Microtomographic, Histomorphological, and Histomorphometric Analysis of Bone Healing in the Midpalatal Suture After Treatment with Isotretinoin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Aspects and Experimental Design
2.2. Drug Treatment
2.3. Installation of the Orthodontic Device (Expander)
2.4. Maxillary Collection and Microtomographic Evaluation
2.5. Histomorphometric Evaluation
2.6. Statistical Analysis
3. Results
3.1. Linear Measurements of Palatal Expansion in Microtomographic Images
3.2. Descriptive Histology and Histomorphometry
3.3. Quantification of Collagen Fibers by Picrosirius-Red Polarization Method
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Santiago, V.C.C.E.; Piram, A.; Fuziy, A. Effect of Soft Laser in Bone Repair after Expansion of the Midpalatal Suture in Dogs. Am. J. Orthod. Dentofacial. Orthop. 2012, 142, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Cameron, C.G.; Franchi, L.; Baccetti, T.; McNamara, J.A. Long-Term Effects of Rapid Maxillary Expansion: A Posteroanterior Cephalometric Evaluation. Am. J. Orthod. Dentofacial. Orthop. 2002, 121, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Sun, J.; Zhou, Z.; Pan, J.; Zou, S.; Chen, J. Effects of lactoferrin on bone resorption of midpalatal suture during rapid expansion in rats. Am. J. Orthod. Dentofacial. Orthop. 2018, 154, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, S.A.; Cisneros, F.J.; Gough, B.; Hanig, J.P.; Berry, K.J. Chronic Oral Treatment with 13-Cis-Retinoic Acid (Isotretinoin) or All-Trans-Retinoic Acid Does Not Alter Depression-like Behaviors in Rats. Toxicol. Sci. 2005, 87, 451–459. [Google Scholar] [CrossRef]
- Ertugrul, D.T.; Karadag, A.S.; Tutal, E.; Akin, K.O. Therapeutic hotline. Does isotretinoin have effect on vitamin D physiology and bone metabolism in acne patients? Dermatol. Ther. 2011, 24, 291–295. [Google Scholar] [CrossRef]
- Trifirö, G.; Norbiato, G. Type I Collagen N-Telopeptide Variation in Adolescents Receiving Oral Isotretinoin for Severe Acne. J. Pediatr. Endocrinol. Metab. 2002, 15, 35–39. [Google Scholar] [CrossRef]
- Layton, A. The Use of Isotretinoin in Acne. Dermatoendocrinol 2009, 1, 162–169. [Google Scholar] [CrossRef]
- Duvalyan, A.; Cha, A.; Goodarzian, F.; Arkader, A.; Villablanca, J.G.; Marachelian, A. Premature Epiphyseal Growth Plate Arrest after Isotretinoin Therapy for High-Risk Neuroblastoma: A Case Series and Review of the Literature. Pediatr. Blood Cancer 2020, 67, e28236. [Google Scholar] [CrossRef]
- Hoover, K.B.; Miller, C.G.; Galante, N.C.; Langman, C.B. A Double-Blind, Randomized, Phase III, Multicenter Study in 358 Pediatric Subjects Receiving Isotretinoin Therapy Demonstrates No Effect on Pediatric Bone Mineral Density. Osteoporos. Int. 2015, 26, 2441–2447. [Google Scholar] [CrossRef]
- Kocijancic, M. 13-cis-retinoic acid and bone density. Int. J. Dermatol. 1995, 34, 733–734. [Google Scholar] [CrossRef]
- Knitzer, R.H.; Needleman, B.W. Musculoskeletal Syndromes Associated with Acne. Semin. Arthritis Rheum. 1991, 20, 247–255. [Google Scholar] [CrossRef] [PubMed]
- McGuire, J.; Lawson, J.P. Skeletal Changes Associated with Chronic Isotretinoin and Etretinate Administration. Dermatologica 1987, 175, 169–181. [Google Scholar] [CrossRef] [PubMed]
- King, K.; Jonest, D.H.; Daltrey, D.C.; Cunliffe, W.J. A Double-Blind Study of the Effects of 13-Cis-Retinoic Acid on Acne, Sebum Excretion Rate and Microbial Population. Br. J. Dermatol. 1982, 107, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Parreira, M.J.B.M.; Pagani, B.T.; Moscatel, M.B.M.; Buchaim, D.V.; Reis, C.H.B.; Trazzi, B.F.d.M.; Fuziy, A.; Buchaim, R.L. Effects of Systemic Administration of the Retinoid Isotretinoin on Bone Tissue: A Narrative Literature Review. AIMS Bioeng. 2024, 11, 212–240. [Google Scholar] [CrossRef]
- Brecher, A.R.; Orlow, S.J. Oral Retinoid Therapy for Dermatologic Conditions in Children and Adolescents. J. Am. Acad. Dermatol. 2003, 49, 171–182. [Google Scholar] [CrossRef]
- Bagatin, E.; Costa, C.S.; da Rocha, M.A.D.; Picosse, F.R.; Kamamoto, C.S.L.; Pirmez, R.; Ianhez, M.; Miot, H.A. Consensus on the Use of Oral Isotretinoin in Dermatology—Brazilian Society of Dermatology. An. Bras. Dermatol. 2020, 95, 19–38. [Google Scholar] [CrossRef]
- Pepe, M.; Napoli, G.; Carella, M.C.; De Feo, D.; Tritto, R.; Guaricci, A.I.; Forleo, C.; Ciccone, M.M. A Young Patient Presenting with Dilated Cardiomyopathy and Renal Infarction during Treatment with Isotretinoin: Mere Coincidence or Serious Side Effect of a Drug Commonly Used in Adolescence? Diagnostics 2023, 13, 1543. [Google Scholar] [CrossRef]
- Alloisio, G.; Ciaccio, C.; Fasciglione, G.F.; Tarantino, U.; Marini, S.; Coletta, M.; Gioia, M. Effects of Extracellular Osteoanabolic Agents on the Endogenous Response of Osteoblastic Cells. Cells 2021, 10, 2383. [Google Scholar] [CrossRef]
- Kneissel, M.; Studer, A.; Cortesi, R.; Šuša, M. Retinoid-Induced Bone Thinning Is Caused by Subperiosteal Osteoclast Activity in Adult Rodents. Bone 2005, 36, 202–214. [Google Scholar] [CrossRef]
- Kovács, B.; Vajda, E.; Nagy, E.E. Regulatory Effects and Interactions of the Wnt and OPG-RANKL-RANK Signaling at the Bone-Cartilage Interface in Osteoarthritis. Int. J. Mol. Sci. 2019, 20, 4653. [Google Scholar] [CrossRef]
- Henning, P.; Conaway, H.H.; Lerner, U.H. Retinoid receptors in bone and their role in bone remodeling. Front. Endocrinol. 2015, 6, 31. [Google Scholar] [CrossRef]
- Rohde, C.M.; Deluca, H. Bone Resorption Activity of All-trans Retinoic Acid Is Independent of Vitamin D in Rats. J. Nutr. 2003, 133, 777–783. [Google Scholar] [CrossRef]
- Kochhar, D.M.; Christian, M.S.; Kocbhar, D.M. Tretinoin: A review of the nonclinical developmental toxicology experience. J. Am. Acad. Dermatol. 1997, 36, S47–S59. [Google Scholar] [CrossRef]
- Fleischer, A.B.; Simpson, J.K.; McMichael, A.; Feldman, S.R. Are there racial and sex differences in the use of oral isotretinoin for acne management in the United States? J. Am. Acad. Dermatol. 2003, 49, 662–666. [Google Scholar] [CrossRef]
- Bergoli, R.D.; Junior, O.L.C.; de Souza, C.E.C.P.; Vogt, B.F.; de Oliveira, H.T.R.; Etges, A.; Silva, D.N. Isotretinoin Effect on Alveolar Repair after Exodontia-a Study in Rats. Oral Maxillofac. Surg. 2011, 15, 85–92. [Google Scholar] [CrossRef]
- Nishio, C.; Rompré, P.; Moldovan, F. Effect of Exogenous Retinoic Acid on Tooth Movement and Periodontium Healing Following Tooth Extraction in a Rat Model. Orthod. Craniofac. Res. 2017, 20, 77–82. [Google Scholar] [CrossRef]
- de Oliveira, H.T.; Bergoli, R.D.; Hirsch, W.D.; Chagas, O.L.; Jr Heitz, C.; Silva, D.N. Isotretinoin effect on the repair of bone defects—A study in rat calvaria. Craniomaxillofac. Surg. 2013, 41, 581–585. [Google Scholar] [CrossRef]
- Bulut, M.; Korkmaz, Y.N.; Erimsah, S. Effects of Isotretinoin on New Bone Formation after Maxillary Sutural Expansion. J. Orofac. Orthop. 2020, 81, 440–446. [Google Scholar] [CrossRef]
- Sawada, M.; Shimizu, N. Stimulation of bone formation in the expanding mid-palatal suture by transforming growth factor-beta 1 in the rat. Eur. J. Orthod. 1996, 18, 169–179. [Google Scholar] [CrossRef]
- Saito, S.; Shimizu, N. Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat. Am. J. Orthod. Dentofacial. Orthop. 1997, 111, 125–132. [Google Scholar] [CrossRef]
- du Sert, N.P.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; Emerson, M.; et al. Reporting Animal Research: Explanation and Elaboration for the Arrive Guidelines 2.0. PLoS Biol. 2020, 18, 1769–1777. [Google Scholar] [CrossRef]
- Ferreira, M.F.; Botazzo Delbem, A.C.; Ervolino, E.; de Abreu Costa, L.; Antoniali Silva, C.; Prando Dos Santos, J.R.; de Mendonça, M.R. Therapeutic dosage of isotretinoin in rats may influence orthodontic tooth movement. Bone Rep. 2024, 21, 101775. [Google Scholar] [CrossRef]
- Graciano Parra, A.X.; Batista Rodrigues Johann, A.C.; Trindade Grégio Hardy, A.M.; Oppitz, L.R.; Araujo, C.M.; Tanaka, O.M.; Guariza Filho, O.; Camargo, E.S. Effect of isotretinoin on induced tooth movement in rats. Am. J. Orthod. Dentofacial. Orthop. 2021, 159, 193–201. [Google Scholar] [CrossRef]
- Nair, A.B.; Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016, 7, 27–31. [Google Scholar] [CrossRef]
- Frigotto, G.C.F.; de Araujo, C.M.; Filho, O.G.; Tanaka, O.M.; Johann, A.C.B.R.; Camargoa, E.S. Effect of fluoxetine on induced tooth movement in rats. Am. J. Orthod. Dentofacial. Orthop. 2015, 148, 450–456. [Google Scholar] [CrossRef]
- Kara, M.I.; Erciyas, K.; Altan, A.B.; Ozkut, M.; Ay, S.; Inan, S. Thymoquinone Accelerates New Bone Formation in the Rapid Maxillary Expansion Procedure. Arch. Oral Biol. 2012, 57, 357–363. [Google Scholar] [CrossRef]
- Kazancioglu, H.O.; Aksakalli, S.; Ezirganli, S.; Birlik, M.; Esrefoglu, M.; Acar, A.H. Effect of Caffeic Acid Phenethyl Ester on Bone Formation in the Expanded Inter-Premaxillary Suture. Drug Des. Devel. Ther. 2015, 9, 6483–6488. [Google Scholar] [CrossRef]
- Birlik, M.; Babacan, H.; Cevit, R.; Gürler, B. Effect of sex steroids on bone formation in an orthopedically expanded suture in rats: An immunohistochemical and computed tomography study. J. Orofac. Orthop. 2016, 77, 94–103. [Google Scholar] [CrossRef]
- Cesur, M.G.; Gülle, K.; Şirin, F.B.; Akpolat, M.; Öğrenim, G.; Alkan, A.; Cesur, G. Effects of Curcumin and Melatonin on Bone Formation in Orthopedically Expanded Suture in Rats: A Biochemical, Histological and Immunohistochemical Study. Orthod. Craniofac. Res. 2018, 21, 160–167. [Google Scholar] [CrossRef]
- Dias, P.F.; Gleiser, R. Orthodontic concerns of Brazilian children and their parents compared to the normative treatment need. J. Oral Sci. 2010, 52, 101–107. [Google Scholar] [CrossRef]
- Halicioglu, K.; Çörekçi, B.; Akkaş, I.; Irgin, C.; Özan, F.; Yilmaz, F.; Türker, A. Effect of St John’s Wort on Bone Formation in the Orthopaedically Expanded Premaxillary Suture in Rats: A Histological Study. Eur. J. Orthod. 2014, 37, 164–169. [Google Scholar] [CrossRef]
- Altan, B.A.; Kara, I.M.; Nalcaci, R.; Ozan, F.; Erdogan, S.M.; Ozkut, M.M.; Inang, S. Systemic Propolis Stimulates New Bone Formation at the Expanded Suture A Histomorphometric Study. Angle Orthod. 2013, 83, 286–291. [Google Scholar] [CrossRef]
- Di, Y.; Wasan, E.K.; Cawthray, J.; Syeda, J.; Ali, M.; Cooper, D.M.L.; Al-Dissi, A.; Ashjaee, N.; Cheng, W.; Johnston, J.; et al. Evaluation of La(XT), a novel lanthanide compound, in an OVX rat model of osteoporosis. Bone Rep. 2021, 14, 100753. [Google Scholar] [CrossRef]
- Nascimento, J.R.B.; Lima, I.; Sartoretto, S.C.; Neves Novellino Alves, A.T.; Sorrentino de Freitas Farias dos Santos, C.M.; Lopes, R.T.; Javid, K.; Deylami, I.; Mourão, C.F.; Diuana Calasans-Maia, M.; et al. The Impact of Systemic Simvastatin on Bone Remodeling Following Rapid Maxillary Expansion: An In Vivo Study. Appl. Sci. 2024, 14, 430. [Google Scholar] [CrossRef]
- Bighetti, A.C.C.; Cestari, T.M.; Paini, S.; Pomini, K.T.; Buchaim, D.V.; Ortiz, R.C.; Júnior, R.S.F.; Barraviera, B.; Bullen, I.R.F.R.; Garlet, G.P.; et al. Efficacy and Safety of a New Heterologous Fibrin Biopolymer on Socket Bone Healing after Tooth Extraction: An Experimental Pre-Clinical Study. J. Clin. Periodontol. 2024, 51, 1017–1033. [Google Scholar] [CrossRef]
- Ranjan, J.; Boaz, K.; Srikant, N.; Nandita, K.P.; Lewis, A.; Manaktala, N. Collagen Characterization in Different Patterns of Bone Invasion by OSCC: A Histochemical Study with Picrosirius Red and Polarizing Microscopy. J. Oral Maxillofac. Surg. Med. Pathol. 2015, 27, 258–262. [Google Scholar] [CrossRef]
- Allon, I.; Vered, M.; Buchner, A.; Dayan, D. Stromal Differences in Salivary Gland Tumors of a Common Histopathogenesis but with Different Biological Behavior: A Study with Picrosirius Red and Polarizing Microscopy. Acta Histochem. 2006, 108, 259–264. [Google Scholar] [CrossRef]
- Hirshberg, A.; Buchner, A.; Dayan, D. The central odontogenic fibroma and the hyperplastic dental follicle: Study with Picrosirius red and polarizing microscopy. J. Oral Pathol. Med. 1996, 25, 125–127. [Google Scholar] [CrossRef]
- Leachman, S.A.; Insogna, K.L.; Katz, L.; Ellison, A.; Milstone, L.M. Bone densities in patients receiving isotretinoin for cystic acne. Arch Dermatol. 1999, 135, 961–965. [Google Scholar] [CrossRef]
- DiGiovanna, J.J. Isotretinoin Effects on Bone. J. Am. Acad. Dermatol. 2001, 45, S176–S182. [Google Scholar] [CrossRef]
- Erdogan, B.S.; Yüksel, D.; Aktan, S.; Ergin, S.; Kiraç, F.S. The Effects of Isotretinoin Treatment on Bone Mineral Density in Patients with Nodulocystic Acne. J. Eur. Acad. Dermatol. Venereol. 2006, 20, 1006–1007. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, C.E.; Latendresse, J.; Ferguson, S.A. Oral treatment with retinoic acid decreases bone mass in rats. Comp. Med. 2006, 56, 502–511. [Google Scholar] [PubMed]
- Tekin, N.S.; Ozdolap, S.; Sarikaya, S.; Keskin, S.I. Bone mineral density and bone turnover markers in patients receiving a single course of isotretinoin for nodulocystic acne. Int. J. Dermatol. 2008, 47, 622–625. [Google Scholar] [CrossRef] [PubMed]
- Johansson, S.; Lind, P.M.; Hakansson, H.; Oxlund, H.; Orberg, J.; Melhus, H. Subclinical hypervitaminosis A causes fragile bones in rats. Bone 2002, 31, 685–689. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parreira, M.J.B.M.; Buchaim, D.V.; Bighetti, A.C.C.; Girotto, M.A.; de Marchi, M.Â.; Nogueira, D.M.B.; Foggiato, A.A.; Coléte, J.Z.; Fuziy, A.; Buchaim, R.L. Microtomographic, Histomorphological, and Histomorphometric Analysis of Bone Healing in the Midpalatal Suture After Treatment with Isotretinoin. Dent. J. 2025, 13, 142. https://doi.org/10.3390/dj13040142
Parreira MJBM, Buchaim DV, Bighetti ACC, Girotto MA, de Marchi MÂ, Nogueira DMB, Foggiato AA, Coléte JZ, Fuziy A, Buchaim RL. Microtomographic, Histomorphological, and Histomorphometric Analysis of Bone Healing in the Midpalatal Suture After Treatment with Isotretinoin. Dentistry Journal. 2025; 13(4):142. https://doi.org/10.3390/dj13040142
Chicago/Turabian StyleParreira, Maria Júlia Bento Martins, Daniela Vieira Buchaim, Ana Carolina Cestari Bighetti, Marcos Antonio Girotto, Miguel Ângelo de Marchi, Dayane Maria Braz Nogueira, Augusto Alberto Foggiato, Juliana Zorzi Coléte, Acácio Fuziy, and Rogerio Leone Buchaim. 2025. "Microtomographic, Histomorphological, and Histomorphometric Analysis of Bone Healing in the Midpalatal Suture After Treatment with Isotretinoin" Dentistry Journal 13, no. 4: 142. https://doi.org/10.3390/dj13040142
APA StyleParreira, M. J. B. M., Buchaim, D. V., Bighetti, A. C. C., Girotto, M. A., de Marchi, M. Â., Nogueira, D. M. B., Foggiato, A. A., Coléte, J. Z., Fuziy, A., & Buchaim, R. L. (2025). Microtomographic, Histomorphological, and Histomorphometric Analysis of Bone Healing in the Midpalatal Suture After Treatment with Isotretinoin. Dentistry Journal, 13(4), 142. https://doi.org/10.3390/dj13040142