Additive Manufacturing Titanium Dental Implants Placed in Sinuses Grafted with 70HA:30-TCP: A One-Year Retrospective Study for Evaluation of Survival Rate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Pre-Operative Procedures and Maxillary Sinus Augmentation
2.3. Dental Implant Design and Placement
2.4. Implant-Supported Restorations
2.5. Clinical and Radiographic Evaluation
3. Results
3.1. Surgical Interventions and Patient Population
3.2. Implant Survival Rate and Peri-Implant Bone Loss
4. Discussion
5. Conclusions
- -
- This retrospective study, at the one-year follow-up, found that 70% hydroxyapatite (HA) and 30% beta-tricalcium phosphate (β-TCP) provided stable bone support for titanium dental implants made using additive manufacturing. Plenum Oss, a synthetic biphasic bone graft material, allowed significant bone regeneration in the maxillary sinus, making it easier to place dental implants that achieved excellent osseointegration. The additive-manufactured grade-23 titanium implants had a survival rate of 97.43% after one year of loading in grafted areas.
- -
- The additive manufacturing process for the titanium implants produced a complex topography and rough surface, which provided ideal bone anchorage, even in low-density bone. This contributed to the excellent clinical results, with an average distance to the first bone contact of only 0.23 mm, and no instances of implant failure or peri-implant infections among the remaining 38 successful fixtures.
- -
- In summary, this study supports the efficacy of synthetic HA:β-TCP biphasic bone grafts and innovative additive manufacturing techniques in maxillary sinus augmentation and implant rehabilitation. Plenum Oss HA:β-TCP ceramics and additive-manufactured titanium implants achieved excellent clinical performance, making them a viable solution for grafts and implants. Synthetic alternatives like these address the modern expectations of patients while enabling predictable restorative therapy, even in anatomically challenging cases requiring maxillary sinus reconstruction. However, further studies are necessary to validate these results, investigate long-term outcomes, and determine any demographic variances.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Avila-Ortiz, G.; Vegh, D.; Mukaddam, K.; Galindo-Moreno, P.; Pjetursson, B.; Payer, M. Treatment alternatives for the rehabilitation of the posterior edentulous maxilla. Periodontol. 2000 2023, 93, 183–204. [Google Scholar] [CrossRef] [PubMed]
- Grunau, O.; Terheyden, H. Lateral augmentation of the sinus floor followed by regular implants versus short implants in the vertically deficient posterior maxilla: A systematic review and timewise meta-analysis of randomized studies. Int. J. Oral Maxillofac. Surg. 2023, 52, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Dolanmaz, D.; Senel, F.C.; Pektas, Z.Ö. Dental implants in posterior maxilla: Diagnostic and treatment aspects. Int. J. Dent. 2012, 2012, 132569. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bordin, D.; Castro, M.B.; Carvalho, M.A.; Araujo, A.M.; Cury, A.A.D.B.; Lazari-Carvalho, P.C. Different Treatment Modalities Using Dental Implants in the Posterior Maxilla: A Finite Element Analysis. Braz. Dent. J. 2021, 32, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Thoma, D.S.; Zeltner, M.; Hüsler, J.; Hämmerle, C.H.; Jung, R.E. EAO Supplement Working Group 4—EAO CC 2015 Short implants versus sinus lifting with longer implants to restore the posterior maxilla: A systematic review. Clin. Oral Implants Res. 2015, 26 (Suppl. S11), 154–169. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Han, L.; Su, J.; Guo, J.; Yu, F.; Zhang, W. Clinical efficacy of transcrestal sinus floor augmentation, in comparison with lateral approach, in sites with residual bone height ≤6 mm: A systematic review and meta-analysis. Clin. Oral Implants Res. 2023, 34, 1151–1175. [Google Scholar] [CrossRef] [PubMed]
- Starch-Jensen, T.; Deluiz, D.; Vitenson, J.; Bruun, N.H.; Tinoco, E.M.B. Maxillary Sinus Floor Augmentation with Autogenous Bone Graft Compared with a Composite Grafting Material or Bone Substitute Alone: A Systematic Review and Meta-Analysis Assessing Volumetric Stability of the Grafting Material. J. Oral Maxillofac. Res. 2021, 12, e1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Trimmel, B.; Gede, N.; Hegyi, P.; Szakács, Z.; Mezey, G.A.; Varga, E.; Kivovics, M.; Hanák, L.; Rumbus, Z.; Szabó, G. Relative performance of various biomaterials used for maxillary sinus augmentation: A Bayesian network meta-analysis. Clin. Oral Implants Res. 2021, 32, 135–153. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zenóbio, E.G.; Resende, D.F.; de Albuquerque, V.N.; Mendes, P.A.; de Abreu, F.A.M.; Côsso, M.G. How the use of xenogeneic grafts can impact the relationship with some social groups and blood donor patients. Clin. Implant. Dent. Relat. Res. 2023, 25, 787–788. [Google Scholar] [CrossRef] [PubMed]
- Bouwman, W.F.; Bravenboer, N.; Ten Bruggenkate, C.M.; Eijsackers, F.A.; Stringa, N.; Schulten, E.A.J.M. Tissue Level Changes after Maxillary Sinus Floor Elevation with Three Types of Calcium Phosphate Ceramics: A Radiological Study with a 5-Year Follow-Up. Materials 2021, 14, 1471. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Danesh-Sani, S.A.; Wallace, S.S.; Movahed, A.; El Chaar, E.S.; Cho, S.C.; Khouly, I.; Testori, T. Maxillary Sinus Grafting With Biphasic Bone Ceramic or Autogenous Bone: Clinical, Histologic, and Histomorphometric Results From a Randomized Controlled Clinical Trial. Implant. Dent. 2016, 25, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Iezzi, G.; Scarano, A.; Valbonetti, L.; Mazzoni, S.; Furlani, M.; Mangano, C.; Muttini, A.; Raspanti, M.; Barboni, B.; Piattelli, A.; et al. Biphasic Calcium Phosphate Biomaterials: Stem Cell-Derived Osteoinduction or In Vivo Osteoconduction? Novel Insights in Maxillary Sinus Augmentation by Advanced Imaging. Materials 2021, 14, 2159. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mangano, C.; Sinjari, B.; Shibli, J.A.; Mangano, F.; Hamisch, S.; Piattelli, A.; Perrotti, V.; Iezzi, G. A Human Clinical, Histological, Histomorphometrical, and Radiographical Study on Biphasic HA-Beta-TCP 30/70 in Maxillary Sinus Augmentation. Clin. Implant. Dent. Relat. Res. 2015, 17, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Lie, S.A.N.; Claessen, R.M.M.A.; Leung, C.A.W.; Merten, H.A.; Kessler, P.A.W.H. Non-grafted versus grafted sinus lift procedures for implantation in the atrophic maxilla: A systematic review and meta-analysis of randomized controlled trials. Int. J. Oral Maxillofac. Surg. 2022, 51, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Mayr, H.O.; Klehm, J.; Schwan, S.; Hube, R.; Südkamp, N.P.; Niemeyer, P.; Salzmann, G.; von Eisenhardt-Rothe, R.; Heilmann, A.; Bohner, M.; et al. Microporous calcium phosphate ceramics as tissue engineering scaffolds for the repair of osteochondral defects: Biomechanical results. Acta Biomater. 2013, 9, 4845–4855. [Google Scholar] [CrossRef] [PubMed]
- Daculsi, G.; Laboux, O.; Malard, O.; Weiss, P. Current state of the art of biphasic calcium phosphate bioceramics. J. Mater. Sci. Mater. Med. 2003, 14, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Raynaud, S.; Champion, E.; Bernache-Assollant, D. Calcium phosphate apatites with variable Ca/P atomic ratio II. Calcination and sintering. Biomaterials 2002, 23, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.R.; Poologasundarampillai, G.; Atwood, R.C.; Bernard, D.; Lee, P.D. Non-destructive quantitative 3D analysis for the optimisation of tissue scaffolds. Biomaterials 2007, 28, 1404–1413. [Google Scholar] [CrossRef] [PubMed]
- Frigério, P.B.; Quirino, L.C.; Gabrielli, M.A.C.; Carvalho, P.H.A.; Garcia Júnior, I.R.; Pereira-Filho, V.A. Evaluation of Bone Repair Using a New Biphasic Synthetic Bioceramic (Plenum® Osshp) in Critical Calvaria Defect in Rats. Biology 2023, 12, 1417. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lang, N.P.; Imber, J.C.; Lang, K.N.; Schmid, B.; Muñoz, F.; Bosshardt, D.D.; Saulacic, N. Sequential osseointegration of a novel implant system based on 3D printing in comparison with conventional titanium implants. Clin. Oral Implants Res. 2023, 34, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Mangano, F.; Chambrone, L.; van Noort, R.; Miller, C.; Hatton, P.; Mangano, C. Direct metal laser sintering titanium dental implants: A review of the current literature. Int. J. Biomater. 2014, 2014, 461534. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shibli, J.A.; Mangano, C.; Mangano, F.; Rodrigues, J.A.; Cassoni, A.; Bechara, K.; Ferreia, J.D.; Dottore, A.M.; Iezzi, G.; Piattelli, A. Bone-to-implant contact around immediately loaded direct laser metal-forming transitional implants in human posterior maxilla. J. Periodontol. 2013, 84, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Shibli, J.A.; Mangano, C.; D’avila, S.; Piattelli, A.; Pecora, G.E.; Mangano, F.; Onuma, T.; Cardoso, L.A.; Ferrari, D.S.; Aguiar, K.C.; et al. Influence of direct laser fabrication implant topography on type IV bone: A histomorphometric study in humans. J. Biomed. Mater. Res. A 2010, 93, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Mangano, F.; Shibli, J.A.; Sammons, R.L.; Veronesi, G.; Piattelli, A.; Mangano, C. Clinical outcome of narrow-diameter (3.3-mm) locking-taper implants: A prospective study with 1 to 10 years of follow-up. Int. J. Oral Maxillofac. Implants 2014, 29, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Starch-Jensen, T.; Mordenfeld, A.; Becktor, J.P.; Jensen, S.S. Maxillary Sinus Floor Augmentation With Synthetic Bone Substitutes Compared With Other Grafting Materials: A Systematic Review and Meta-analysis. Implant. Dent. 2018, 27, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Yoon, W.J.; Jeong, K.I.; You, J.S.; Oh, J.S.; Kim, S.G. Survival rate of Astra Tech implants with maxillary sinus lift. J. Korean Assoc. Oral Maxillofac. Surg. 2014, 40, 17–20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kumar, N.K.; Shaik, M.; Nadella, K.R.; Chintapalli, B.M. Comparative study of alveolar bone height and implant survival rate between autogenous bone mixed with platelet rich plasma versus venous blood for maxillary sinus lift augmentation procedure. J. Maxillofac. Oral Surg. 2015, 14, 417–422. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Canellas, J.V.D.S.; Drugos, L.; Ritto, F.G.; Fischer, R.G.; Medeiros, P.J.D. Xenograft materials in maxillary sinus floor elevation surgery: A systematic review with network meta-analyses. Br. J. Oral Maxillofac. Surg. 2021, 59, 742–751. [Google Scholar] [CrossRef] [PubMed]
- Al-Moraissi, E.A.; Alkhutari, A.S.; Abotaleb, B.; Altairi, N.H.; Del Fabbro, M. Do osteoconductive bone substitutes result in similar bone regeneration for maxillary sinus augmentation when compared to osteogenic and osteoinductive bone grafts? A systematic review and frequentist network meta-analysis. Int. J. Oral Maxillofac. Surg. 2020, 49, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Nowzari, H.; Rich, S.K. Risk of prion disease transmission through bovine-derived bone substitutes: A systematic review. Clin. Implant. Dent. Relat. Res. 2013, 15, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Rodriguez, A.E.; Nowzari, H. The Risk of Prion Infection through Bovine Grafting Materials. Clin. Implant. Dent. Relat. Res. 2016, 18, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Imber, J.C.; Imber, L.C.; Roccuzzo, A.; Stähli, A.; Muñoz, F.; Weusmann, J.; Bosshardt, D.D.; Sculean, A. Preclinical evaluation of a new synthetic carbonate apatite bone substitute on periodontal regeneration in intrabony defects. J. Periodontal Res. 2023, 59, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Helder, M.N.; van Esterik, F.A.S.; Kwehandjaja, M.D.; Ten Bruggenkate, C.M.; Klein-Nulend, J.; Schulten, E.A.J.M. Evaluation of a new biphasic calcium phosphate for maxillary sinus floor elevation: Micro-CT and histomorphometrical analyses. Clin. Oral Implants Res. 2018, 29, 488–498, Erratum in Clin. Oral Implants Res. 2021, 32, 134. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lugero, G.G.; de Falco Caparbo, V.; Guzzo, M.L.; König, B., Jr.; Jorgetti, V. Histomorphometric evaluation of titanium implants in osteoporotic rabbits. Implant. Dent. 2000, 9, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Beer, A.; Gahleitner, A.; Holm, A.; Tschabitscher, M.; Homolka, P. Correlation of insertion torques with bone mineral density from dental quantitative CT in the mandible. Clin. Oral Implants Res. 2003, 14, 616–620. [Google Scholar] [CrossRef] [PubMed]
Implant Sites | No. of Implants |
---|---|
First premolar | 08 |
Second premolar | 15 |
First molar | 15 |
Second molar | 01 |
Total | 39 |
Diameter (mm) | Length (mm) | ||||
---|---|---|---|---|---|
8 | 10 | 11 | 13 | 15 | |
3.5 | 2 | 2 | 3 | 5 | 4 |
4.0 | 2 | 3 | 2 | 5 | 1 |
4.5 | 1 | 2 | 1 | 3 | 1 |
5.0 | 1 | 1 | - | - | - |
Type of Restoration | No. of Units | No. of Implants |
---|---|---|
Single-tooth restorations | 11 | 12 |
Fixed partial prostheses (FPPs, 2–4 elements) | 03 | 17 |
Fixed full arches | 03 | 10 |
Total | 17 | 39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mafra, I.J.; Bordin, D.; Siroma, R.S.; Moraschini, V.; Faverani, L.P.; Souza, J.G.; Mourão, C.F.; Shibli, J.A. Additive Manufacturing Titanium Dental Implants Placed in Sinuses Grafted with 70HA:30-TCP: A One-Year Retrospective Study for Evaluation of Survival Rate. Dent. J. 2024, 12, 181. https://doi.org/10.3390/dj12060181
Mafra IJ, Bordin D, Siroma RS, Moraschini V, Faverani LP, Souza JG, Mourão CF, Shibli JA. Additive Manufacturing Titanium Dental Implants Placed in Sinuses Grafted with 70HA:30-TCP: A One-Year Retrospective Study for Evaluation of Survival Rate. Dentistry Journal. 2024; 12(6):181. https://doi.org/10.3390/dj12060181
Chicago/Turabian StyleMafra, Ilton José, Dimorvan Bordin, Rafael S. Siroma, Vittorio Moraschini, Leonardo P. Faverani, João Gabriel Souza, Carlos Fernando Mourão, and Jamil Awad Shibli. 2024. "Additive Manufacturing Titanium Dental Implants Placed in Sinuses Grafted with 70HA:30-TCP: A One-Year Retrospective Study for Evaluation of Survival Rate" Dentistry Journal 12, no. 6: 181. https://doi.org/10.3390/dj12060181
APA StyleMafra, I. J., Bordin, D., Siroma, R. S., Moraschini, V., Faverani, L. P., Souza, J. G., Mourão, C. F., & Shibli, J. A. (2024). Additive Manufacturing Titanium Dental Implants Placed in Sinuses Grafted with 70HA:30-TCP: A One-Year Retrospective Study for Evaluation of Survival Rate. Dentistry Journal, 12(6), 181. https://doi.org/10.3390/dj12060181