Independent Acidic pH Reactivity of Non-Iron-Fenton Reaction Catalyzed by Copper-Based Nanoparticles for Fluorescent Dye Oxidation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Microstructure and Morphology of Hybrid CuO/Cu2O Nanoparticles
2.2. Different Oxidation Processes and Reaction Times
2.3. Effect of BV10 Dye Concentration
2.4. Effect of Amount of H2O2
2.5. Cu-Based Nanoparticles’ Concentration
2.6. Effect of Initial pH Value
2.7. CuO/Cu2O Hybrid Nanoparticles’ Sustainability
2.8. Temperature Effects on Kinetics and Thermodynamics
2.9. Comparative Investigation
3. Experimental Section
3.1. Materials
3.1.1. Wastewater
3.1.2. Catalyst and Reagents
3.2. Characterization
3.3. Procedures and Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bradu, C.; Frunza, L.; Mihalche, N.; Avramescu, S.-M.; Neaţă, M.; Udrea, I. Removal of Reactive Black 5 azo dye from aqueous solutions by catalytic oxidation using CuO/Al2O3 and NiO/Al2O3. Appl. Catal. B Environ. 2010, 96, 548–556. [Google Scholar] [CrossRef]
- Chang, C.-F.; Lee, S.-C. Adsorption behavior of pesticide methomyl on activated carbon in a high gravity rotating packed bed reactor. Water Res. 2012, 46, 2869–2880. [Google Scholar] [CrossRef] [PubMed]
- Dar, M.I.; Sampath, S.; Shivashankar, S. Microwave-assisted, surfactant-free synthesis of air-stable copper nanostructures and their SERS study. J. Mater. Chem. 2012, 22, 22418–22423. [Google Scholar] [CrossRef]
- Gawande, M.B.; Goswami, A.; Felpin, F.-X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R.S. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chem. Rev. 2016, 116, 3722–3811. [Google Scholar] [CrossRef]
- Gong, M.; Fu, G.; Chen, Y.; Tang, Y.; Lu, T. Autocatalysis and Selective Oxidative Etching Induced Synthesis of Platinum–Copper Bimetallic Alloy Nanodendrites Electrocatalysts. ACS Appl. Mater. Interfaces 2014, 6, 7301–7308. [Google Scholar] [CrossRef]
- Gromboni, C.F.; Kamogawa, M.Y.; Ferreira, A.G.; Nóbrega, J.A.; Nogueira, A.R.A. Microwave-assisted photo-Fenton decomposition of chlorfenvinphos and cypermethrin in residual water. J. Photochem. Photobiol. A Chem. 2007, 185, 32–37. [Google Scholar]
- Homem, V.; Alves, A.; Santos, L. Microwave-assisted Fenton’s oxidation of amoxicillin. Chem. Eng. J. 2013, 220, 35–44. [Google Scholar] [CrossRef]
- Janczarek, M.; Kowalska, E. On the Origin of Enhanced Photocatalytic Activity of Copper-Modified Titania in the Oxidative Reaction Systems. Catalysts 2017, 7, 317. [Google Scholar] [CrossRef]
- Kalal, S.; Chanderia, K.; Meghwal, K.; Chauhan, N.P.S.; Ameta, R.; Punjabi, P. Degradation of trypan blue dye using copper pyrovanadate as heterogeneous photo-Fenton like catalyst. Indian J. Chem. Technol. 2015, 22, 148–154. [Google Scholar]
- Lee, H.; Lee, H.-J.; Sedlak, D.L.; Lee, C. pH-Dependent reactivity of oxidants formed by iron and copper-catalyzed decomposition of hydrogen peroxide. Chemosphere 2013, 92, 652–658. [Google Scholar] [CrossRef]
- Lin, Z.; Han, D.; Li, S. Study on thermal decomposition of copper(II) acetate monohydrate in air. J. Therm. Anal. Calorim. 2012, 107, 471–475. [Google Scholar] [CrossRef]
- Lu, C.-H.; Lee, C.-H.; Wu, C.-H. Microemulsion-mediated solvothermal synthesis of copper indium diselenide powders. Sol. Energy Mater. Sol. Cells 2010, 94, 1622–1626. [Google Scholar] [CrossRef]
- Malato, S.; Blanco, J.; Vidal, A.; Alarcón, D.; Maldonado, M.I.; Cáceres, J.; Gernjak, W. Applied studies in solar photocatalytic detoxification: An overview. Sol. Energy 2003, 75, 329–336. [Google Scholar] [CrossRef]
- Medien, H.A.A.; Khalil, S.M.E. Kinetics of the oxidative decolorization of some organic dyes utilizing Fenton-like reaction in water. J. King Saud Univ.-Sci. 2010, 22, 147–153. [Google Scholar] [CrossRef]
- Micó, M.M.; Chourdaki, S.; Bacardit, J.; Sans, C. Comparison between Ozonation and Photo-Fenton Processes for Pesticide Methomyl Removal in Advanced Greenhouses. Ozone Sci. Eng. 2010, 32, 259–264. [Google Scholar] [CrossRef]
- Neamtu, M.; Siminiceanu, I.; Yediler, A.; Kettrup, A. Kinetics of decolorization and mineralization of reactive azo dyes in aqueous solution by the UV/H2O2 oxidation. Dye. Pigment. 2002, 53, 93–99. [Google Scholar] [CrossRef]
- Obaid, A.Y.; Alyoubi, A.O.; Samarkandy, A.A.; Al-Thabaiti, S.A.; Al-Juaid, S.S.; El-Bellihi, A.A.; Deifallah, E.-H.M. Kinetics of Thermal Decomposition of Copper(II) Acetate Monohydrate. J. Therm. Anal. Calorim. 2000, 61, 985–994. [Google Scholar] [CrossRef]
- Oller, I.; Gernjak, W.; Maldonado, M.I.; Pérez-Estrada, L.A.; Sánchez-Pérez, J.A.; Malato, S. Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale. J. Hazard. Mater. 2006, 138, 507–517. [Google Scholar] [CrossRef]
- Pan, W.; Zhang, G.; Zheng, T.; Wang, P. Degradation of p-nitrophenol using CuO/Al2O3 as a Fenton-like catalyst under microwave irradiation. RSC Adv. 2015, 5, 27043–27051. [Google Scholar] [CrossRef]
- Raut-Jadhav, S.; Pinjari, D.V.; Saini, D.R.; Sonawane, S.H.; Pandit, A.B. Intensification of degradation of methomyl (carbamate group pesticide) by using the combination of ultrasonic cavitation and process intensifying additives. Ultrason. Sonochem. 2016, 31, 135–142. [Google Scholar] [CrossRef]
- Remya, N.; Lin, J.-G. Current status of microwave application in wastewater treatment—A review. Chem. Eng. J. 2011, 166, 797–813. [Google Scholar] [CrossRef]
- Scherrer, P. Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. In Kolloidchemie Ein Lehrbuch; Zsigmondy, R., Ed.; Springer: Berlin/Heidelberg, Germany, 1912; pp. 387–409. [Google Scholar]
- Solanki, J.N.; Sengupta, R.; Murthy, Z.V.P. Synthesis of copper sulphide and copper nanoparticles with microemulsion method. Solid State Sci. 2010, 12, 1560–1566. [Google Scholar] [CrossRef]
- Tony, M.A.; Mansour, S.A. Microwave-assisted catalytic oxidation of methomyl pesticide by Cu/Cu2O/CuO hybrid nanoparticles as a Fenton-like source. Int. J. Environ. Sci. Technol. 2020, 17, 161–174. [Google Scholar] [CrossRef]
- Sunaina; Sreekanth, M.; Ghosh, S.; Mehta, S.K.; Ganguli, A.K.; Jha, M. Investigation of the growth mechanism of the formation of ZnO nanorods by thermal decomposition of zinc acetate and their field emission properties. CrystEngComm 2017, 19, 2264–2270. [Google Scholar] [CrossRef]
- Tamimi, M.; Qourzal, S.; Assabbane, A.; Chovelon, J.M.; Ferronato, C.; Ait-Ichou, Y. Photocatalytic degradation of pesticide methomyl: Determination of the reaction pathway and identification of intermediate products. Photochem. Photobiol. Sci. 2006, 5, 477–482. [Google Scholar] [CrossRef]
- Tamimi, M.; Qourzal, S.; Barka, N.; Assabbane, A.; Ait-Ichou, Y. Methomyl degradation in aqueous solutions by Fenton’s reagent and the photo-Fenton system. Sep. Purif. Technol. 2008, 61, 103–108. [Google Scholar] [CrossRef]
- Thirugnanasambandan, T.; Alagar, M. Nano sized copper particles by electrolytic synthesis and characterizations. Int. Int. J. Phys. Sci. 2011, 6, 3662–3671. [Google Scholar]
- Elsayed, S.A.; El-Sayed, I.E.T.; Abdel-Bary, H.M.; Tony, M.A. Chitosan impregnated with magnetite as a versatile photocatalytic nanocomposite for Synozol Red KHL dye elimination from aqueous effluent. Int. J. Environ. Anal. Chem. 2024, 104, 2188207. [Google Scholar] [CrossRef]
- Najjar, W.; Chirchi, L.; Santos, E.; Ghorhel, A. Kinetic study of 2-nitrophenol photodegradation on Al-pillared montmorillonite doped with copper. J. Environ. Monit. 2001, 3, 697–701. [Google Scholar] [CrossRef]
- Tony, M.; Zhao, Y.; El–Sherbiny, M.F. Fenton and fenton-like AOPs for alum sludge conditioning: Effectiveness comparison with different Fe2+ and Fe3+ salts. Chem. Eng. Commun. 2011, 198, 442–452. [Google Scholar] [CrossRef]
- Tony, M.A.; El-Gendy, N.S.; Hussien, M.; Ahmed, A.A.S.; Xin, J.; Lu, X.; El-Sayed, I.E.T. Nano-Magnetic Sugarcane Bagasse Cellulosic Composite as a Sustainable Photocatalyst for Textile Industrial Effluent Remediation. Catalysts 2024, 14, 354. [Google Scholar] [CrossRef]
- Tony, M.; Purcell, P.; Zhao, Y.; Tayeb, A.; El–Sherbiny, M.F. Kinetic Modeling of diesel oil wastewater degradation using the photo-Fenton process. Environ. Eng. Manag. J. 2015, 14, 11–16. [Google Scholar] [CrossRef]
- Arredondo Valdez, H.C.; García Jiménez, G.; Gutiérrez Granados, S.; Ponce de León, C. Degradation of paracetamol by advance oxidation processes using modified reticulated vitreous carbon electrodes with TiO2 and CuO/TiO2/Al2O3. Chemosphere 2012, 89, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Wang, Y.; Xue, Q.; Wu, X. Synthesis of highly stable dispersions of nanosized copper particles using l-ascorbic acid. Green Chem. 2011, 13, 900–904. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Z.; Jin, W.; Wang, X.; Zhang, Y.; Zhu, S.; Yu, X.; Hu, G.; Hong, Q. Degradation of methomyl by the combination of Aminobacter sp. MDW-2 and Afipia sp. MDW-3. Lett. Appl. Microbiol. 2017, 64, 12715. [Google Scholar] [CrossRef]
- Zhao, Y.; Keogh, C.; Tony, M. On the Necessity of Sludge Conditioning with Non-organic Polymer: AOP Approac. J. Residuals Sci. Technol. 2009, 6, 151–155. [Google Scholar]
- Zhang, B.; Yuan, Y.; Philippot, K.; Yan, N. Ag–Pd and CuO–Pd nanoparticles in a hydroxyl-group functionalized ionic liquid: Synthesis, characterization and catalytic performance. Catal. Sci. Technol. 2015, 5, 1683–1692. [Google Scholar] [CrossRef]
- Zhong, X.; Barbier, J.; Duprez, D.; Zhang, H.; Royer, S. Modulating the copper oxide morphology and accessibility by using micro-/mesoporous SBA-15 structures as host support: Effect on the activity for the CWPO of phenol reaction. Appl. Catal. B Environ. 2012, 121–122, 123–134. [Google Scholar] [CrossRef]
- Pintor, A.M.A.; Vilar, V.J.P.; Boaventura, R.A.R. Decontamination of cork wastewaters by solar-photo-Fenton process using cork bleaching wastewater as H2O2 source. Sol. Energy 2011, 85, 579–587. [Google Scholar] [CrossRef]
- Eleryan, A.; Aigbe, U.O.; Ukhurebor, K.E.; Onyancha, R.B.; Hassaan, M.A.; Elkatory, M.R.; Ragab, S.; Osibote, O.A.; Kusuma, H.S.; El Nemr, A. Adsorption of direct blue 106 dye using zinc oxide nanoparticles prepared via green synthesis technique. Environ. Sci. Pollut. Res. 2023, 30, 69666–69682. [Google Scholar] [CrossRef]
- El-Tokhy, T.; Ahmed, M.; ElGamma, M.; Ibrahim, M. Improvement and characterization of alum sludge by nano-iron oxide and rice husk for removal of methylene blue dye from aqueous solution. J. Egypt. Acad. Soc. Environ. Development. D Environ. Stud. 2020, 21, 25–59. [Google Scholar] [CrossRef]
- Vinod, G.; Rajashekhar, K.; Ravinder, D.; Naik, J.L. Structural, electrical, and magnetic properties of erbium (Er3+) substituted Cu–Cd nano-ferrites. J. Mater. Sci. Mater. Electron. 2021, 32, 24069–24082. [Google Scholar] [CrossRef]
- Golubovskaya, A.G.; Kharlamova, T.S.; Gavrilenko, E.A.; Fakhrutdinova, E.D.; Vodyankina, O.V.; Kulinich, S.A.; Svetlichnyi, V.A. Photocatalytic Decomposition of Rhodamine B and Selective Oxidation of 5-Hydroxymethylfurfural by β-Bi2O3/Bi12SiO20 Nanocomposites Produced by Laser. J. Compos. Sci. 2024, 8, 42. [Google Scholar] [CrossRef]
- Liang, X.; Fu, N.; Yao, S.; Li, Z.; Li, Y. The Progress and Outlook of Metal Single-Atom-Site Catalysis. J. Am. Chem. Soc. 2022, 144, 18155–18174. [Google Scholar] [CrossRef]
- Hu, H.; Liu, P.; Cao, S.; You, L.; Zhang, N.; Xi, J.; Guo, S.; Zhou, K. Single Metal Atoms Anchored on N-Doped Holey Graphene as Efficient Dual-Active-Component Catalysts for Nitroarene Reduction. Adv. Funct. Mater. 2024, 34, 2307162. [Google Scholar] [CrossRef]
- Wang, D.; Li, Y.; Wen, L.; Xi, J.; Liu, P.; Hansen, T.W.; Li, P. Ni-Pd-Incorporated Fe3O4 Yolk-Shelled Nanospheres as Efficient Magnetically Recyclable Catalysts for Reduction of N-Containing Unsaturated Compounds. Catalysts 2023, 13, 190. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, Z.; Shen, S.; Zhong, W.; Cao, S. Advances in designing heterojunction photocatalytic materials. Chin. J. Catal. 2021, 42, 710–730. [Google Scholar] [CrossRef]
- Low, J.; Jiang, C.; Cheng, B.; Wageh, S.; Al-Ghamdi, A.A.; Yu, J. A Review of Direct Z-Scheme Photocatalysts. Small Methods 2017, 1, 1700080. [Google Scholar] [CrossRef]
- Li, F.; Zhu, G.; Jiang, J.; Yang, L.; Deng, F.; Arramel; Li, X. A review of updated S-scheme heterojunction photocatalysts. J. Mater. Sci. Technol. 2024, 177, 142–180. [Google Scholar] [CrossRef]
- Tamuly, C.; Saikia, I.; Hazarika, M.; Das, M. Reduction of aromatic nitro compounds catalyzed by Biogenic CuO nanoparticles. RSC Adv. 2014, 4, 53229–53236. [Google Scholar] [CrossRef]
- Lam, N.H.; Smith, R.P.; Le, N.; Thuy, C.T.T.; Tamboli, M.S.; Tamboli, A.M.; Alshehri, S.; Ghoneim, M.M.; Truong, N.T.N.; Jung, J.H. Evaluation of the Structural Deviation of Cu/Cu2O Nanocomposite Using the X-ray Diffraction Analysis Methods. Crystals 2022, 12, 566. [Google Scholar] [CrossRef]
- Mohammed Fayaz, A.; Balaji, K.; Kalaichelvan, P.T.; Venkatesan, R. Fungal based synthesis of silver nanoparticles—An effect of temperature on the size of particles. Colloids Surf. B Biointerfaces 2009, 74, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Collins, D.; Luxton, T.; Kumar, N.; Shah, S.; Walker, V.K.; Shah, V. Assessing the impact of copper and zinc oxide nanoparticles on soil: A field study. PLoS ONE 2012, 7, e42663 (11 pages). [Google Scholar] [PubMed]
- Midander, K.; Cronholm, P.; Karlsson, H.L.; Elihn, K.; Möller, L.; Leygraf, C.; Wallinder, I.O. Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: A cross-disciplinary study. Small 2009, 5, 389–399. [Google Scholar]
- Zayyoun, N.; Bahmad, L.; Larbi, L.; Jaber, B. The effect of pH on the synthesis of stable Cu2O/CuO nanoparticles by sol–gel method in a glycolic medium. Appl. Phys. A 2016, 122, 488 (6 pages). [Google Scholar] [CrossRef]
- Zhang, Y.C.; Tang, J.Y.; Wang, G.L.; Zhang, M.; Hu, X.Y. Facile synthesis of submicron Cu2O and CuO crystallites from a solid metallorganic molecular precursor. J. Cryst. Growth 2006, 294, 278–282. [Google Scholar] [CrossRef]
- Prakash, I.; Muralidharan, P.; Nallaperumal, N.; Venkateswarlu, M.; Satyanarayana, N. Preparation and characterization of nanocrystallite size cuprous oxide. Mater. Res. Bull. 2007, 42, 1619–1624. [Google Scholar] [CrossRef]
- Yuan, W.; Wu, Y.; Fang, C.; Wang, X.; Huang, X.; Li, C. Engineering Nanowire Array Structure of Copper Oxide/Cuprous Oxide for Enhanced Oxygen Evolution Reaction. J. Electrochem. Soc. 2020, 167, 022508. [Google Scholar] [CrossRef]
- Martin, L.; Martinez, H.; Poinot, D.; Pecquenard, B.; Le Cras, F. Comprehensive X-ray Photoelectron Spectroscopy Study of the Conversion Reaction Mechanism of CuO in Lithiated Thin Film Electrodes. J. Phys. Chem. C 2013, 117, 4421–4430. [Google Scholar] [CrossRef]
- Sun, H.; Xu, R.; Jia, X.; Liu, Z.; Chen, H.; Lu, T. Recent advances in the photocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Biomass Convers. Biorefinery 2024, 14, 26707–26724. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, H.; Gu, B.; Tang, Q.; Cao, Q.; Fang, W. Sunlight-driven photocatalytic oxidation of 5-hydroxymethylfurfural over a cuprous oxide-anatase heterostructure in aqueous phase. Appl. Catal. B Environ. 2023, 320, 122006. [Google Scholar] [CrossRef]
- Nam, J.-W.; Pham, V.N.; Ha, J.M.; Shin, M.; Lee, H.; Youn, Y.-S. Photocatalysis of Cr- and Fe-Doped CeO2 Nanoparticles to Selective Oxidation of 5-Hydroxymethylfurfural. Nanomaterials 2023, 13, 44. [Google Scholar]
- Ahmad, I.; Zou, Y.; Yan, J.; Liu, Y.; Shukrullah, S.; Naz, M.Y.; Hussain, H.; Khan, W.Q.; Khalid, N.R. Semiconductor photocatalysts: A critical review highlighting the various strategies to boost the photocatalytic performances for diverse applications. Adv. Colloid Interface Sci. 2023, 311, 102830. [Google Scholar] [CrossRef] [PubMed]
- Pestovsky, O.; Bakac, A. Aqueous ferryl (IV) ion: Kinetics of oxygen atom transfer to substrates and oxo exchange with solvent water. Inorg. Chem. 2006, 45, 814–820. [Google Scholar]
- Klamerth, N.; Malato, S.; Maldonado, M.I.; Aguera, A.; Fernández-Alba, A.R. Application of photo-fenton as a tertiary treatment of emerging contaminants in municipal wastewater. Environ. Sci. Technol. 2010, 44, 1792–1798. [Google Scholar]
- Michael, I.; Panagi, A.; Ioannou, L.A.; Frontistis, Z.; Fatta-Kassinos, D. Utilizing solar energy for the purification of olive mill wastewater using a pilot-scale photocatalytic reactor after coagulation-flocculation. Water Res. 2014, 60, 28–40. [Google Scholar]
- Soares, E.T.; Lansarin, M.A.; Moro, C.C. A study of process variables for the photocatalytic degradation of rhodamine B. Braz. J. Chem. Eng. 2007, 24, 29–36. [Google Scholar]
- Manenti, D.R.; Módenes, A.N.; Soares, P.A.; Boaventura, R.A.R.; Palácio, S.M.; Borba, F.H.; Espinoza-Quiñones, F.R.; Bergamasco, R.; Vilar, V.J.P. Biodegradability and toxicity assessment of a real textile wastewater effluent treated by an optimized electrocoagulation process. Environ. Technol. 2015, 36, 496–506. [Google Scholar]
- Tony, M.A.; Purcell, P.J.; Mansour, S.A. Photodegradation and Box-Behnken design optimization for methomyl using Fenton process based on synthesized CuO nanocrystals via facile wet chemical technique. Chem. Eng. Commun. 2021, 208, 349–363. [Google Scholar]
- Droguett, C.; Salazar, R.; Brillas, E.; Sirés, I.; Carlesi, C.; Marco, J.F.; Thiam, A. Treatment of antibiotic cephalexin by heterogeneous electrochemical Fenton-based processes using chalcopyrite as sustainable catalyst. Sci. Total Environ. 2020, 740, 140154. [Google Scholar]
- Kalantary, R.R.; Farzadkia, M.; Kermani, M.; Rahmatinia, M. Heterogeneous electro-Fenton process by Nano-Fe3O4 for catalytic degradation of amoxicillin: Process optimization using response surface methodology. J. Environ. Chem. Eng. 2018, 6, 4644–4652. [Google Scholar]
- Barhoumi, N.; Oturan, N.; Ammar, S.; Gadri, A.; Oturan, M.A.; Brillas, E. Enhanced degradation of the antibiotic tetracycline by heterogeneous electro-Fenton with pyrite catalysis. Environ. Chem. Lett. 2017, 15, 689–693. [Google Scholar]
T, | Zero-Order Reaction Kinetics | Pseudo-First-Order Reaction Kinetics | Pseudo-Second-Order Reaction Kinetics | ||||||
---|---|---|---|---|---|---|---|---|---|
K | k0, | R2 | t1/2, min | k1, | R2 | t1/2, min | k2, | R2 | t1/2, min |
min−1 | L·mg−1min−1 | L·mg−1min−1 | |||||||
305 | 0.0023 | 0.89 | 48.47 | 0.032 | 0.94 | 21.65 | 0.399 | 0.96 | 11.23 |
313 | 0.0031 | 0.89 | 35.96 | 0.0286 | 0.93 | 24.23 | 0.311 | 0.97 | 14.41 |
323 | 0.0028 | 0.90 | 39.82 | 0.0249 | 0.93 | 27.83 | 0.238 | 0.97 | 18.84 |
333 | 0.0031 | 0.85 | 37.16 | 0.0226 | 0.88 | 30.66 | 0.204 | 0.95 | 21.98 |
Temperature, K | Ln k2 | Ea, | ∆G’, | ∆H’, | ∆S’, |
---|---|---|---|---|---|
kJmol−1 | kJmol−1 | kJmol−1 | Jmol−1 | ||
305 | −0.92 | 20.44 | 77.08 | 17.90 | −194.04 |
313 | −1.17 | 79.82 | 17.83 | −198.04 | |
323 | −1.44 | 83.17 | 17.75 | −202.55 | |
333 | −1.59 | 86.26 | 17.67 | −205.99 |
Wastewater | Catalyst | Oxidation Time | Operating Conditions | Treatment Efficiency | Ref. |
---|---|---|---|---|---|
BV 10 dye wastewater | CuO/Cu2O hybrid nanoparticles | 60 min | pH 8.0, catalyst 40 mg/L, H2O2 400 mg/L | 82% | Current work |
Organics in wastewater | FeSO4·7H2O | 280 min | pH 3.0, catalyst 20 mg/L, H2O2 50 mg/L | 80% | [66] |
Oily wastewater | FeSO4·7H2O | - | catalyst 0.08 g/L, H2O2 1 g/L | 87% | [67] |
Dye stuff wastewater | FeSO4·7H2O | - | pH 2.8, Na2SO4 60 mg/L, H2O2 68.4 mM | 86% | [68] |
Organics in wastewater | Natural iron | 360 min | pH 5.0, catalyst 25 mg/L | 50% | [69] |
Surfactant wastewater | FeCl3 | 2 min | pH 3.0 | 89% | [69] |
Dye stuff wastewater | α-Fe2O3 | 60 min | pH 3.0, catalyst 40 mg/L, H2O2 400 mg/L | 60% | [24] |
Pesticide wastewater | n-CuO | 60 min | Catalyst 75 mg/L, H2O2 395 mg/L, pH 6.5 | 85% | [70] |
Pesticide wastewater | Cu/Cu2O/CuO | - | H2O2 5000 mg/L, catalyst 3.0 g/L, pH 6.5, microwave power 400 W | 91% | [24] |
Cephalexin wastewater | Na2SO4 | 15 min | Catalyst 0.05 M, pH 3.0, electric current 125 mA | 100% | [71] |
Amoxicillin wastewater | Nano-Fe2O3 | 60 min | Catalyst 0.01, pH 3, electric current 300 mA | 98.2% | [72] |
Tetracycline wastewater | Pyrite | 20 min | Catalyst 0.05 M, pH 3, 300 mA | 100% | [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhashem, Z.H.; Alali, H.A.; Mansour, S.A.; Tony, M.A.; Farha, A.H. Independent Acidic pH Reactivity of Non-Iron-Fenton Reaction Catalyzed by Copper-Based Nanoparticles for Fluorescent Dye Oxidation. Inorganics 2025, 13, 97. https://doi.org/10.3390/inorganics13030097
Alhashem ZH, Alali HA, Mansour SA, Tony MA, Farha AH. Independent Acidic pH Reactivity of Non-Iron-Fenton Reaction Catalyzed by Copper-Based Nanoparticles for Fluorescent Dye Oxidation. Inorganics. 2025; 13(3):97. https://doi.org/10.3390/inorganics13030097
Chicago/Turabian StyleAlhashem, Zakia H., Hasna Abdullah Alali, Shehab A. Mansour, Maha A. Tony, and Ashraf H. Farha. 2025. "Independent Acidic pH Reactivity of Non-Iron-Fenton Reaction Catalyzed by Copper-Based Nanoparticles for Fluorescent Dye Oxidation" Inorganics 13, no. 3: 97. https://doi.org/10.3390/inorganics13030097
APA StyleAlhashem, Z. H., Alali, H. A., Mansour, S. A., Tony, M. A., & Farha, A. H. (2025). Independent Acidic pH Reactivity of Non-Iron-Fenton Reaction Catalyzed by Copper-Based Nanoparticles for Fluorescent Dye Oxidation. Inorganics, 13(3), 97. https://doi.org/10.3390/inorganics13030097