Effect of Endodontic Irrigating Solutions on Radicular Dentine Structure and Matrix Metalloproteinases—A Comprehensive Review
Abstract
:1. Introduction
2. Effects of Irrigating Solutions on Dentin Structure
2.1. Effect of Sodium Hypochlorite
2.2. Effect of Decalcifying Agents
2.3. Effect of Chlorhexidine
3. Effect of Combined Irrigating Solutions on Dentin
4. Effect of Irrigating Solutions on Endogenous Matrix Metalloproteinases (MMPs)
5. Final Remarks and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dudeja, P.G.; Dudeja, K.K.; Srivastava, D.; Grover, S. Microorganisms in periradicular tissues: Do they exist? A perennial controversy. J. Oral Maxillofac. Pathol. 2015, 19, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Corsentino, G.; Mazzitelli, C.; Mazzoni, A.; Ambu, E.; Perotto, C.; Franciosi, G.; Grandini, S. Sealing ability of two root-end filling materials at different retro-preparation lengths. J. Oral Sci. 2022, 64, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Haapasalo, M.; Endal, U.; Zandi, H.; Coil, J.M. Eradication of endodontic infection by instrumentation and irrigation solutions. Endod. Top. 2005, 10, 77–102. [Google Scholar] [CrossRef]
- Ng, Y.L.; Mann, V.; Gulabivala, K. A prospective study of the factors affecting outcomes of nonsurgical root canal treatment: Part 1: Periapical health. Int. Endod. J. 2011, 44, 583–609. [Google Scholar] [CrossRef] [PubMed]
- Azim, A.A.; Griggs, J.A.; Huang, G.J. The Tennessee study: Factors affecting treatment outcome and healing time following nonsurgical root canal treatment. Int. Endod. J. 2016, 49, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Rosen, H. Operative procedures on mutilated endodontically treated teeth. J. Prosthet. Dent. 1961, 11, 973–986. [Google Scholar] [CrossRef]
- Gher Jr, M.E.; Dunlap, R.M.; Anderson, M.H.; Kuhl, L.V. Clinical survey of fractured teeth. J. Am. Dent. Assoc. 1987, 114, 174–177. [Google Scholar] [CrossRef] [PubMed]
- Sim, T.P.C.; Knowles, J.C.; Ng, Y.L.; Shelton, J.; Gulabivala, K. Effect of sodium hypochlorite on mechanical properties of dentine and tooth surface strain. Int. Endod. J. 2001, 34, 120–132. [Google Scholar] [CrossRef]
- Tang, W.; Wu, Y.; Smales, R.J. Identifying and reducing risks for potential fractures in endodontically treated teeth. J. Endod. 2010, 36, 609–617. [Google Scholar] [CrossRef]
- Mannocci, F.; Cowie, J. Restoration of endodontically treated teeth. Braz. Dent. J. 2014, 216, 341–416. [Google Scholar] [CrossRef]
- Corsentino, G.; Pedullà, E.; Castelli, L.; Liguori, M.; Spicciarelli, V.; Martignoni, M.; Ferrari, M.; Grandini, S. Influence of access cavity preparation and remaining tooth substance on fracture strength of endodontically treated teeth. J. Endod. 2018, 44, 1416–1421. [Google Scholar] [CrossRef]
- Gutmann, J.L. The dentin-root complex: Anatomic and biologic considerations in restoring endodontically treated teeth. J. Prosthet. Dent. 1992, 67, 458–467. [Google Scholar] [CrossRef]
- Gulabivala, K. Restoration of the Root-Filled Tooth. Color Atlas and Text of Endodontics, 2nd ed.; Times Mirror International Publishers, Mosby-Wolfe: London, UK, 1995; pp. 241–272. [Google Scholar]
- Dotto, L.; Onofre, R.S.; Bacchi, A.; Pereira, G.K. Effect of root canal irrigants on the mechanical properties of endodontically treated teeth: A scoping review. J. Endod. 2020, 46, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Uzunoglu, E.; Aktemur, S.; Uyanik, M.O.; Durmaz, V.; Nagas, E. Effect of ethylenediaminetetraacetic acid on root fracture with respect to concentration at different time exposures. J. Endod. 2012, 38, 1110–1113. [Google Scholar] [CrossRef] [PubMed]
- Faria, M.I.A.; Sousa-Neto, M.D.; Souza-Gabriel, A.E.; Alfredo, E.; Romeo, U.; Silva-Sousa, Y.T.C. Effects of 980-nm diode laser on the ultrastructure and fracture resistance of dentine. Lasers Med. Sci. 2013, 28, 275–280. [Google Scholar] [CrossRef]
- Qian, W.; Shen, Y.; Haapasalo, M. Quantitative analysis of the effect of irrigant solution sequences on dentin erosion. J. Endod. 2011, 37, 1437–1441. [Google Scholar] [CrossRef] [PubMed]
- Hennequin, M.; Pajot, J.; Avignant, D. Effects of different pH values of citric acid solutions on the calcium and phosphorus contents of human root dentin. J. Endod. 1994, 20, 551–554. [Google Scholar] [CrossRef]
- Doğan, H.; Çalt, S. Effects of chelating agents and sodium hypochlorite on mineral content of root dentin. J. Endod. 2001, 27, 578–580. [Google Scholar] [CrossRef]
- Ari, H.; Erdemir, A. Effects of endodontic irrigation solutions on mineral content of root canal dentin using ICP-AES technique. J. Endod. 2005, 31, 187–189. [Google Scholar] [CrossRef]
- Cobankara, F.K.; Erdogan, H.; Hamurcu, M. Effects of chelating agents on the mineral content of root canal dentin. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011, 112, e149–e154. [Google Scholar] [CrossRef]
- Baumgartner, J.C.; Mader, C.L. A scanning electron microscopic evaluation of four root canal irrigation regimens. J. Endod. 1987, 13, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Kim, Y.K.; Cadenaro, M.; Bryan, T.E.; Sidow, S.J.; Loushine, R.J.; Tay, F.R. Effects of different exposure times and concentrations of sodium hypochlorite/ethylenediaminetetraacetic acid on the structural integrity of mineralized dentin. J. Endod. 2010, 36, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Eldeniz, A.U.; Erdemir, A.; Belli, S. Effect of EDTA and citric acid solutions on the microhardness and the roughness of human root canal dentin. J. Endod. 2005, 31, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Marending, M.; Luder, H.U.; Brunner, T.J.; Knecht, S.; Stark, W.J.; Zehnder, M. Effect of sodium hypochlorite on human root dentine–mechanical, chemical and structural evaluation. Int. Endod. J. 2007, 40, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Marending, M.; Paque, F.; Fischer, J.; Zehnder, M. Impact of irrigant sequence on mechanical properties of human root dentin. J. Endod. 2007, 33, 1325–1328. [Google Scholar] [CrossRef]
- Kishen, A.; Sum, C.P.; Mathew, S.; Lim, C.T. Influence of irrigation regimens on the adherence of Enterococcus faecalis to root canal dentin. J. Endod. 2008, 34, 850–854. [Google Scholar] [CrossRef]
- De-Deus, G.; Namen, F.; Galan, J., Jr.; Zehnder, M. Soft chelating irrigation protocol optimizes bonding quality of Resilon/Epiphany root fillings. J. Endod. 2008, 34, 703–705. [Google Scholar] [CrossRef]
- Neelakantan, P.; Varughese, A.A.; Sharma, S.; Subbarao, C.V.; Zehnder, M.; De-Deus, G. Continuous chelation irrigation improves the adhesion of epoxy resin-based root canal sealer to root dentine. Int. Endod. J. 2012, 45, 1097–1102. [Google Scholar] [CrossRef]
- Saleh, A.A.; Ettman, W.M. Effect of endodontic irrigation solutions on microhardness of root canal dentine. J. Dent. 1999, 27, 43–46. [Google Scholar] [CrossRef]
- Porter, A.E.; Nalla, R.K.; Minor, A.; Jinschek, J.R.; Kisielowski, C.; Radmilovic, V.; Ritchie, R.O. A transmission electron microscopy study of mineralization in age-induced transparent dentin. Biomaterials 2005, 26, 7650–7660. [Google Scholar] [CrossRef]
- Reis, L.C.; Rôças, I.N.; Siqueira, J.F., Jr.; de Uzeda, M.; Lacerda, V.S.; Domingues, R.M.; Saraiva, R.M. Bacteremia after endodontic procedures in patients with heart disease: Culture and molecular analyses. J. Endod. 2016, 42, 1181–1185. [Google Scholar] [CrossRef] [PubMed]
- Tay, F.R.; Pashley, D.H.; Loushine, R.J.; Doyle, M.D.; Gillespie, W.T.; Weller, R.N.; King, N.M. Ultrastructure of smear layer-covered intraradicular dentin after irrigation with BioPure MTAD. J. Endod. 2006, 32, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.; Carrilho, M.; Tervahartiala, T.; Sorsa, T.; Breschi, L.; Mazzoni, A.; Tjäderhane, L. Determination of matrix metalloproteinases in human radicular dentin. J. Endod. 2009, 35, 686–689. [Google Scholar] [CrossRef] [PubMed]
- Toledano, M.; Nieto-Aguilar, R.; Osorio, R.; Campos, A.; Osorio, E.; Tay, F.R.; Alaminos, M. Differential expression of matrix metalloproteinase-2 in human coronal and radicular sound and carious dentine. J. Dent. 2010, 38, 635–640. [Google Scholar] [CrossRef]
- Retana-Lobo, C.; Guerreiro-Tanomaru, J.M.; Tanomaru-Filho, M.; de Souza, B.D.; Reyes-Carmona, J. Sodium Hypochlorite and Chlorhexidine Downregulate MMP Expression on Radicular Dentin. Med. Princ. Pract. 2021, 30, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Baruwa, A.O.; Mazzitelli, C.; Maravic, T.; Martins, J.N.R.; Mazzoni, A.; Ginjeira, A. In Situ Zymography Analysis of Matrix Metalloproteinases Activity Following Endodontic Irrigation Protocols and Correlation to Root Dentine Bond Strength. Polymers 2022, 14, 3567. [Google Scholar] [CrossRef]
- Darcey, J.; Jawad, S.; Taylor, C.; Roudsari, R.V.; Hunter, M. Modern endodontic principles part 4: Irrigation. Dent. Update 2016, 43, 20–33. [Google Scholar] [CrossRef]
- Fedorowicz, Z.; Nasser, M.; Sequeira-Byron, P.; de Souza, R.F.; Carter, B.; Heft, M. Irrigants for non-surgical root canal treatment in mature permanent teeth. Cochrane Database Syst. Rev. 2012, 9, 1–55. [Google Scholar] [CrossRef]
- Zehnder, M. Root canal irrigants. J. Endod. 2006, 32, 389–398. [Google Scholar] [CrossRef]
- Andrabi, S.M.U.N.; Kumar, A.; Tewari, R.K.; Mishra, S.K.; Iftekhar, H. An in vitro SEM study on the effectiveness of smear layer removal of four different irrigations. Iran. Endod. J. 2012, 7, 171–176. [Google Scholar]
- Rahimi, S.; Janani, M.; Lotfi, M.; Shahi, S.; Aghbali, A.; Pakdel, M.V.; Ghasemi, N. A review of antibacterial agents in endodontic treatment. Iran. Endod. J. 2014, 9, 161–168. [Google Scholar] [PubMed]
- Heling, I.; Rotstein, I.; Dinur, T.; Szwec-Levine, Y.; Steinberg, D. Bactericidal and cytotoxic effects of sodium hypochlorite and sodium dichloroisocyanurate solutions in vitro. J. Endod. 2001, 27, 278–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoudpour, A.; Rahimi, S.; Sina, M.; Soroush, M.H.; Shahisa, S.; Asl-Aminabadi, N. Isolation and identification of Enterococcus faecalis from necrotic root canals using multiplex PCR. J. Oral Sci. 2007, 49, 221–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadalin, M.R.; Perez, D.E.D.C.; Vansan, L.P.; Paschoala, C.; Souza-Neto, M.D.; Saquy, P.C. Effectiveness of different final irrigation protocols in removing debris in flattened root canals. Braz. Dent. J. 2009, 20, 211–214. [Google Scholar] [CrossRef]
- Spangberg, L.; Engstrom, B. Toxicity and antimicrobial effect of endodontic antiseptics in vitro. Oral Surg. Oral Med. Oral Pathol. 1973, 36, 856–870. [Google Scholar] [CrossRef] [PubMed]
- McComb, D.; Smith, D.C.; Beagrie, G.S. The results of in vivo endodontic chemomechanical instrumentation—A scanning electron microscopic study. Int. Endod. J. 1976, 9, 11–18. [Google Scholar] [CrossRef]
- Matsumoto, T.; Nagai, T.; Ida, K.; Ito, M.; Kawai, Y.; Horiba, N.; Sato, R.; Nakamura, H. Factors affecting successful prognosis of root canal treatment. J. Endod. 1987, 13, 239–242. [Google Scholar] [CrossRef]
- Baumgartner, J.C.; Cuenin, P.R. Efficacy of several concentrations of sodium hypochlorite for root canal irrigation. J. Endod. 1992, 18, 605–612. [Google Scholar] [CrossRef]
- Xu, H.; Ye, Z.; Zhang, A.; Lin, F.; Fu, J.; Fok, A.S. Effects of concentration of sodium hypochlorite as an endodontic irrigant on the mechanical and structural properties of root dentine: A laboratory study. Int. Endod. J. 2022, 55, 1091–1102. [Google Scholar] [CrossRef]
- Christensen, C.E.; McNeal, S.F.; Eleazer, P. Effect of lowering the pH of sodium hypochlorite on dissolving tissue in vitro. J. Endod. 2008, 34, 449–452. [Google Scholar] [CrossRef]
- Stojicic, S.; Zivkovic, S.; Qian, W.; Zhang, H.; Haapasalo, M. Tissue dissolution by sodium hypochlorite: Effect of concentration, temperature, agitation, and surfactant. J. Endod. 2010, 36, 1558–1562. [Google Scholar] [CrossRef] [PubMed]
- Dychdala, G.R. Chlorine and chlorine compounds. In Disinfection, Sterilization, and Preservation, 4th ed.; Block, S.S., Ed.; Lea & Febiger: Philadelphia, PA, USA, 1991; pp. 131–151. [Google Scholar]
- Johnson, G.S.; Mucalo, M.R.; Lorier, M.A. The processing and characterization of animal-derived bone to yield materials with biomedical applications Part 1: Modifiable porous implants from bovine condyle cancellous bone and characterization of bone materials as a function of processing. J. Mater. Sci. Mater. Med. 2000, 11, 427–441. [Google Scholar] [CrossRef] [PubMed]
- Stoward, P.J. A histochemical study of the apparent deamination of proteins by sodium hypochlorite. Histochemistry 1975, 45, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.M.; Horwitz, D.A.; Davies, K.J. Potential roles of hypochlorous acid and N-chloroamines in collagen breakdown by phagocytic cells in synovitis. Free Radic. Biol. Med. 1993, 15, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Pascon, F.M.; Kantovitz, K.R.; Sacramento, P.A.; Nobre-dos-Santos, M.; Puppin-Rontani, R.M. Effect of sodium hypochlorite on dentine mechanical properties. A review. J. Dent. 2009, 37, 903–908. [Google Scholar] [CrossRef] [PubMed]
- Slutzky-Goldberg, I.; Maree, M.; Liberman, R.; Heling, I. Effect of sodium hypochlorite on dentin microhardness. J. Endod. 2004, 30, 880–882. [Google Scholar] [CrossRef] [PubMed]
- Grigoratos, D.; Knowles, J.; Ng, Y.L.; Gulabivala, K. Effect of exposing dentine to sodium hypochlorite and calcium hydroxide on its flexural strength and elastic modulus. Int. Endod. J. 2001, 34, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Machnick, T.K.; Torabinejad, M.; Munoz, C.A.; Shabahang, S. Effect of MTAD on flexural strength and modulus of elasticity of dentin. J. Endod. 2003, 29, 747–750. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.S.; Hsieh, T.T.; Chi, D.C.H.; Lan, W.H.; Lin, C.P. The role of organic tissue on the punch shear strength of human dentin. J. Dent. 2004, 32, 101–107. [Google Scholar] [CrossRef]
- Oliveira, L.D.; Carvalho, C.A.T.; Nunes, W.; Valera, M.C.; Camargo, C.H.R.; Jorge, A.O.C. Effects of chlorhexidine and sodium hypochlorite on the microhardness of root canal dentin. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2007, 104, e125–e128. [Google Scholar] [CrossRef]
- HS Delgado, A.; Belmar Da Costa, M.; Polido, M.C.; Mano Azul, A.; Sauro, S. Collagen-depletion strategies in dentin as alternatives to the hybrid layer concept and their effect on bond strength: A systematic review. Sci. Rep. 2022, 12, 13028. [Google Scholar] [CrossRef] [PubMed]
- Lisboa, D.S.; Santos, S.V.D.; Griza, S.; Rodrigues, J.L.; Faria-e-Silva, A.L. Dentin deproteinization effect on bond strength of self-adhesive resin cements. Braz. Oral Res. 2013, 27, 73–75. [Google Scholar] [CrossRef] [Green Version]
- Neelakantan, P.; Sharma, S.; Shemesh, H.; Wesselink, P.R. Influence of irrigation sequence on the adhesion of root canal sealers to dentin: A Fourier transform infrared spectroscopy and push-out bond strength analysis. J. Endod. 2015, 41, 1108–1111. [Google Scholar] [CrossRef]
- Inai, N.; Kanemura, N.; Tagami, J.; Watanabe, L.G.; Marshall, S.J.; Marshall, G.W. Adhesion between collagen depleted dentin and dentin adhesives. Am. J. Dent. 1998, 11, 123–127. [Google Scholar] [PubMed]
- Kanca, J., 3rd; Sandrik, J. Bonding to dentin. Clues to the mechanism of adhesion. Am. J. Dent. 1998, 11, 154–159. [Google Scholar] [PubMed]
- Wakabayashi, Y.; Kondou, Y.; Suzuki, K.; Yatani, H.; Yamashita, A. Effect of dissolution of collagen on adhesion to dentin. Int. J. Prosthodont. 1994, 7, 302–306. [Google Scholar]
- Gwinnett, A.J. Altered tissue contribution to interfacial bond strength with acid conditioned dentin. Am. J. Dent. 1994, 7, 243–246. [Google Scholar]
- Vargas, M.A.; Cobb, D.S.; Armstrong, S.R. Resin-dentin shear bond strength and interfacial ultrastructure with and without a hybrid layer. Oper. Dent. 1997, 22, 159–166. [Google Scholar]
- Ari, H.; Erdemir, A.; Belli, S. Evaluation of the effect of endodontic irrigation solutions on the microhardness and the roughness of root canal dentin. J. Endod. 2004, 30, 792–795. [Google Scholar] [CrossRef]
- Belli, S.; Eraslan, O.; Eraslan, O.; Eskitascioglu, M.; Eskitascioglu, G. Effects of Na OC l, EDTA and MTAD when applied to dentine on stress distribution in post-restored roots with flared canals. Int. Endod. J. 2004, 47, 1123–1132. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Heredia, M.; Ferrer-Luque, C.M.; González-Rodríguez, M.P.; Martín-Peinado, F.J.; González-López, S. Decalcifying effect of 15% EDTA, 15% citric acid, 5% phosphoric acid and 2.5% sodium hypochlorite on root canal dentine. Int. Endod. J. 2008, 41, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Tartari, T.; Bachmann, L.; Maliza, A.G.A.; Andrade, F.B.; Duarte, M.A.H.; Bramante, C.M. Tissue dissolution and modifications in dentin composition by different sodium hypochlorite concentrations. J. Appl. Oral Sci. 2016, 24, 291–298. [Google Scholar] [CrossRef]
- Oyarzún, A.; Cordero, A.M.; Whittle, M. Immunohistochemical evaluation of the effects of sodium hypochlorite on dentin collagen and glycosaminoglycans. J. Endod. 2002, 28, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Di Renzo, M.; Ellis, T.H.; Sacher, E.; Stangel, I. A photoacoustic FTIRS study of the chemical modifications of human dentin surfaces: II. Deproteination. Biomaterials 2001, 22, 793–797. [Google Scholar] [CrossRef]
- Kruzic, J.J.; Ritchie, R.O. Fatigue of mineralized tissues: Cortical bone and dentin. J. Mech. Behav. Biomed. Mater. 2008, 1, 3–17. [Google Scholar] [CrossRef]
- Driscoll, C.O.; Dowker, S.E.P.; Anderson, P.; Wilson, R.M.; Gulabivala, K. Effects of sodium hypochlorite solution on root dentine composition. J. Mater. Sci. Mater. Med. 2002, 13, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Perdigão, J.A.; Thompson, J.Y.; Toledano, M.; Osorio, R. An ultra-morphological characterization of collagen-depleted etched dentin. Am. J. Dent. 1999, 12, 250–255. [Google Scholar]
- Kaya, S.; Yiğit-Özer, S.; Adigüzel, Ö. Evaluation of radicular dentin erosion and smear layer removal capacity of Self-Adjusting File using different concentrations of sodium hypochlorite as an initial irrigant. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011, 112, 524–530. [Google Scholar] [CrossRef]
- Hu, X.; Ling, J.; Gao, Y. Effects of irrigation solutions on dentin wettability and roughness. J. Endod. 2010, 36, 1064–1067. [Google Scholar] [CrossRef]
- da Cunha, L.F.; Furuse, A.Y.; Mondelli, R.F.L.; Mondelli, J. Compromised bond strength after root dentin deproteinization reversed with ascorbic acid. J. Endod. 2010, 36, 130–134. [Google Scholar] [CrossRef]
- Tartari, T.; Oda, D.F.; Zancan, R.F.; da Silva, T.L.; De Moraes, I.G.; Duarte, M.A.H.; Bramante, C.M. Mixture of alkaline tetrasodium EDTA with sodium hypochlorite promotes in vitro smear layer removal and organic matter dissolution during biomechanical preparation. Int. Endod. J. 2017, 50, 106–114. [Google Scholar] [CrossRef]
- De-Deus, G.; Souza, E.M.; Marins, J.R.; Reis, C.; Paciornik, S.; Zehnder, M. Smear layer dissolution by peracetic acid of low concentration. Int. Endod. J. 2011, 44, 485–490. [Google Scholar] [CrossRef] [Green Version]
- Kawasaki, K.; Ruben, J.; Tsuda, H.; Huysmans, M.C.D.N.J.M.; Takagi, O. Relationship between mineral distributions in dentine lesions and subsequent remineralization in vitro. Caries Res. 2000, 34, 395–403. [Google Scholar] [CrossRef]
- Torabinejad, M.; Cho, Y.; Khademi, A.A.; Bakland, L.K.; Shabahang, S. The effect of various concentrations of sodium hypochlorite on the ability of MTAD to remove the smear layer. J. Endod. 2003, 29, 233–239. [Google Scholar] [CrossRef]
- Niu, W.; Yoshioka, T.; Kobayashi, C.; Suda, H. A scanning electron microscopic study of dentinal erosion by final irrigation with EDTA and NaOCl solutions. Int. Endod. J. 2002, 35, 934–939. [Google Scholar] [CrossRef]
- Slutzky-Goldberg, I.; Liberman, R.; Heling, I. The effect of instrumentation with two different file types, each with 2.5% NaOCl irrigation on the microhardness of root dentin. J. Endod. 2002, 28, 311–312. [Google Scholar] [CrossRef]
- Perez, F.; Rouqueyrol-Pourcel, N. Effect of a low-concentration EDTA solution on root canal walls: A scanning electron microscopic study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2005, 99, 383–387. [Google Scholar] [CrossRef]
- Şen, B.H.; Ertürk, Ö.; Pişkin, B. The effect of different concentrations of EDTA on instrumented root canal walls. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2009, 108, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, F.; Abramovich, A. Analysis of the effect of EDTAC on the dentinal walls of the root canal. J. Endod. 1977, 3, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Di Lenarda, R.; Cadenaro, M.I.L.E.N.A.; Sbaizero, O.R.F.E.O. Effectiveness of 1 mol L−1 citric acid and 15% EDTA irrigation on smear layer removal. Int. Endod. J. 2000, 33, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Perdigão, J.; Eiriksson, S.; Rosa, B.T.; Lopes, M.; Gomes, G. Effect of calcium removal on dentin bond strengths. Quintessence Int. 2001, 32, 142–146. [Google Scholar] [PubMed]
- Pashley, D.H.; Tay, F.R.; Yiu, C.K.Y.; Hashimoto, M.; Breschi, L.; Carvalho, R.M.; Ito, S. Collagen degradation by host-derived enzymes during aging. J. Dent. Res. 2004, 83, 216–221. [Google Scholar] [CrossRef] [PubMed]
- De Munck, J.; Van den Steen, P.E.; Mine, A.; Van Landuyt, K.L.; Poitevin, A.; Opdenakker, G.; Van Meerbeek, B. Inhibition of enzymatic degradation of adhesive-dentin interfaces. J. Dent. Res. 2009, 88, 1101–1106. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, R.S. Adhesive dentistry and endodontics. Part 2: Bonding in the root canal system—The promise and the problems: A review. J. Endod. 2006, 32, 1125–1134. [Google Scholar] [CrossRef]
- Cruz-Filho, A.M.; Sousa-Neto, M.D.; Saquy, P.C.; Pécora, J.D. Evaluation of the effect of EDTAC, CDTA, and EGTA on radicular dentin microhardness. J. Endod. 2001, 27, 183–184. [Google Scholar] [CrossRef]
- Uzunoglu, E.; Yilmaz, Z.; Erdogan, O.; Görduysus, M. Final irrigation regimens affect fracture resistance values of root-filled teeth. J. Endod. 2016, 42, 493–495. [Google Scholar] [CrossRef]
- Vollenweider, M.; Brunner, T.J.; Knecht, S.; Grass, R.N.; Zehnder, M.; Imfeld, T.; Stark, W.J. Remineralization of human dentin using ultrafine bioactive glass particles. Acta Biomater. 2007, 3, 936–943. [Google Scholar] [CrossRef] [PubMed]
- Zaparolli, D.; Saquy, P.C.; Cruz-Filho, A.M. Effect of sodium hypochlorite and EDTA irrigation, individually and in alternation, on dentin microhardness at the furcation area of mandibular molars. Braz. Dent. J. 2012, 23, 654–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghisi, A.C.; Kopper, P.M.P.; Baldasso, F.E.; Stürmer, C.P.; Rossi-Fedele, G.; Steier, L.; Vier-Pelisser, F.V. Effect of super-oxidized water, sodium hypochlorite and EDTA on dentin microhardness. Braz. Dent. J. 2014, 25, 420–424. [Google Scholar] [CrossRef] [Green Version]
- Souza, E.M.; Calixto, A.M.; e Lima, C.N.; Pappen, F.G.; De-Deus, G. Similar influence of stabilized alkaline and neutral sodium hypochlorite solutions on the fracture resistance of root canal–treated bovine teeth. J. Endod. 2014, 40, 1600–1603. [Google Scholar] [CrossRef]
- Tiwari, S.; Nikhade, P.; Chandak, M.; Sudarshan, C.; Shetty, P.; Gupta, N.K. Impact of Various Irrigating Agents on Root Fracture: An in vitro Study. J Contemp. Dent. Pract. 2016, 17, 659–662. [Google Scholar] [PubMed]
- Khoroushi, M.; Ziaei, S.; Shirban, F.; Tavakol, F. Effect of intracanal irrigants on coronal fracture resistance of endodontically treated teeth undergoing combined bleaching protocol: An in vitro study. J. Dent. 2018, 15, 266–274. [Google Scholar]
- Cecchin, D.; Farina, A.P.; Souza, M.A.; Albarello, L.L.; Schneider, A.P.; Vidal, C.M.P.; Bedran-Russo, A.K. Evaluation of antimicrobial effectiveness and dentine mechanical properties after use of chemical and natural auxiliary irrigants. J. Dent. 2015, 43, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.D.; Day, M.J. Antibacterial activity of chlorhexidine. J. Hosp. Infect. 1993, 25, 229–238. [Google Scholar] [CrossRef]
- Josic, U.; Maravic, T.; Mazzitelli, C.; Del Bianco, F.; Mazzoni, A.; Breschi, L. The effect of chlorhexidine primer application on the clinical performance of composite restorations: A literature review. J. Esthet. Restor. Dent. 2021, 33, 69–77. [Google Scholar] [CrossRef]
- Kanisavaran, Z.M. Chlorhexidine gluconate in endodontics: An update review. Int. Dent. J. 2008, 58, 247–257. [Google Scholar] [CrossRef]
- Jaju, S.; Jaju, P.P. Newer root canal irrigants in horizon: A review. Int. J. Dent. 2011, 2011, 851359. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Abbott, P.V. The properties and applications of chlorhexidine in endodontics. Int. Endod. J. 2009, 42, 288–302. [Google Scholar] [CrossRef]
- Gamal, A.Y.; Mailhot, J.M. Effects of EDTA gel preconditioning of periodontally affected human root surfaces on chlorhexidine substantivity–An SEM study. J. Periodontol. 2007, 78, 1759–1766. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, Y.; Haapasalo, M. Effect of smear layer against disinfection protocols on Enterococcus faecalis–infected dentin. J. Endod. 2013, 39, 1395–1400. [Google Scholar] [CrossRef]
- Turk, T.; Kaval, M.E.; Sarikanat, M.; Hülsmann, M. Effect of final irrigation procedures on fracture resistance of root filled teeth: An ex vivo study. Int. Endod. J. 2017, 50, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Erdemir, A.; Ari, H.; Güngüneş, H.; Belli, S. Effect of medications for root canal treatment on bonding to root canal dentin. J. Endod. 2004, 30, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Prado, M.; de Assis, D.F.; Gomes, B.P.; Simao, R.A. Effect of disinfectant solutions on the surface free energy and wettability of filling material. J. Endod. 2011, 37, 980–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breschi, L.; Maravic, T.; Comba, A.; Cunha, S.R.; Loguercio, A.D.; Reis, A.; Mazzoni, A. Chlorhexidine preserves the hybrid layer in vitro after 10-years aging. Dent. Mater. 2020, 36, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Zehnder, M.; Schmidlin, P.; Sener, B.; Waltimo, T. Chelation in root canal therapy reconsidered. J. Endod. 2005, 31, 817–820. [Google Scholar] [CrossRef]
- Wright, P.P.; Kahler, B.; Walsh, L.J. Alkaline sodium hypochlorite irrigant and its chemical interactions. Materials 2017, 10, 1147. [Google Scholar] [CrossRef]
- Girard, S.; Paqué, F.; Badertscher, M.; Sener, B.; Zehnder, M. Assessment of a gel-type chelating preparation containing 1-hydroxyethylidene-1, 1-bisphosphonate. Int. Endod. J. 2005, 38, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Turk, T.; Fidler, A. Effect of medicaments used in endodontic regeneration technique on push-out bond strength of MTA and Biodentine. Biotechnol. Biotechnol. Equip. 2016, 30, 140–144. [Google Scholar] [CrossRef]
- Goldman, M.; Goldman, L.B.; Cavaleri, R.; Bogis, J.; Lin, P.S. The efficacy of several endodontic irrigating solutions: A scanning electron microscopic study: Part 2. J. Endod. 1982, 8, 487–492. [Google Scholar] [CrossRef]
- Calt, S.; Serper, A. Time-dependent effects of EDTA on dentin structures. J. Endod. 2002, 28, 17–19. [Google Scholar] [CrossRef]
- Nassar, M.; Awawdeh, L.; Jamleh, A.; Sadr, A.; Tagami, J. Adhesion of Epiphany self-etch sealer to dentin treated with intracanal irrigating solutions. J. Endod. 2011, 37, 228–230. [Google Scholar] [CrossRef] [PubMed]
- Bhandary, S.; Kakamari, S.; Srinivasan, R.; Chandrappa, M.M.; Nasreen, F.; Junjanna, P. A comparative evaluation of the effect of 8% and 17% ethylenediaminetetraacetic acid exposure for 1 min and 10 min on the fracture resistance of endodontically treated roots: An in vitro study. J. Conserv. Dent. 2017, 20, 21–24. [Google Scholar] [PubMed]
- Cohen, S.; Stewart, G.G.; Laster, L.L. The effects of acids, alkalies, and chelating agents on dentine permeability. Oral Surg. Oral Med. Oral Pathol. 1970, 29, 631–634. [Google Scholar] [CrossRef] [PubMed]
- Gordon, T.M.; Damato, D.; Christner, P. Solvent effect of various dilutions of sodium hypochlorite on vital and necrotic tissue. J. Endod. 1981, 7, 466–469. [Google Scholar] [CrossRef]
- Sayin, T.C.; Serper, A.; Cehreli, Z.C.; Kalayci, S. Calcium loss from root canal dentin following EDTA, EGTA, EDTAC, and tetracycline-HCl treatment with or without subsequent NaOCl irrigation. J. Endod. 2007, 33, 581–584. [Google Scholar] [CrossRef]
- Borges, A.F.S.; Bittar, R.A.; Pascon, F.M.; Sobrinho, L.C.; Martin, A.A.; Rontani, R.M.P. NaOCl effects on primary and permanent pulp chamber dentin. J. Dent. 2008, 36, 745–753. [Google Scholar] [CrossRef]
- Atabek, D.; Bodur, H.; Yalçin, G.; Kalayci, Ş. Effects of oxidative irrigants on root dentin structure: Attenuated Total Reflection Fourier Transform Infrared Spectroscopy study. Oral Health Dent. Manag. 2014, 13, 753–756. [Google Scholar]
- Dornelles-Morgental, R.; Guerreiro-Tanomaru, J.M.; de Faria-Júnior, N.B.; Hungaro-Duarte, M.A.; Kuga, M.C.; Tanomaru-Filho, M. Antibacterial efficacy of endodontic irrigating solutions and their combinations in root canals contaminated with Enterococcus faecalis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011, 112, 396–400. [Google Scholar] [CrossRef]
- Basrani, B.; Haapasalo, M. Update on endodontic irrigating solutions. Endod. Top. 2012, 27, 74–102. [Google Scholar] [CrossRef]
- Gross, J.; Lapiere, C.M. Collagenolytic activity in amphibian tissues: A tissue culture assay. Proc. Natl. Acad. Sci. USA 1962, 48, 1014–1022. [Google Scholar] [CrossRef] [Green Version]
- Visse, R.; Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ. Res. 2003, 92, 827–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laronha, H.; Caldeira, J. Structure and function of human matrix metalloproteinases. Cells 2020, 9, 1076. [Google Scholar] [CrossRef] [PubMed]
- Chaussain-Miller, C.; Fioretti, F.; Goldberg, M.; Menashi, S. The role of matrix metalloproteinases (MMPs) in human caries. J. Dent. Res. 2006, 85, 22–32. [Google Scholar] [CrossRef]
- Dayan, D.; Binderman, I.; Mechanic, G.L. A preliminary study of activation of collagenase in carious human dentine matrix. Arch. Oral Biol. 1983, 28, 185–187. [Google Scholar] [CrossRef]
- Martin-De Las Heras, S.; Valenzuela, A.; Overall, C.M. The matrix metalloproteinase gelatinase A in human dentine. Arch. Oral Biol. 2000, 45, 757–765. [Google Scholar] [CrossRef]
- Mazzoni, A.; Pashley, D.H.; Nishitani, Y.; Breschi, L.; Mannello, F.; Tjäderhane, L.; Tay, F.R. Reactivation of inactivated endogenous proteolytic activities in phosphoric acid-etched dentine by etch-and-rinse adhesives. Biomaterials 2006, 27, 4470–4476. [Google Scholar] [CrossRef] [PubMed]
- Hannas, A.R.; Pereira, J.C.; Granjeiro, J.M.; Tjäderhane, L. The role of matrix metalloproteinases in the oral environment. Acta Odontol. Scand. 2007, 65, 1–13. [Google Scholar] [CrossRef]
- Shimada, Y.; Ichinose, S.; Sadr, A.; Burrow, M.F.; Tagami, J. Localization of matrix metalloproteinases (MMPs-2, 8, 9 and 20) in normal and carious dentine. Aust. Dent. J. 2009, 54, 347–354. [Google Scholar] [CrossRef]
- Mazzoni, A.; Papa, V.; Nato, F.; Carrilho, M.; Tjäderhane, L.; Ruggeri, A., Jr.; Breschi, L. Immunohistochemical and biochemical assay of MMP-3 in human dentine. J. Dent. 2011, 39, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Mazzoni, A.; Angeloni, V.; Comba, A.; Maravic, T.; Cadenaro, M.; Tezvergil-Mutluay, A.; Breschi, L. Cross-linking effect on dentin bond strength and MMPs activity. Dent. Mater. 2018, 34, 288–295. [Google Scholar] [CrossRef]
- Carrilho, M.R.O.; Geraldeli, S.; Tay, F.; De Goes, M.F.; Carvalho, R.M.; Tjäderhane, L.; Pashley, D. In vivo preservation of the hybrid layer by chlorhexidine. J. Dent. Res. 2007, 86, 529–533. [Google Scholar] [CrossRef]
- Breschi, L.; Mazzoni, A.; Nato, F.; Carrilho, M.; Visintini, E.; Tjäderhane, L.; Pashley, D.H. Chlorhexidine stabilizes the adhesive interface: A 2-year in vitro study. Dent. Mater. 2010, 26, 320–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, P.C.; Weaver, J.; Brooks, C.N. Review of matrix metalloproteinases’ effect on the hybrid dentin bond layer stability and chlorhexidine clinical use to prevent bond failure. Open Dent. J. 2010, 4, 147–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, J.M.; Agee, K.; Sidow, S.J.; McNally, K.; Lindsey, K.; Borke, J.; Pashley, D.H. Inhibition of endogenous dentin matrix metalloproteinases by ethylenediaminetetraacetic acid. J. Endod. 2012, 38, 62–65. [Google Scholar] [CrossRef] [Green Version]
- Tjäderhane, L.; Larjava, H.; Sorsa, T.; Uitto, V.J.; Larmas, M.; Salo, T. The activation and function of host matrix metalloproteinases in dentin matrix breakdown in caries lesions. J. Dent. Res. 1998, 77, 1622–1629. [Google Scholar] [CrossRef]
- Patterson, M.L.; Atkinson, S.J.; Knäuper, V.; Murphy, G. Specific collagenolysis by gelatinase A, MMP-2, is determined by the hemopexin domain and not the fibronectin-like domain. FEBS Lett. 2001, 503, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Breschi, L.; Maravic, T.; Cunha, S.R.; Comba, A.; Cadenaro, M.; Tjäderhane, L.; Mazzoni, A. Dentin bonding systems: From dentin collagen structure to bond preservation and clinical applications. Dent. Mater. 2018, 34, 78–96. [Google Scholar] [CrossRef] [PubMed]
- Mazzoni, A.; Angeloni, V.; Apolonio, F.M.; Scotti, N.; Tjäderhane, L.; Tezvergil-Mutluay, A.; Breschi, L. Effect of carbodiimide (EDC) on the bond stability of etch-and-rinse adhesive systems. Dent. Mater. 2013, 29, 1040–1047. [Google Scholar] [CrossRef]
- Galler, K.M.; Buchalla, W.; Hiller, K.A.; Federlin, M.; Eidt, A.; Schiefersteiner, M.; Schmalz, G. Influence of root canal disinfectants on growth factor release from dentin. J. Endod. 2015, 41, 363–368. [Google Scholar] [CrossRef]
- Tezvergil-Mutluay, A.; Seseogullari-Dirihan, R.; Feitosa, V.P.; Cama, G.; Brauer, D.S.; Sauro, S. Effects of composites containing bioactive glasses on demineralized dentin. J. Dent. Res. 2017, 96, 999–1005. [Google Scholar] [CrossRef]
- Mazzoni, A.; Angeloni, V.; Sartori, N.; Duarte, S., Jr.; Maravic, T.; Tjäderhane, L.; Breschi, L. Substantivity of carbodiimide inhibition on dentinal enzyme activity over time. J. Dent. Res. 2017, 96, 902–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comba, A.; Scotti, N.; Mazzoni, A.; Maravic, T.; Cunha, S.R.; Tempesta, R.M.; Breschi, L. Carbodiimide inactivation of matrix metalloproteinases in radicular dentine. J. Dent. 2019, 82, 56–62. [Google Scholar] [PubMed]
- Amin, F.; Fareed, M.A.; Zafar, M.S.; Khurshid, Z.; Palma, P.J.; Kumar, N. Degradation and Stabilization of Resin-Dentine Interfaces in Polymeric Dental Adhesives: An Updated Review. Coatings 2022, 12, 1094. [Google Scholar] [CrossRef]
Irrigating Solutions | |||
---|---|---|---|
NaOCl | EDTA | CHX | |
General considerations | |||
pH range | 11–13 | 7–9 | 5–7 |
Concentrations | 0.5–10% | 1–17% | 0.12–2% |
Biocompatibility | Low | Low | High |
Mode of action | Bactericidal | Bacteriostatic | Bacteriostatic |
Substantivity | Low | Low | High |
Tissue dissolution | High ** | Low | Low |
Smear layer removal | Low | High | Low |
Effect on dentin’s composition | |||
Collagen degradation | Medium ** | High + | Low |
Carbonate/phosphate ratio | Decrease * | Decrease | Low |
Effect on dentin’s physical and mechanical properties | |||
Microhardness | Reduce | Reduce | No effect |
Erosion | High ++ | High ++ | No effect |
Surface roughness | Increase | Increase | No effect |
Bond strength | Reduce | Reduce | Increase |
Retana-Lobo et al., 2021 [36] | Baruwa et al., 2022 [37] | |
---|---|---|
Methodological aspects | ||
Methodology for assessing MMP activity | Gelatin zymography of dentine powder. | In situ zymography of the hybrid layer. |
Irrigating solutions used | Distilled water, 5% NaOCl, 18% EDTA, 2% CHX | Saline, 5.25% NaOCl, 10% Citric acid, 0.2% CHX |
Sample size | 20 single roots (n = 5) | 24 single roots (n = 6) |
Most relevant findings | ||
NaOCl effect on MMPs | Reduced | Reduced |
Combination of NaOCl + EDTA/CA effect on MMPs | Increased | Increased |
NaOCl + EDTA/CA + CHX effect on MMPs | Reduced | Reduced |
Correlation of MMP activity with root bond strength | N/A | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baruwa, A.O.; Martins, J.N.R.; Maravic, T.; Mazzitelli, C.; Mazzoni, A.; Ginjeira, A. Effect of Endodontic Irrigating Solutions on Radicular Dentine Structure and Matrix Metalloproteinases—A Comprehensive Review. Dent. J. 2022, 10, 219. https://doi.org/10.3390/dj10120219
Baruwa AO, Martins JNR, Maravic T, Mazzitelli C, Mazzoni A, Ginjeira A. Effect of Endodontic Irrigating Solutions on Radicular Dentine Structure and Matrix Metalloproteinases—A Comprehensive Review. Dentistry Journal. 2022; 10(12):219. https://doi.org/10.3390/dj10120219
Chicago/Turabian StyleBaruwa, Abayomi Omokeji, Jorge N. R. Martins, Tatjana Maravic, Claudia Mazzitelli, Annalisa Mazzoni, and António Ginjeira. 2022. "Effect of Endodontic Irrigating Solutions on Radicular Dentine Structure and Matrix Metalloproteinases—A Comprehensive Review" Dentistry Journal 10, no. 12: 219. https://doi.org/10.3390/dj10120219
APA StyleBaruwa, A. O., Martins, J. N. R., Maravic, T., Mazzitelli, C., Mazzoni, A., & Ginjeira, A. (2022). Effect of Endodontic Irrigating Solutions on Radicular Dentine Structure and Matrix Metalloproteinases—A Comprehensive Review. Dentistry Journal, 10(12), 219. https://doi.org/10.3390/dj10120219