Advanced Energy Materials)
Show Figures

Figure 1

12 pages, 2034 KiB  
Article
Folate-Receptor-Targeted Gold Nanoparticles Bearing a DNA-Binding Anthraquinone
by Ana B. Caballero, Nikolas J. Hodges and Michael J. Hannon
Inorganics 2025, 13(3), 87; https://doi.org/10.3390/inorganics13030087 - 17 Mar 2025
Viewed by 172
Abstract
In recent years, anthraquinones have been widening their therapeutic opportunities given their numerous health benefits. The search for adequate delivery platforms to improve their pharmacokinetics leads us to propose herein folate-capped gold nanoparticles with an anthraquinone derivative attached onto their surface. Through a [...] Read more.
In recent years, anthraquinones have been widening their therapeutic opportunities given their numerous health benefits. The search for adequate delivery platforms to improve their pharmacokinetics leads us to propose herein folate-capped gold nanoparticles with an anthraquinone derivative attached onto their surface. Through a straightforward, two-step procedure, we obtained stable nanoparticles that can deliver anthraquinones selectively to cells overexpressing folate receptors. The new conjugates were highly toxic against two tumour cell lines, lung carcinoma A549 and cervical carcinoma HeLa, and showed significant in vitro targeting effects for FR+ HeLa cells. We anticipate that the convenience of this synthetic procedure could enable the future development of folate-targeted conjugates bearing highly active anthraquinone-derived drugs. Full article
(This article belongs to the Section Bioinorganic Chemistry)
Show Figures

Figure 1

13 pages, 4654 KiB  
Review
An Introductory Overview of Various Typical Lead-Free Solders for TSV Technology
by Sooyong Choi, Sooman Lim, Muhamad Mukhzani Muhamad Hanifah, Paolo Matteini, Wan Yusmawati Wan Yusoff and Byungil Hwang
Inorganics 2025, 13(3), 86; https://doi.org/10.3390/inorganics13030086 - 15 Mar 2025
Viewed by 207
Abstract
As semiconductor packaging technologies face limitations, through-silicon via (TSV) technology has emerged as a key solution to extending Moore’s law by achieving high-density, high-performance microelectronics. TSV technology enables enhanced wiring density, signal speed, and power efficiency, and offers significant advantages over traditional wire-bonding [...] Read more.
As semiconductor packaging technologies face limitations, through-silicon via (TSV) technology has emerged as a key solution to extending Moore’s law by achieving high-density, high-performance microelectronics. TSV technology enables enhanced wiring density, signal speed, and power efficiency, and offers significant advantages over traditional wire-bonding techniques. However, achieving fine-pitch and high-density interconnects remains a challenge. Solder flip-chip microbumps have demonstrated their potential to improve interconnect reliability and performance. However, the environmental impact of lead-based solders necessitates a shift to lead-free alternatives. This review highlights the transition from Sn-Pb solders to lead-free options, such as Sn-Ag, Sn-Cu, Sn-Ag-Cu, Sn-Zn, and Bi- or In-based alloys, driven by regulatory and environmental considerations. Although lead-free solders address environmental concerns, their higher melting points pose challenges such as thermal stress and chip warping, which affect device reliability. To overcome these challenges, the development of low-melting-point solder alloys has gained momentum. This study examines advancements in low-temperature solder technologies and evaluates their potential for enhancing device reliability by mitigating thermal stress and ensuring long-term stability. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

21 pages, 7472 KiB  
Article
Unveiling Electrochemical Frontiers: Enhanced Hydrazine Sensing with Na3[Fe(CN)5(PZT)] Modified Electrodes
by Kalil Cristhian Figueiredo Toledo and Juliano Alves Bonacin
Inorganics 2025, 13(3), 85; https://doi.org/10.3390/inorganics13030085 - 15 Mar 2025
Viewed by 149
Abstract
This study presents the synthesis, electrochemical characterization, and sensor application of Na3[Fe(CN)5(PZT)], a novel pentacyanidoferrate-based coordination compound incorporating 2-pyrazinylethanethiol (PZT) as a ligand. Unlike conventional Prussian blue analogues, this system exhibits enhanced electrocatalytic properties due to its unique ligand [...] Read more.
This study presents the synthesis, electrochemical characterization, and sensor application of Na3[Fe(CN)5(PZT)], a novel pentacyanidoferrate-based coordination compound incorporating 2-pyrazinylethanethiol (PZT) as a ligand. Unlike conventional Prussian blue analogues, this system exhibits enhanced electrocatalytic properties due to its unique ligand framework, which contributes to increased charge transfer efficiency and stability. The complex was synthesized via a controlled ligand substitution reaction, followed by UV-Vis and IR spectroscopy confirmation of its successful formation. The electrochemical properties of the Na3[Fe(CN)5(PZT)] complex were investigated using cyclic voltammetry (CV), differential pulse voltammetry (DPV), square-wave voltammetry (SWV), and electrochemical impedance spectroscopy (EIS). Notably, the modified electrodes exhibited improved charge transfer kinetics and catalytic activity, making them promising candidates for electrochemical sensing applications. The Na3[Fe(CN)5(PZT)]-modified electrode demonstrated outstanding electrocatalytic performance towards hydrazine oxidation, exhibiting a low detection limit of 7.38 × 10−6 M, a wide linear response range from 5 to 64 µmol L−1, and high sensitivity. The proposed system enables precise quantification of hydrazine with high selectivity, positioning Na3[Fe(CN)5(PZT)] as an effective electrochemical mediator for advanced sensing platforms. These findings provide new insights into the design of next-generation Prussian blue analogue-based sensors with superior analytical performance. Full article
(This article belongs to the Special Issue Inorganics Emerging Investigators Themed Collection 2024/2025)
Show Figures

Figure 1

32 pages, 5535 KiB  
Review
Synthesis and Structural Engineering of Transition Metal Sulfides: Advances in Improving Hydrogen Evolution Reaction Catalytic Efficiency
by Yanhong Ding, Zhichao Gao and Haiyan Xiang
Inorganics 2025, 13(3), 84; https://doi.org/10.3390/inorganics13030084 - 14 Mar 2025
Viewed by 125
Abstract
Transition metal sulfide (TMS)-based electrocatalysts have received considerable attention in the field of sustainable energy, especially for their high activity in the hydrogen evolution reaction (HER). This review summarizes how researchers have improved the performance of TMSs by adjusting their composition. This review [...] Read more.
Transition metal sulfide (TMS)-based electrocatalysts have received considerable attention in the field of sustainable energy, especially for their high activity in the hydrogen evolution reaction (HER). This review summarizes how researchers have improved the performance of TMSs by adjusting their composition. This review introduces the research background of transition metal sulfides and clarifies the reaction mechanism of the HER and its performance evaluation indicators. Then, it elaborates on the general synthesis techniques for preparing TMS materials, including hydrothermal methods, electrochemical deposition, liquid-phase exfoliation, chemical vapor deposition, and other methods. Moreover, it discusses the realization of excellent electrocatalytic performance in the HER through doping, hole treatment, heterostructures, and multi-sulfides. Finally, this review summarizes the current challenges and future development opportunities of TMS materials in the field of water electrolysis for hydrogen production. Full article
Show Figures

Figure 1

16 pages, 7837 KiB  
Article
Light Output Response of a Barium Fluoride (BaF2) Inorganic Scintillator Under X-Ray Radiation
by Vasileios Ntoupis, Christos Michail, Nektarios Kalyvas, Athanasios Bakas, Ioannis Kandarakis, George Fountos and Ioannis Valais
Inorganics 2025, 13(3), 83; https://doi.org/10.3390/inorganics13030083 - 13 Mar 2025
Viewed by 157
Abstract
In this study, the luminescence efficiency of a crystal-form barium fluoride (BaF2) inorganic scintillator was assessed for medical imaging applications. For the experiments, we used a typical medical X-ray tube (50–140 kVp) for estimating the absolute luminescence efficiency (AE). Furthermore, we [...] Read more.
In this study, the luminescence efficiency of a crystal-form barium fluoride (BaF2) inorganic scintillator was assessed for medical imaging applications. For the experiments, we used a typical medical X-ray tube (50–140 kVp) for estimating the absolute luminescence efficiency (AE). Furthermore, we examined the spectral matching of the inorganic scintillator with a series of optical detectors. BaF2 showed a higher AE than cerium fluoride (CeF3), comparable to that of commercially available bismuth germanate (Bi4Ge3O12-BGO), but lower than that of the gadolinium orthosilicate (Gd2SiO5:Ce-GSO:Ce) inorganic scintillator. The maximum AE of BaF2 was 2.36 efficiency units (EU is the S.I. equivalent μWm−2/(mR/s) at 140 kVp, which is higher than that of the corresponding fluoride-based CeF3 (0.8334 EU)) at the same X-ray energy. GSO:Ce and BGO crystals, which are often integrated in commercial positron emission tomography (PET) scanners, had AE values of 7.76 and 3.41, respectively. The emission maximum (~310 nm) of BaF2 is adequate for coupling with flat-panel position-sensitive (PS) photomultipliers (PMTs) and various photocathodes. The luminescence efficiency results of BaF2 were comparable to those of BGO; thus, it could possibly be used in medical imaging modalities, considering its significantly lower cost. Full article
Show Figures

Graphical abstract

25 pages, 8004 KiB  
Article
Facile Synthesis and Characterization of Novel Fe0.65Mg0.35Cr2O4@C Nanocomposite for Efficient Removal of Cd(II) Ions from Aqueous Media
by Ehab A. Abdelrahman, Reem K. Shah, Mortaga M. Abou-Krisha, Fawaz A. Saad and Alaa M. Munshi
Inorganics 2025, 13(3), 82; https://doi.org/10.3390/inorganics13030082 - 12 Mar 2025
Viewed by 198
Abstract
Cd(II) ions pose significant environmental and health threats due to their extreme toxicity, persistence, and bioaccumulation in ecosystems. They are associated with severe health disorders such as bone damage, kidney failure, and carcinogenic effects and disrupt aquatic life by impairing enzymatic and reproductive [...] Read more.
Cd(II) ions pose significant environmental and health threats due to their extreme toxicity, persistence, and bioaccumulation in ecosystems. They are associated with severe health disorders such as bone damage, kidney failure, and carcinogenic effects and disrupt aquatic life by impairing enzymatic and reproductive processes. In this research, novel Fe0.65Mg0.35Cr2O4@C nanocomposites, synthesized using the Pechini sol–gel method at 600 °C (F600) and 800 °C (F800), were investigated for their efficacy in removing Cd(II) ions from aqueous media. FE-SEM analysis showed that F600 had agglomerated spherical nanoparticles with an average grain size of 45.71 nm and a relatively porous structure, while F800 displayed denser and more compact spherical nanoparticles with an average grain size of 73.65 nm. HR-TEM images confirmed these findings, showing that F600 nanoparticles were loosely arranged with an average particle diameter of 14.72 nm, whereas F800 exhibited larger, more aggregated particles with an average diameter of 59.22 nm, reflecting enhanced particle coalescence at higher temperatures. EDX analysis confirmed the elemental composition of both samples, with F600 containing higher carbon content (7.0%) compared to F800 (3.4%), attributed to the more complete combustion of organic precursors during F800’s synthesis. This difference in composition, along with the structural variations, influenced their adsorption performance. F600 demonstrated superior adsorption with a maximum capacity of 295.86 mg/g compared to F800’s 185.19 mg/g. Thermodynamic and kinetic analyses confirmed that the adsorption was exothermic, spontaneous, and governed by a physical mechanism following the pseudo-second-order model and Langmuir isotherm. The superior performance of F600 is attributed to its higher surface area, porosity, and smaller particle size, which enhance the availability of active adsorption sites. Full article
Show Figures

Figure 1

14 pages, 2411 KiB  
Article
Assessment of Penetration Depth of Silver Diamine Fluoride in Synthetic Dental Minerals
by Daniella Battaglia, Brunna da Silva Nobrega Souza, Ana Carla B. C. J. Fernandes and Rodrigo França
Inorganics 2025, 13(3), 81; https://doi.org/10.3390/inorganics13030081 - 11 Mar 2025
Viewed by 267
Abstract
Dental caries is a prevalent global health issue characterized by the progressive demineralization of dental tissues, which occurs when the balance between demineralization and remineralization processes is disrupted at the tooth level. Silver diamine fluoride (SDF) has gained recognition for its ability to [...] Read more.
Dental caries is a prevalent global health issue characterized by the progressive demineralization of dental tissues, which occurs when the balance between demineralization and remineralization processes is disrupted at the tooth level. Silver diamine fluoride (SDF) has gained recognition for its ability to arrest caries. However, its interaction with mineralized tissues remains incompletely understood. This study aimed to investigate the chemical interactions between SDF and mineralized bioceramics, using hydroxyapatite (HA) and beta-tricalcium phosphate (β-TCP) as analogs for enamel and dentin. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were employed to identify functional groups and quantify elemental compositions at varying depths. FTIR analysis revealed structural modifications in HA and β-TCP. XPS demonstrated high retention of fluoride, with limited penetration into deeper layers, while silver exhibited deeper penetration. These findings suggest that SDF primarily acts on superficial layers, forming calcium fluoride and silver phosphate as key reaction products. These findings highlight the potential of SDF in managing deep carious lesions by demonstrating its ability to form a protective CaF2 layer at the surface while allowing deeper penetration of silver ions into mineralized tissues. This dual mechanism may contribute to SDF’s clinical efficacy in arresting caries and preventing further demineralization. Full article
Show Figures

Figure 1

10 pages, 699 KiB  
Article
Method for Removing Impurities by Treating Silicon Tetrachloride with Hydrogen Plasma
by Roman Kornev, Georgy Mochalov, Nikita Maleev, Sergei Romanov, Konstantin Kornev and Alexandra Kalinina
Inorganics 2025, 13(3), 80; https://doi.org/10.3390/inorganics13030080 - 10 Mar 2025
Viewed by 150
Abstract
The transformation of organochlorine and organic impurities such as CCl4, C2H2Cl2, C2HCl3, C2Cl4, C2H2Cl4, CH4, C3H8 [...] Read more.
The transformation of organochlorine and organic impurities such as CCl4, C2H2Cl2, C2HCl3, C2Cl4, C2H2Cl4, CH4, C3H8, C4H10, and C6H6 in the content range of 10−2–10−6 wt.%, as well as BCl3 impurities at the level of 3 × 10−2 wt.%, was considered. A method has been developed for removing limiting impurities of carbon and boron during the process of the hydrogen reduction of silicon tetrachloride in a high-frequency arc gas discharge at atmospheric pressure. The thermodynamic and gas-dynamic analyses of the reduction process of silicon tetrachloride in hydrogen plasma, along with the behavior of organochlorine impurities, organic substances, and boron trichloride, was conducted. These analyses suggest that under equilibrium conditions, the conversion reactions of impurities result in the formation of silicon carbide and boron silicide. Potential chemical reactions for the conversion of the studied impurities into silicon carbide and boron silicide have been proposed. A new potential for plasma chemical processes has been identified, enabling the effective purification of chlorosilanes from both limiting and limited impurities. The results demonstrate the possibility of significantly reducing the concentrations of organochlorine and organic impurities, as well as boron trichloride, during the reduction of silicon tetrachloride in hydrogen plasma. The maximum conversion rates achieved included 99% for the organochlorine impurity CCl4 to silicon carbide, 91% for benzene impurity to silicon carbide, and 86% for boron trichloride to boron silicide. Full article
Show Figures

Figure 1

11 pages, 3098 KiB  
Article
A Reinvestigation of Coalescence Reactions of Fullerenes
by Shumei Yang, Jicheng Yang, Jinyang Li, Guanxin Yao, Xianyi Zhang and Xianglei Kong
Inorganics 2025, 13(3), 79; https://doi.org/10.3390/inorganics13030079 - 9 Mar 2025
Viewed by 245
Abstract
Gas-phase studies of fullerenes and metallofullerenes, though less well explored compared to condensed-phase research in recent years, offer critical insights into the mechanisms governing their formation and behavior. In this study, we re-examined the coalescence reactions of fullerenes using a high-resolution Fourier transform [...] Read more.
Gas-phase studies of fullerenes and metallofullerenes, though less well explored compared to condensed-phase research in recent years, offer critical insights into the mechanisms governing their formation and behavior. In this study, we re-examined the coalescence reactions of fullerenes using a high-resolution Fourier transform ion cyclotron resonance (FT ICR) mass spectrometer, especially the effect of electric fields in the source region on the formation of large-sized fullerenes. By varying the voltages on the metal plate where the C60 was deposited, we achieved enhanced control over the coalescence process, revealing distinct distributions of fullerene products that differ from those reported in earlier studies. What is the most attractive is that a negative voltage applied on the metal plate is actually more conducive to the production of large-sized fullerene cations. Notably, we identified previously unobserved species, including doubly charged fullerene cations (e.g., C1602+) and metallofullerene ions (e.g., Y1–2C94–124+), providing new evidence for the complexity of gas-phase fullerene chemistry. These findings underscore the importance of source region electric fields in shaping coalescence outcomes and highlight the potential of gas-phase approaches for synthesizing novel metallofullerenes. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

10 pages, 1586 KiB  
Article
Nanoformulations of Cosmetic Interest for the Cutaneous Uptake of Nickel
by Roberta Cassano, Emilia Furia, Sonia Trombino, Rosangela Elliani, Carmine Borgia, Francesco Gagliardi and Federica Curcio
Inorganics 2025, 13(3), 78; https://doi.org/10.3390/inorganics13030078 - 8 Mar 2025
Viewed by 168
Abstract
Cosmetic products contain numerous metals used as pigments, UV filters, preservatives, antiperspirants and antimicrobial agents, which are responsible for allergic skin reactions, with the most common being nickel. To reduce skin penetration of Ni, innovative pharmaceutical formulations such as lipogels with chelating action [...] Read more.
Cosmetic products contain numerous metals used as pigments, UV filters, preservatives, antiperspirants and antimicrobial agents, which are responsible for allergic skin reactions, with the most common being nickel. To reduce skin penetration of Ni, innovative pharmaceutical formulations such as lipogels with chelating action against the metal ions themselves can be used. Chelation therapy allows a chelating agent to combine with metal ions to form a stable ring structure called a chelate. The chelate structure is more soluble in water than the toxic metal, which facilitates removal of the toxic metal from the tissue and its excretion by the kidneys. The aim of the following work was to evaluate the chelating properties against nickel ions of different types of lipogels containing flavonoids such as resveratrol and epigallocatechin gallate with chelating activities largely dependent on the number and position of their hydroxyl groups. The results obtained showed that lipogels based on epigallocatechin gallate show high chelating action against nickel, especially at low concentrations. In addition, rheological studies showed an ideal profile to ensure viscoelasticity and swelling of the lipogel within 48 h, confirming reports of 75% epigallocatechin release from the lipogel after 48 h. Tests have shown that lipogels based on epigallocatechin gallate have high chelating action against nickel, especially at low concentrations. Full article
Show Figures

Figure 1

17 pages, 5155 KiB  
Article
Analysis of Tetracycline Modification Based on g-C3N4 Photocatalytic Degradation
by Jinghang Li, Qi Shi, Chaoyu Song, Chenxi Shi and Yuguang Lv
Inorganics 2025, 13(3), 77; https://doi.org/10.3390/inorganics13030077 - 7 Mar 2025
Viewed by 214
Abstract
To address challenges in antibiotic wastewater treatment, we synthesized a series of graphitic carbon nitride (g-C3N4)-based photocatalysts (BCN, PCN, TCN, BTCN, and TCNE-modified PTCN) via defect engineering. TCNE modification disrupted the triazine ring-bridging amino network in PTCN, forming a [...] Read more.
To address challenges in antibiotic wastewater treatment, we synthesized a series of graphitic carbon nitride (g-C3N4)-based photocatalysts (BCN, PCN, TCN, BTCN, and TCNE-modified PTCN) via defect engineering. TCNE modification disrupted the triazine ring-bridging amino network in PTCN, forming a porous structure with enhanced specific surface area validated by SEM/TEM while retaining the graphene-like framework confirmed by XRD/FTIR. Photoluminescence (PL) analysis revealed prolonged photogenerated carrier lifetime and improved separation efficiency in PTCN, achieving 89.10% degradation of chlortetracycline hydrochloride under visible light—1.65-fold higher than pristine g-C3N4. Mechanistic studies identified superoxide radicals (•O2) as dominant active species, generated via O2 activation at defect sites and efficient electron-hole utilization. Optimized conditions enabled PTCN to maintain high activity across a broad pH range and retain 82.59% efficiency after five cycles. This work advances defect-engineered photocatalyst design for adaptable, high-performance antibiotic degradation, offering practical insights for wastewater remediation. Full article
(This article belongs to the Special Issue Nanocomposites for Photocatalysis, 2nd Edition)
Show Figures

Graphical abstract

10 pages, 6059 KiB  
Article
Mg-Doped Li2FeTiO4 as a High-Performance Cathode Material Enabling Fast and Stable Li-ion Storage
by Pengqing Hou, Yingdong Qu, Rui Huang, Xinru Tian, Guanglong Li and Shaohua Luo
Inorganics 2025, 13(3), 76; https://doi.org/10.3390/inorganics13030076 - 6 Mar 2025
Viewed by 224
Abstract
As a multi-electron system material, the excellent capacity and environmentally benign properties of Li2FeTiO4 cathodes make them attractive for lithium-ion batteries. Nevertheless, their electrochemical performance has been hampered by poor conductivity and limited ion transport. In this work, the synthesis [...] Read more.
As a multi-electron system material, the excellent capacity and environmentally benign properties of Li2FeTiO4 cathodes make them attractive for lithium-ion batteries. Nevertheless, their electrochemical performance has been hampered by poor conductivity and limited ion transport. In this work, the synthesis of Mg-doped Li2MgxFe1−xTiO4 (LiFT-Mgx, x = 0, 0.01, 0.03, 0.05) cathode materials was successfully achieved. We observed significant gains in interlayer spacing, ionic conductivity, and kinetics. Hence, the sample of the LiFT-Mg0.03 cathode demonstrated charming initial capacity (112.1 mAh g−1, 0.05 C), stability (85.0%, 30 cycles), and rate capability (96.5 mAh g−1, 85.9%). This research provided precious insights into lithium storage with exceptional long-term stability and has the potential to drive the development of next-generation energy storage technologies. Full article
(This article belongs to the Special Issue Novel Research on Electrochemical Energy Storage Materials)
Show Figures

Figure 1

19 pages, 5085 KiB  
Review
Polyoxometalate–Polymer Composites with Distinct Compositions and Structures as High-Performance Solid Electrolytes
by Takeru Ito
Inorganics 2025, 13(3), 75; https://doi.org/10.3390/inorganics13030075 - 5 Mar 2025
Viewed by 134
Abstract
Solid electrolytes, including polymer electrolytes, are a promising option for improving the performance of environmentally friendly batteries such as rechargeable lithium-ion batteries or fuel cells. Hydrogen–oxygen fuel cells producing only water under power generation are attracting widespread attention, and they need proton conductors [...] Read more.
Solid electrolytes, including polymer electrolytes, are a promising option for improving the performance of environmentally friendly batteries such as rechargeable lithium-ion batteries or fuel cells. Hydrogen–oxygen fuel cells producing only water under power generation are attracting widespread attention, and they need proton conductors as electrolytes. Fluoropolymer electrolytes such as Nafion® have been utilized for hydrogen–oxygen fuel cells below 100 °C; however, they are not applicable over the working temperature. Therefore, other types of polymer electrolytes are demanded for hydrogen–oxygen fuel cells. Polyoxometalate (POM) inorganic clusters are known as proton conductors and are utilized to prepare POM–polymer composites for solid electrolyte application. In such POM–polymer composites, distinct compositions and structures are significant for improving the performance of proton conductivity. Recently, POM–polymer composites with distinct compositions and structures have been synthesized to obtain high proton conductivity. The key factor is to use single-crystalline compounds. Here, several examples are overviewed by classifying them into three categories: (i) single-crystalline POM–polymer composites, (ii) organically modified POM (org-POM) polymers, and (iii) POM hybrid polymers using polymerizable cations. The application of proton-conductive solid electrolytes is focused on. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

13 pages, 6588 KiB  
Article
Direct Synthesis of LiAlH4 from Ti-Doped Active LiAl Alloy
by Yan Chu, Shiwei Fang, Yingjue Chen, Xiaoqi Zhang, Jie Zheng, Zhenglong Li, Wubin Du, Wengang Cui, Jian Miao, Yaxiong Yang, Yongfeng Liu, Mingxia Gao and Hongge Pan
Inorganics 2025, 13(3), 74; https://doi.org/10.3390/inorganics13030074 - 1 Mar 2025
Viewed by 266
Abstract
LiAlH4, characterized by high hydrogen capacity and metastable properties, is regarded as a promising hydrogen source under mild conditions. However, its reversible regeneration from dehydrogenated production is hindered thermodynamically and kinetically. Herein, we demonstrate an active Li–Al–Ti nanocrystalline alloy prepared by [...] Read more.
LiAlH4, characterized by high hydrogen capacity and metastable properties, is regarded as a promising hydrogen source under mild conditions. However, its reversible regeneration from dehydrogenated production is hindered thermodynamically and kinetically. Herein, we demonstrate an active Li–Al–Ti nanocrystalline alloy prepared by melt spinning and cryomilling to enable directly synthesizing nano-LiAlH4. Due to the non-equilibrium preparation methods, the grain/particle size of the alloy was reduced, stress defects were introduced, and the dispersion of the Ti catalyst was promoted. The refined Li–Al–Ti nanocrystalline alloy with abundant defects and uniform catalytic sites demonstrated a high reactivity of the particle surface, thereby enhancing hydrogen absorption and desorption kinetics. Nano-LiAlH4 was directly obtained by ball milling a 5% Ti containing Li–Al–Ti nanocrystalline alloy with a grain size of 17.4 nm and Al3Ti catalytic phase distributed under 20 bar hydrogen pressure for 16 h. The obtained LiAlH4 exhibited room temperature dehydrogenation performance and good reversibility. This finding provides a potential strategy for the non-solvent synthesis and direct hydrogenation of metastable LiAlH4 hydrogen storage materials. Full article
Show Figures

Graphical abstract

10 pages, 9975 KiB  
Article
Fabrication and Electrochemical Performance of Br-Doped Na3PS4 Solid-State Electrolyte for Sodium–Sulfur Batteries via Melt-Quenching and Hot-Pressing
by Ao Ma, Shuhui Liu, Degui Li, Bin Gu, Sheng Li and Jing Wang
Inorganics 2025, 13(3), 73; https://doi.org/10.3390/inorganics13030073 - 28 Feb 2025
Viewed by 251
Abstract
Room-temperature all-solid-state sodium–sulfur (Na-S) batteries are being regarded as a promising technology for large-scale energy storage. However, the low ionic conductivity of existing sulfide solid electrolytes has been hindering the potential and commercialization of Na-S batteries. Na3PS4 has garnered extensive [...] Read more.
Room-temperature all-solid-state sodium–sulfur (Na-S) batteries are being regarded as a promising technology for large-scale energy storage. However, the low ionic conductivity of existing sulfide solid electrolytes has been hindering the potential and commercialization of Na-S batteries. Na3PS4 has garnered extensive attention among sulfide solid electrolytes due to its potential ionic conductivity (primarily predominated by vacancies) and ease of fabrication. Herein, we demonstrated a combined melt-quenching with Br doping technique to pre-generate abundant defects (vacancies) in the Na3PS4, which expanded ion transport channels and facilitated Na+ migration. The quenched Na2.9PS3.9Br0.1 holds an ionic conductivity of 8.28 × 10−4 S/cm at room temperature. Followed by the hot-pressed fabrication at 450 °C was conducted on the quenched Na2.9PS3.9Br0.1 to reduce interface resistance, the resultant Na2.9PS3.9Br0.1 pellet shows an ionic conductivity up to 1.15 × 10−3 S/cm with a wide electrochemical window and chemical stability towards Na alloy anodes. The assembled all-solid-state Na2S/Na2.9PS3.9Br0.1/Na15Sn4 cell delivers an initial reversible capacity of 550 mAh/g at a current density of 0.1 mA/cm2. After 50 cycles, it still maintains 420 mAh/g with a capacity retention of 76.4%. The integration of melt-quenching, doping, and hot-pressing provides a new strategy to enable sulfide electrolytes with high ionic conductivity and all-solid-state Na-S batteries with high performance. Full article
Show Figures

Figure 1

20 pages, 3949 KiB  
Review
Precise Synthesis of High-Strength Chiral Au Nanomaterials: From Chiral Au Nanoclusters to Chiral Au Nanoparticles
by Haijuan Luo, Chuanhua Shi, Zhixun Zhang, Yan Nong, Juefei Dai, Chengcheng Feng, Wenjie Li, Xianyong Yu, Xueji Zhang and Huayan Yang
Inorganics 2025, 13(3), 72; https://doi.org/10.3390/inorganics13030072 - 27 Feb 2025
Viewed by 368
Abstract
Chiral gold nanomaterials have promising applications in biomedicine, catalysis, optics and other fields. However, the complexity of their chiral sources has led to many challenges in terms of the functional design and controlled synthesis. In this paper, we systematically review the development history [...] Read more.
Chiral gold nanomaterials have promising applications in biomedicine, catalysis, optics and other fields. However, the complexity of their chiral sources has led to many challenges in terms of the functional design and controlled synthesis. In this paper, we systematically review the development history of chiral Au nanomaterials; deeply analyze the synthesis strategy, chiral construction mechanism, and performance optimization pathway; and discuss the formation mechanism in light of the progress of cutting-edge research to look into the future direction of development. The aim is to provide theoretical and methodological support for the controllable synthesis of chiral gold nanomaterials. Full article
(This article belongs to the Topic Advances in Molecular Symmetry and Chirality Research)
Show Figures

Figure 1

30 pages, 17823 KiB  
Review
Emerging Piezoelectric Sonosensitizer for ROS-Driven Sonodynamic Cancer Therapy
by Guiyun Wang, Yanxia Qi, Zhuang Liu and Ruowei Wang
Inorganics 2025, 13(3), 71; https://doi.org/10.3390/inorganics13030071 - 26 Feb 2025
Viewed by 284
Abstract
As a non-invasive modality, sonodynamic therapy (SDT) offers several advantages in cancer treatment, including deep tissue penetration and precise spatiotemporal control, resulting from the interplay between low-intensity ultrasound and sonosensitizers. Piezoelectric materials, known for their remarkable capacity of interconversion of mechanical and electrical [...] Read more.
As a non-invasive modality, sonodynamic therapy (SDT) offers several advantages in cancer treatment, including deep tissue penetration and precise spatiotemporal control, resulting from the interplay between low-intensity ultrasound and sonosensitizers. Piezoelectric materials, known for their remarkable capacity of interconversion of mechanical and electrical energy, have garnered considerable attention in biomedical applications, which can serve as pivotal sonosensitizers in SDT. These materials can generate internal electric fields via ultrasound-induced mechanical deformation, which modulates the alteration of charge carriers, thereby initiating surface redox reactions to generate reactive oxygen species (ROS) and realizing the therapeutic efficacy of SDT. This review provides an in-depth exploration of piezoelectric materials utilized in SDT, with a particular emphasis on recent innovations, elucidation of underlying mechanisms, and optimization strategies for advanced biomedical piezoelectric materials. Furthermore, the incorporation of piezoelectric sonosensitizers with immunotherapy, photodynamic, chemodynamic, and chemotherapy is explored, emphasizing their potential to enhance cancer therapy outcomes. By examining the basic principles of the piezoelectric effect and its contributions to SDT, this review sheds light on the promising applications of piezoelectric materials in oncology. It also highlights future directions for improving these materials and expanding their clinical utility in tumor sonodynamic therapy. Full article
Show Figures

Figure 1

13 pages, 4193 KiB  
Article
Synthesis and Molecular Structure of Iron(III) Diaryl-Dithiocarbamate Complexes, [Fe(S2CNAr2)3], and a Preliminary Study Exploring Their Potential as Single-Source Precursors for Nanoscale Iron Sulfides
by Jagodish C. Sarker, Tannith-Jade Cole, Xiang Xu, Firoz Alam, Paul D. McNaughter, Jeremy K. Cockcroft, David J. Lewis and Graeme Hogarth
Inorganics 2025, 13(3), 70; https://doi.org/10.3390/inorganics13030070 - 26 Feb 2025
Viewed by 265
Abstract
Diaryldithiocarbamate complexes, [Fe(S2CNAr2)3], have been prepared and their structure, reactivity, and thermal degradation to afford iron sulfide nanomaterials have been investigated. The addition of three equivalents of LiS2CNAr2 to FeCl2·4H2O [...] Read more.
Diaryldithiocarbamate complexes, [Fe(S2CNAr2)3], have been prepared and their structure, reactivity, and thermal degradation to afford iron sulfide nanomaterials have been investigated. The addition of three equivalents of LiS2CNAr2 to FeCl2·4H2O in water-air affords dark red [Fe(S2CNAr2)3] in high yields. All show magnetic measurements consistent with a predominantly high-spin electronic arrangement at room temperature. The molecular structure of [Fe{S2C(N-p-MeOC6H4)2}3] reveals the expected distorted octahedral geometry, but Fe-S distances are more consistent with a low-spin electronic configuration, likely a result of the low temperature (120 K) of the data collection. The thermal stability of [Fe{S2C(N-p-MeC6H4)2}3] has been investigated. TGA shows that it begins to decompose at a significantly lower temperature (ca. 160 °C) than previously observed for [Fe(S2CNEt2)3], and this is further lowered (to ca. 100 °C) in oleylamine. The decomposition of [Fe{S2C(N-p-MeC6H4)2}3] in oleylamine, via either a heat-up or hot injection process, affords nanoparticles of Fe3S4 (greigite), while in contrast, dry heating at 450 °C affords FeS (troilite) as large agglomerates. Full article
Show Figures

Graphical abstract

15 pages, 7728 KiB  
Article
Coordination Polymers Constructed from Polycarboxylic Acids and Semi-Rigid Bis-pyridyl-bis-imide Ligands: Synthesis, Structures and Iodine Adsorption
by Yi-Wun Chen, Zhi-Ling Chen, Song-Wei Wang and Jhy-Der Chen
Inorganics 2025, 13(3), 69; https://doi.org/10.3390/inorganics13030069 - 26 Feb 2025
Viewed by 149
Abstract
Reactions of N,N′-bis(3-pyridylmethyl)-pyromellitic diimide (L1) or N,N’-bis(3-pyridyl)bicyclo(2,2,2,)oct-7-ene-2,3,5,6-tetracarboxylic diimide (L2) with 1,3,5-benzenetricarboxylic acid (1,3,5-H3BTC), 4,4′-sulfonyldibenzoic acid (H2SDA), or 4,4′-oxybisbenzoic acid (H2OBA) and divalent metal salts afforded {[Co(1,3,5-HBTC)(H2O)2 [...] Read more.
Reactions of N,N′-bis(3-pyridylmethyl)-pyromellitic diimide (L1) or N,N’-bis(3-pyridyl)bicyclo(2,2,2,)oct-7-ene-2,3,5,6-tetracarboxylic diimide (L2) with 1,3,5-benzenetricarboxylic acid (1,3,5-H3BTC), 4,4′-sulfonyldibenzoic acid (H2SDA), or 4,4′-oxybisbenzoic acid (H2OBA) and divalent metal salts afforded {[Co(1,3,5-HBTC)(H2O)2(L1)]·H2O}n, 1, {[Co(1,3,5-HBTC)(H2O)3(L1)0.5]·H2O}n, 2, {[Co(SDA)(L1)0.5]·H2O}n, 3, {[Co(1,3,5-HBTC)(H2O(L2))]·H2O}n, 4, {[Ni(1,3,5-HBTC)(H2O)(L2)]·H2O}n, 5, [Ni(SDA)(L2)]n, 6, and [Ni(OBA)(L2)]n, 7, which were structurally characterized by using single-crystal X-ray diffraction. Complexes 1 and 2 are 1D chains with the 2,4C6 and 2,3C2 topologies, respectively, and 3 is a 2D layer with the 4,5L51 topology, whereas 4 and 5 are 1D chains with the 2,4C6 topology and 6 and 7 are 2D layers with the 2,4L2 topology. Complex 3 shows a better iodine-adsorption factor of 133.77 mg g−1 at 75 °C for 24 h than 57, revealing that the pi-pi conjugation of the dipyridyl ligand may govern the iodine adsorption capacity. Full article
Show Figures

Graphical abstract

15 pages, 4980 KiB  
Article
Fabrication and Characterization of 3D-Printed Porous Structures Based on Walstromite-Type Silicate Ceramics
by Ștefania Caramarin, Lidia Licu, Florentina-Gabriela Ioniță, Andreea-Nicoleta Ghiță, Dumitru-Valentin Drăguț, Miruna-Adriana Ioța and Laura-Mădălina Cursaru
Inorganics 2025, 13(3), 68; https://doi.org/10.3390/inorganics13030068 - 25 Feb 2025
Viewed by 289
Abstract
This study investigates the additive manufacturing of 3D porous scaffolds based on walstromite-type silicate ceramics for bone tissue engineering applications. Walstromite powders were synthesized using the sol-gel method and printed using extrusion-based 3D printing. Both sintered and unsintered scaffolds were characterized using scanning [...] Read more.
This study investigates the additive manufacturing of 3D porous scaffolds based on walstromite-type silicate ceramics for bone tissue engineering applications. Walstromite powders were synthesized using the sol-gel method and printed using extrusion-based 3D printing. Both sintered and unsintered scaffolds were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) analyses to evaluate the effects of sintering on microstructure, porosity, and mechanical properties. Results indicate that the unsintered scaffolds exhibited significantly higher compressive strength due to the presence of organic binders, whereas the sintered scaffolds demonstrated enhanced porosity, facilitating cell infiltration and nutrient flow. Therefore, the sintering process reduced compressive strength, probably due to the loss of organic compounds and increased porosity. These findings underline the need for optimizing sintering parameters to balance mechanical integrity and porosity, ensuring that the scaffolds meet the mechanical and biological requirements for bone regeneration. Alternative sintering methods, such as microwave sintering, are also suggested for future research to minimize the mechanical degradation observed post-sintering. Full article
(This article belongs to the Special Issue Novel Functional Ceramics)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop