Comparison of Side Effects Between Miniscrew-Assisted Rapid Palatal Expansion (MARPE) and Surgically Assisted Rapid Palatal Expansion (SARPE) in Adult Patients: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
- Population: adult patients in permanent dentition diagnosed with a transverse maxillary discrepancy;
- Intervention: MARPE technique;
- Comparison: SARPE technique;
- Outcome: side effects of each treatment procedure.
2.2. Eligibility Criteria
2.3. Information Sources and Search Strategy
2.4. Selection of Sources of Evidence
2.5. Data Charting Process
2.6. Synthesis of Results
3. Results
3.1. Selection of Sources of Evidence
3.2. Characteristics of Sources of Evidence
3.3. Results of Individual Sources of Evidence
3.3.1. Failure of Expansion
3.3.2. Asymmetric Expansion
3.3.3. Dentoalveolar Side Effects
3.3.4. Surgical Complications
3.3.5. Appliance-Related Issues
3.4. Synthesis of the Results
4. Discussion
4.1. Summary of Evidence
4.2. Future Directions
4.3. Limitations
5. Conclusions
- Patient age is a critical determinant of the success rate in maxillary expansion. As age increases, the likelihood of requiring SARPE rather than MARPE rises, making SARPE essential for successful outcomes in older patients.
- Weakening the midpalatal suture through corticopunctures, combined with MARPE or SARPE, significantly reduces buccal inclination of the dental elements. However, this inclination often improves spontaneously during the retention phase.
- Severe dental complications associated with SARPE are infrequent but correlate with the invasiveness of the surgical technique employed.
- Dentoalveolar complications can be minimized by selecting expansion devices that avoid dental anchorage.
- Proper design and planning of the appliance are crucial to prevent tissue inflammation, which remains the leading cause of mini implant failure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- da Silva Filho, O.G.; Santamaria, M., Jr.; Capelozza Filho, L. Epidemiology of posterior crossbite in the primary dentition. J. Clin. Pediatr. Dent. 2007, 32, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Bucci, R.; D’Antò, V.; Rongo, R.; Valletta, R.; Martina, R.; Michelotti, A. Dental and skeletal effects of palatal expansion techniques: A systematic review of the current evidence from systematic reviews and meta-analyses. J. Oral Rehabil. 2016, 43, 543–564. [Google Scholar] [CrossRef]
- Smalley, W.M.; Shapiro, P.A.; Hohl, T.H.; Kokich, V.G.; Brånemark, P.I. Osseointegrated titanium implants for maxillofacial protraction in monkeys. Am. J. Orthod. Dentofac. Orthop. 1988, 94, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Landes, C.A.; Laudemann, K.; Petruchin, O.; Mack, M.G.; Kopp, S.; Ludwig, B.; Sader, R.A.; Seitz, O. Comparison of bipartite versus tripartite osteotomy for maxillary transversal expansion using 3-dimensional preoperative and postexpansion computed tomography data. J. Oral Maxillofac. Surg. 2009, 67, 2287–2301. [Google Scholar] [CrossRef]
- Baysal, A.; Karadede, I.; Hekimoglu, S.; Ucar, F.; Ozer, T.; Veli, I.; Uysal, T. Evaluation of root resorption following rapid maxillary expansion using cone-beam computed tomography. Angle Orthod. 2012, 82, 488–494. [Google Scholar] [CrossRef]
- Shayani, A.; Merino-Gerlach, M.A.; Garay-Carrasco, I.A.; Navarro-Cáceres, P.E.; Sandoval-Vidal, H.P. Midpalatal Suture Maturation Stage in 10- to 25-Year-Olds Using Cone-Beam Computed Tomography-A Cross-Sectional Study. Diagnostics 2023, 13, 1449. [Google Scholar] [CrossRef]
- Yang, P.; Zhu, M.; Guo, Y.; Su, C.; Wang, Y.; Bai, Y.; Zhang, N. Evaluation of midpalatal suture maturation stage in 5- to 20-year-olds using cone-beam computed tomography. Am. J. Orthod. Dentofac. Orthop. 2024, 166, 572–582. [Google Scholar] [CrossRef] [PubMed]
- Angelieri, F.; Cevidanes, L.H.; Franchi, L.; Gonçalves, J.R.; Benavides, E.; McNamara, J.A., Jr. Midpalatal suture maturation: Classification method for individual assessment before rapid maxillary expansion. Am. J. Orthod. Dentofac. Orthop. 2013, 144, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Bays, R.A.; Greco, J.M. Surgically assisted rapid palatal expansion: An outpatient technique with long-term stability. J. Oral Maxillofac. Surg. 1992, 50, 110–113. [Google Scholar] [CrossRef]
- Magnusson, A. Evaluation of surgically assisted rapid maxillary expansion and orthodontic treatment. Effects on dental, skeletal and nasal structures and rhinological findings. Swed. Dent. J. Suppl. 2013, 229, 1–104. [Google Scholar]
- Timms, D.J.; Vero, D. The relationship of rapid maxillary expansion to surgery with special reference to midpalatal synostosis. Br. J. Oral Surg. 1981, 19, 180–196. [Google Scholar] [CrossRef]
- Glassman, A.S.; Nahigian, S.J.; Medway, J.M.; Aronowitz, H.I. Conservative surgical orthodontic adult rapid palatal expansion: Sixteen cases. Am. J. Orthod. 1984, 86, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Bell, W.H.; Epker, B.N. Surgical-orthodontic expansion of the maxilla. Am. J. Orthod. 1976, 70, 517–528. [Google Scholar] [CrossRef]
- Morselli, P.G. Surgical maxillary expansion: A new minimally invasive technique. J. Cranio Maxillofac. Surg. 1997, 25, 80–84. [Google Scholar] [CrossRef]
- Lindorf, H.H.; Müller-Herzog, R. Die chirurgisch gesteuerte maxillare expansion (GME) durch selektive Schwachung der Gesichtspfeiler. Zahnheilkd Manag. Kult. 2006, 22, 6–18. [Google Scholar]
- Haas Junior, O.L.; Matje, P.R.B.; Rosa, B.M.; Rojo-Sanchis, C.; Guijarro-Martínez, R.; Valls-Ontañón, A.; Menezes, L.M.; Hernández-Alfaro, F.; de Oliveira, R.B. Minimally invasive surgical and miniscrew-assisted rapid palatal expansion (MISMARPE) in adult patients. J. Cranio Maxillofac. Surg. 2022, 50, 211–217. [Google Scholar] [CrossRef]
- Mommaerts, M.Y. Transpalatal distraction as a method of maxillary expansion. Br. J. Oral Maxillofac. Surg. 1999, 37, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Kraut, R.A. Surgically assisted rapid maxillary expansion by opening the midpalatal suture. J. Oral Maxillofac. Surg. 1984, 42, 651–655. [Google Scholar] [CrossRef]
- Messer, E.J.; Bollinger, T.E.; Keller, J.J. Surgical-mechanical maxillary expansion. Quintessence Int. 1979, 10, 13–16. [Google Scholar]
- Pogrel, M.A.; Kaban, L.B.; Vargervik, K.; Baumrind, S. Surgically assisted rapid maxillary expansion in adults. Int. J. Adult Orthod. Orthognath. Surg. 1992, 7, 37–41. [Google Scholar]
- Mehra, P.; Cottrell, D.A.; Caiazzo, A.; Lincoln, R. Life-threatening, delayed epistaxis after surgically assisted rapid palatal expansion: A case report. J. Oral Maxillofac. Surg. 1999, 57, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Suri, L.; Taneja, P. Surgically assisted rapid palatal expansion: A literature review. Am. J. Orthod. Dentofac. Orthop. 2008, 133, 290–302. [Google Scholar] [CrossRef]
- Benetti, M.; Montresor, L.; Cantarella, D.; Zerman, N.; Spinas, E. Does Miniscrew-Assisted Rapid Palatal Expansion Influence Upper Airway in Adult Patients? A Scoping Review. Dent. J. 2024, 12, 60. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.J.; Moon, W.; Hong, C. Effects of monocortical and bicortical mini- implant anchorage on bone-borne palatal expansion using finite ele- ment analysis. Am. J. Orthod. Dentofac. Orthop. 2017, 151, 887–897. [Google Scholar] [CrossRef]
- Cantarella, D.; Dominguez-Mompell, R.; Mallya, S.M.; Moschik, C.; Pan, H.C.; Miller, J.; Moon, W. Changes in the midpalatal and pterygopalatine sutures induced by micro-implant-supported skeletal expander, analyzed with a novel 3D method based on CBCT imaging. Prog. Orthod. 2017, 18, 34. [Google Scholar] [CrossRef]
- Choi, S.H.; Shi, K.K.; Cha, J.Y.; Park, Y.C.; Lee, K.J. Nonsurgical miniscrew-assisted rapid maxillary expansion results in acceptable stability in young adults. Angle Orthod. 2016, 86, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, M.; Akin, M. Comparison of root resorption after bone-borne and tooth-borne rapid maxillary expansion evaluated with the use of microtomography. Am. J. Orthod. Dentofac. Orthop. 2019, 155, 182–190. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L.; et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- PRISMA. Available online: https://www.prisma-statement.org/scoping (accessed on 30 November 2024).
- Abate, A.; Lanteri, V.; Marcolongo, L.; Solimei, L.; Maspero, C. Evaluation of Masticatory Muscles in Adult Patients with Maxillary Hypoplasia Treated with Surgically Assisted Rapid Maxillary Expansion (SARME): A Retrospective Study. J. Clin. Med. 2023, 12, 607. [Google Scholar] [CrossRef] [PubMed]
- Al-Ouf, K.; Krenkel, C.; Hajeer, M.Y.; Sakka, S. Osteogenic uni- or bilateral form of the guided rapid maxillary expansion. J. Cranio Maxillofac. Surg. 2010, 38, 160–165. [Google Scholar] [CrossRef]
- Basu, S.; Goje, S.K. Comparative Evaluation of Skeletal and Dental Effects of Mini-Implant Assisted and Corticopuncture-Facilitated Rapid Palatal Expansion in Adults: A Randomized Clinical Study. J. Datta Meghe Inst. Med. Sci. Univ. 2023, 18, 629–642. [Google Scholar] [CrossRef]
- Choi, E.A.; Lee, K.J.; Choi, S.H.; Jung, H.D.; Ahn, H.J.; Deguchi, T.; Cha, J.Y. Skeletal and dentoalveolar effects of miniscrew-assisted rapid palatal expansion based on the length of the miniscrew: A randomized clinical trial. Angle Orthod. 2023, 93, 390–397. [Google Scholar] [CrossRef]
- Contar, C.M.; Muller, P.R.; Brunetto, A.R.; Machado, M.A.; Rappoport, A. Surgical treatment of maxillary transverse deficiency: Retrospective study of 14 patients. J. Maxillofac. Oral Surg. 2009, 8, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Daif, E.T. Segment tilting associated with surgically assisted rapid maxillary expansion. Int. J. Oral Maxillofac. Surg. 2014, 43, 311–315. [Google Scholar] [CrossRef]
- Drobyshev, A.; Klipa, I.; Drobysheva, N.; Ilina, N.; Zhmyrko, I. Surgically Assisted Rapid Maxillary Expansion: Retrospective Analysis of Complications 2012–2017. Georgian Med. News 2021, 311, 58–62. [Google Scholar]
- Fernández-Sanromán, J.; Donascimento, M.G.; López, A.C.; Ferro, M.F.; Berrondo, I.A. Transverse maxillary distraction in patients with periodontal pathology or insufficient tooth anchorage using custom-made devices. J. Oral Maxillofac. Surg. 2010, 68, 1530–1536. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, D.C.; Alonso, N.; Goldenberg, F.C.; Gebrin, E.S.; Amaral, T.S.; Scanavini, M.A.; Ferreira, M.C. Using computed tomography to evaluate maxillary changes after surgically assisted rapid palatal expansion. J. Craniofacial Surg. 2007, 18, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Günbay, T.; Akay, M.C.; Günbay, S.; Aras, A.; Koyuncu, B.O.; Sezer, B. Transpalatal distraction using bone-borne distractor: Clinical observations and dental and skeletal changes. J. Oral Maxillofac. Surg. 2008, 66, 2503–2514. [Google Scholar] [CrossRef] [PubMed]
- Karabiber, G.; Yılmaz, H.N.; Nevzatoğlu, Ş.; Uğurlu, F.; Akdoğan, T. Three-dimensional evaluation of surgically assisted asymmetric rapid maxillary expansion. Am. J. Orthod. Dentofac. Orthop. 2019, 155, 620–631. [Google Scholar] [CrossRef]
- Kayalar, E.; Schauseil, M.; Kuvat, S.V.; Emekli, U.; Fıratlı, S. Comparison of tooth-borne and hybrid devices in surgically assisted rapid maxillary expansion: A randomized clinical cone-beam computed tomography study. J. Cranio Maxillofac. Surg. 2016, 44, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Leyder, P.; Altounian, G.; Quilichini, J. Adjustable selective maxillary expansion combined with one-stage maxillomandibular surgery: A prospective study of osseous widening in fifty-five consecutive patients. J. Cranio Maxillofac. Surg. 2018, 46, 1408–1420. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.M.; Park, Y.C.; Lee, K.J.; Kim, K.H.; Choi, Y.J. Stability of dental, alveolar, and skeletal changes after miniscrew-assisted rapid palatal expansion. Korean J. Orthod. 2017, 47, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.D.; Koga, A.F.; Prado, G.P.R.; Ferreira, L.M. Complications From Surgically Assisted Rapid Maxillary Expansion With HAAS and HYRAX Expanders. J Craniofac. Surg. 2018, 29, 275–278. [Google Scholar] [CrossRef] [PubMed]
- Ploder, O.; Winsauer, H.; Juengling, K.; Grill, F.; Bissinger, O.; Wolff, K.D.; Kolk, A. Is There a Significant Difference in Relapse and Complication Rate of Surgically Assisted Rapid Palatal Expansion Using Tooth-Borne, Bone-Borne, and Orthodontic Mini-Implant-Borne Appliances? J. Oral Maxillofac. Surg. 2021, 79, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Rachmiel, A.; Turgeman, S.; Shilo, D.; Emodi, O.; Aizenbud, D. Surgically Assisted Rapid Palatal Expansion to Correct Maxillary Transverse Deficiency. Ann. Maxillofac. Surg. 2020, 10, 136–141. [Google Scholar] [CrossRef]
- Sant’Ana, L.F.; Pinzan-Vercelino, C.R.; Gurgel, J.A.; Carvalho, P.S. Evaluation of surgically assisted rapid maxillary expansion with and without midpalatal split. Int. J. Oral Maxillofac. Surg. 2016, 45, 997–1001. [Google Scholar] [CrossRef]
- Seeberger, R.; Abe-Nickler, D.; Hoffmann, J.; Kunzmann, K.; Zingler, S. One-stage tooth-borne distraction versus two stage bone-borne distraction in surgically assisted maxillary expansion (SARME). Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2015, 120, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Sendyk, M.; Sendyk, W.R.; Pallos, D.; Boaro, L.C.C.; Paiva, J.B.; Rino Neto, J. Periodontal clinical evaluation before and after surgically assisted rapid maxillary expansion. Dent. Press J. Orthod. 2018, 23, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Smeets, M.; Da Costa Senior, O.; Eman, S.; Politis, C. A retrospective analysis of the complication rate after SARPE in 111 cases, and its relationship to patient age at surgery. J. Cranio Maxillofac. Surg. 2020, 48, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Sygouros, A.; Motro, M.; Ugurlu, F.; Acar, A. Surgically assisted rapid maxillary expansion: Cone-beam computed tomography evaluation of different surgical techniques and their effects on the maxillary dentoskeletal complex. Am. J. Orthod. Dentofac. Orthop. 2014, 146, 748–757. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, C.; Mao, Q.; Zhou, L.; Xiang, X. Skeletal and dentoalveolar modifications in adults with different sagittal facial patterns after personalized miniscrew-assisted rapid palatal expansion: A prospective cone-beam computed tomography study. Am. J. Orthod. Dentofac. Orthop. 2023, 164, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.J.; Currimbhoy, S.; Silva, A.; O’Ryan, F.S. Complications following surgically assisted rapid palatal expansion: A retrospective cohort study. J. Oral Maxillofac. Surg. 2012, 70, 2394–2402. [Google Scholar] [CrossRef] [PubMed]
- Winsauer, H.; Walter, A.; Katsaros, C.; Ploder, O. Success and complication rate of miniscrew assisted non-surgical palatal expansion in adults-a consecutive study using a novel force-controlled polycyclic activation protocol. Head Face Med. 2021, 17, 50. [Google Scholar] [CrossRef] [PubMed]
- Yoon, A.; Guilleminault, C.; Zaghi, S.; Liu, S.Y. Distraction Osteogenesis Maxillary Expansion (DOME) for adult obstructive sleep apnea patients with narrow maxilla and nasal floor. Sleep Med. 2020, 65, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Ning, R.; Chen, J.; Liu, S.; Lu, Y. Treatment effects after maxillary expansion using tooth-borne vs tissue-borne miniscrew-assisted rapid palatal expansion appliance. Am. J. Orthod. Dentofac. Orthop. 2023, 164, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Cozzani, M.; Nucci, L.; Lupini, D.; Tripodi, D.; Noori, N.; Hasani, M.; Jamilian, A. Two different designs of mini-screw assisted maxillary expanders, using FEM to analyse stress distribution in craniofacial structures and anchor teeth. Int. Orthod. 2022, 20, 100607. [Google Scholar] [CrossRef]
- Lin, L.; Ahn, H.W.; Kim, S.J.; Moon, S.C.; Kim, S.H.; Nelson, G. Tooth-borne vs bone-borne rapid maxillary expanders in late adolescence. Angle Orthod. 2015, 85, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.G.; Li, K. Effectiveness of miniscrew-assisted rapid maxillary expansion: A systematic review and meta-analysis. Clin. Oral Investig. 2022, 26, 4509–4523. [Google Scholar] [CrossRef]
- Alcin, R.; Malkoç, S. Does mini-implant-supported rapid maxillary expansion cause less root resorption than traditional approaches? A micro-computed tomography study. Korean J. Orthod. 2021, 51, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Verdecchia, A.; Suárez-Fernández, C.; Miquel, A.; Bardini, G.; Spinas, E. Biological Effects of Orthodontic Tooth Movement on the Periodontium in Regenerated Bone Defects: A Scoping Review. Dent. J. 2024, 12, 50. [Google Scholar] [CrossRef] [PubMed]
- Cantarella, D.; Dominguez-Mompell, R.; Moschik, C.; Mallya, S.M.; Pan, H.C.; Alkahtani, M.R.; Elkenawy, I.; Moon, W. Midfacial changes in the coronal plane induced by microimplant-supported skeletal expander, studied with cone-beam computed tomography images. Am. J. Orthod Dentofac. Orthop. 2018, 154, 337–345. [Google Scholar] [CrossRef]
- Dergin, G.; Aktop, S.; Varol, A.; Ugurlu, F.; Garip, H. Complications related to surgically assisted rapid palatal expansion. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2015, 119, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, P.H.A.; Moura, L.B.; Trento, G.S.; Holzinger, D.; Gabrielli, M.A.C.; Gabrielli, M.F.R.; Pereira Filho, V.A. Surgically assisted rapid maxillary expansion: A systematic review of complications. Int. J. Oral Maxillofac. Surg. 2020, 49, 325–332. [Google Scholar] [CrossRef]
- Kim, K.A.; Oh, S.H.; Kim, B.H.; Kim, S.J. Asymmetric nasomaxillary expansion induced by tooth-bone-borne expander producing differential craniofacial changes. Orthod. Craniofac. Res. 2019, 22, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Park, J.J.; Park, Y.C.; Lee, K.J.; Cha, J.Y.; Tahk, J.H.; Choi, Y.J. Skeletal and dentoalveolar changes after miniscrew-assisted rapid palatal expansion in young adults: A cone-beam computed tomography study. Korean J. Orthod. 2017, 47, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Yoon, A.; Payne, J.; Suh, H.; Phi, L.; Chan, A.; Oh, H. A retrospective analysis of the complications associated with miniscrew-assisted rapid palatal expansion. AJO-DO Clin. Companion 2022, 2, 423–430. [Google Scholar] [CrossRef]
- Oliveira, C.B.; Ayub, P.; Angelieri, F.; Murata, W.H.; Suzuki, S.S.; Ravelli, D.B.; Santos-Pinto, A. Evaluation of factors related to the success of miniscrew-assisted rapid palatal expansion. Angle Orthod. 2021, 91, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Hamedi Sangsari, A.; Sadr-Eshkevari, P.; Al-Dam, A.; Friedrich, R.E.; Freymiller, E.; Rashad, A. Surgically Assisted Rapid Palatomaxillary Expansion With or Without Pterygomaxillary Disjunction: A Systematic Review and Meta-Analysis. J. Oral Maxillofac. Surg. 2016, 74, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Bud, E.S.; Bică, C.I.; Păcurar, M.; Vaida, P.; Vlasa, A.; Martha, K.; Bud, A. Observational Study Regarding Possible Side Effects of Miniscrew-Assisted Rapid Palatal Expander (MARPE) with or without the Use of Corticopuncture Therapy. Biology 2021, 10, 187. [Google Scholar] [CrossRef] [PubMed]
- Chamberland, S. Maxillary expansion in nongrowing patients. Conventional, surgical, or miniscrew-assisted, an update. J. World Fed. Orthod. 2023, 12, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Baik, H.S.; Kang, Y.G.; Choi, Y.J. Miniscrew-assisted rapid palatal expansion: A review of recent reports. J. World Fed. Orthod. 2020, 9, S54–S58. [Google Scholar] [CrossRef] [PubMed]
- Kapetanović, A.; Odrosslij, B.M.M.J.; Baan, F.; Bergé, S.J.; Noverraz, R.R.M.; Schols, J.G.J.H.; Xi, T. Efficacy of Miniscrew-Assisted Rapid Palatal Expansion (MARPE) in late adolescents and adults with the Dutch Maxillary Expansion Device: A prospective clinical cohort study. Clin. Oral Investig. 2022, 26, 6253–6263. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.D.J.; Godfrey, C.; McInerney, P.; Khalil, H.; Larsen, P.; Marnie, C.; Pollock, D.; Tricco, A.C.; Munn, Z. Best practice guidance and reporting items for the development of scoping review protocols. JBI Evid. Synth. 2022, 20, 953–968. [Google Scholar] [CrossRef] [PubMed]
Database | Search Strategy | Number of Results |
---|---|---|
MEDLINE (via PubMed) | (((bone screws[MeSH Terms])OR ((screw*[Title/Abstract])AND (bone[Title/Abstract]))OR (bone-anchored[Title/Abstract])OR (bone-borne[Title/Abstract])OR (implant anchorage*[Title/Abstract])OR (implant-supported[Title/Abstract])OR (miniimplant*[Title/Abstract])OR (micro implant*[Title/Abstract])OR (micro screw*[Title/Abstract])OR (mini implant*[Title/Abstract])OR (mini screw*[Title/Abstract])OR (mini-implant*[Title/Abstract])OR (miniscrew*[Title/Abstract])OR (mini-screw*[Title/Abstract])OR (orthodontic anchorage*[Title/Abstract])OR (orthodontic anchorage procedure*[Title/Abstract])OR (orthodontic anchorage technique*[Title/Abstract])OR (orthodontic anchoring procedure*[Title/Abstract])OR (skeletal anchorage*[Title/Abstract])OR (anchorage screw*[Title/Abstract])OR (temporary anchorage device*[Title/Abstract])OR ((anchorage procedure*[Title/Abstract])AND (orthodontic[Title/Abstract]))OR ((anchorage technique*[Title/Abstract])AND (orthodontic[Title/Abstract]))OR ((procedure*[Title/Abstract])AND (orthodontic anchorage*[Title/Abstract]))OR ((technique*[Title/Abstract])AND (orthodontic anchorage*[Title/Abstract]))OR (TAD[Title/Abstract])OR (TADs[Title/Abstract]))AND ((palatal expansion technique*[MeSH Terms])OR (palatal expansion technic*[Title/Abstract])OR (palatal expander*[Title/Abstract])OR (palatal expansion*[Title/Abstract])OR (maxilla expansion*[Title/Abstract])OR (maxillary expansion*[Title/Abstract])OR (maxillary suture expansion*[Title/Abstract])OR ((expansion*[Title/Abstract])AND (maxillary[Title/Abstract]))OR ((expansion technic*[Title/Abstract])AND (palatal[Title/Abstract]))OR ((expansion technique*[Title/Abstract])AND (palatal[Title/Abstract]))OR ((technic*[Title/Abstract])AND (palatal expansion*[Title/Abstract]))OR ((technique*[Title/Abstract])AND (palatal expansion*[Title/Abstract]))))OR (((MARPE[Title/Abstract])OR (MARME[Title/Abstract]))) | 235 |
Scopus | ((TITLE-ABS-KEY (marpe) OR TITLE-ABS-KEY (marme))) OR (((TITLE-ABS-KEY (“bone screws”)) OR (TITLE-ABS-KEY (screw* AND bone)) OR (TITLE-ABS-KEY (bone-anchored)) OR (TITLE-ABS-KEY (bone-borne)) OR (TITLE-ABS-KEY (implant AND anchorage*)) OR (TITLE-ABS-KEY (implant-supported)) OR (TITLE-ABS-KEY (miniimplant*)) OR (TITLE-ABS-KEY (micro AND implant*)) OR (TITLE-ABS-KEY (micro AND screw*)) OR (TITLE-ABS-KEY (mini AND implant*)) OR (TITLE-ABS-KEY (mini AND screw*)) OR (TITLE-ABS-KEY (mini-implant*)) OR (TITLE-ABS-KEY (miniscrew*)) OR (TITLE-ABS-KEY (mini-screw*)) OR (TITLE-ABS-KEY (orthodontic AND anchorage*)) OR (TITLE-ABS-KEY (“orthodontic anchorage procedure*”)) OR (TITLE-ABS-KEY (“orthodontic anchorage technique*”)) OR (TITLE-ABS-KEY (“orthodontic anchoring procedure*”)) OR (TITLE-ABS-KEY (“orthodontic anchoring procedure*”)) OR (TITLE-ABS-KEY (skeletal AND anchorage*)) OR (TITLE-ABS-KEY (anchorage AND screw*)) OR (TITLE-ABS-KEY (temporary AND anchorage AND device*)) OR (TITLE-ABS-KEY (“anchorage procedure*” orthodontic)) OR (TITLE-ABS-KEY (“anchorage technique*” orthodontic)) OR (TITLE-ABS-KEY (procedure* “orthodontic anchorage*”)) OR (TITLE-ABS-KEY (technique* “orthodontic anchorage*”)) OR (TITLE-ABS-KEY (tad)) OR (TITLE-ABS-KEY (tads))) AND ((TITLE-ABS-KEY (“palatal expansion technique*”)) OR (TITLE-ABS-KEY (palatal AND expansion AND technic*)) OR (TITLE-ABS-KEY (palatal AND expander*)) OR (TITLE-ABS-KEY (palatal AND expansion*)) OR (TITLE-ABS-KEY (maxilla AND expansion*)) OR (TITLE-ABS-KEY (maxillary AND suture AND expansion*)) OR (TITLE-ABS-KEY (expansion* AND maxillary)) OR (TITLE-ABS-KEY (“expansion technic*” palatal)) OR (TITLE-ABS-KEY (“expansion technique*” palatal)) OR (TITLE-ABS-KEY (technic* “palatal expansion*”)) OR (TITLE-ABS-KEY (technique* “palatal expansion*”)))) | 149 |
Cochrane Library |
| 71 |
Web of Science | #1 ((((((((((((((((((((((((((TS=(bone screws))OR TS=(screw* bone))OR TS=(bone-anchored))OR TS=(bone-borne))OR TS=(implant anchorage*))OR TS=(implant-supported))OR TS=(miniimplant*))OR TS=(micro implant*))OR TS=(micro screw*))OR TS=(mini implant*))OR TS=(mini screw*))OR TS=(mini-implant*))OR TS=(miniscrew*))OR TS=(mini-screw*))OR TS=(orthodontic anchorage*))OR TS=(“orthodontic anchorage procedure*”))OR TS=(“orthodontic anchorage technique*”))OR TS=(“orthodontic anchoring procedure*”))OR TS=(skeletal anchorage*))OR TS=(anchorage screw*))OR TS=(“temporary anchorage device*”))OR TS=(“anchorage procedure*” orthodontic))OR TS=(“anchorage technique*” orthodontic))OR TS=(procedure* “orthodontic anchorage*”))OR TS=(technique* “orthodontic anchorage*”))OR TS=(TAD))OR TS=(TADs) #2 ((((((((((TS=(“palatal expansion technique*”))OR TS=(palatal expansion technic*))OR TS=(palatal expander*))OR TS=(palatal expansion*))OR TS=(maxilla expansion*))OR TS=(maxillary expansion*))OR TS=(“maxillary suture expansion*”))OR TS=(“expansion technic*” palatal))OR TS=(“expansion technique*” palatal))OR TS=(technic* “palatal expansion*”))OR TS=(technique* “palatal expansion*”) #3 (TS=(MARPE))OR TS=(MARME) #4 #2 AND #1 #5 #4 OR #3 | 50 |
Embase | ‘marme’:ti, ab, kw OR ‘marpe’:ti, ab, kw OR ((‘palatal expansion’/exp OR (‘expansion technique*’:ti, ab, kw AND palatal:ti, ab, kw)OR ‘palatal expansion technique*’:ti, ab, kw OR (technique*:ti, ab, kw AND ‘palatal expansion*’:ti, ab, kw)OR ‘palatal expansion technic*’:ti, ab, kw OR (‘expansion technic*’:ti, ab, kw AND palatal:ti, ab, kw)OR ‘palatal expansion technic*’:ti, ab, kw OR (technic*:ti, ab, kw AND ‘palatal expansion*’:ti, ab, kw)OR ‘maxillary expansion*’:ti, ab, kw OR (expansion*:ti, ab, kw AND maxillary:ti, ab, kw)OR ‘palatal expansion technique*’:ti, ab, kw OR ‘palatal expansion*’:ti, ab, kw OR ‘palatal expander*’:ti, ab, kw OR ‘maxilla expansion*’:ti, ab, kw OR ‘maxillary suture expansion*’:ti, ab, kw AND (‘bone screw’/exp OR (screw*:ti, ab, kw AND bone:ti, ab, kw)OR miniscrew*:ti, ab, kw OR miniimplant*:ti, ab, kw OR ‘micro screw*’:ti, ab, kw OR ‘skeletal anchorage*’:ti, ab, kw OR tad:ti, ab, kw OR tads:ti, ab, kw OR ‘temporary anchorage device*’: ti, ab, kw OR ‘anchorage screw*’:ti, ab, kw OR ‘micro implant*’:ti, ab, kw OR ‘mini implant*’:ti, ab, kw OR ‘mini screw*’:ti, ab, kw OR ‘implant supported’:ti, ab, kw OR ‘implant anchorage*’:ti, ab, kw OR ‘orthodontic anchorage*’:ti, ab, kw OR ‘bone borne’:ti, ab, kw OR ’bone anchored’:ti, ab, kw OR ‘orthodontic anchorage procedure*’:ti, ab, kw OR ‘orthodontic anchoring procedure*’:ti, ab, kw OR ‘orthodontic anchorage technique*’:ti, ab, kw OR (technique*:ti, ab, kw AND ‘orthodontic anchorage’:ti, ab, kw)OR (‘anchorage technique*’:ti, ab, kw AND orthodontic:ti, ab, kw)OR (procedure*:ti, ab, kw AND ‘orthodontic anchorage’:ti, ab, kw)OR (‘anchorage procedure*’:ti, ab, kw AND orthodontic:ti, ab, kw)) | 239 |
First Author [Reference] | Year | Country | Study Design | Sample Size (n° of Patients) | Mean Age (Years) |
---|---|---|---|---|---|
Abate A. et al. [30] | 2023 | Italy | Retrospective study | 20 | 27.3 |
Al-Ouf K. et al. [31] | 2010 | Austria, Syria | Prospective study | 17 | 30.7 |
Basu S. et al. [32] | 2023 | India | Randomized Clinical Trial | 18 | 20.8 |
Choi E.H.A. et al. [33] | 2023 | Republic of Korea | Randomized Clinical Trial | 32 | 23 |
Contar C.M.M. et al. [34] | 2009 | Brazil | Retrospective study | 14 | 33.5 |
First Author [Reference] | Year | Country | Study Design | Sample Size (n° of Patients) | Mean Age (Years) |
Daif E.T. [35] | 2014 | Egypt | Prospective study | 30 | 24 |
Drobyshev A. et al. [36] | 2021 | Russia | Retrospective study | 665 | 25.3 |
Fernández Sanromán J. et al. [37] | 2010 | Spain | Prospective study | 8 | 28.5 |
Goldenberg D.C. et al. [38] | 2007 | Brazil | Prospective study | 15 | 24.5 |
Gunbay T. et al. [39] | 2008 | Turkey | Prospective study | 10 | 22.3 |
Karabiber G. et al. [40] | 2019 | Turkey | Prospective study | 16 | 18.4 |
Kayalar E. et al. [41] | 2015 | Turkey | Randomized Clinical Trial | 20 | 19.4 |
Leyder P. et al. [42] | 2018 | France | Prospective study | 55 | 23.6 |
Lim H. et al. [43] | 2017 | Republic of Korea | Retrospective study | 29 | 21.6 |
Pereira M.D. et al. [44] | 2017 | Brazil | Prospective study | 90 | 26.1 |
Ploder O. et al. [45] | 2020 | Germany | Retrospective study | 54 | 28.8 |
Rachmiel A. et al. [46] | 2020 | Israel | Prospective study | 32 | 19–54 |
Sant’Ana L.F.M. et al. [47] | 2016 | Brazil | Prospective study | 24 | 24.29 |
Seeberger R. et al. [48] | 2015 | Germany | Retrospective study | 33 | 26 |
Sendyk M. et al. [49] | 2018 | Brazil | Prospective study | 17 | 25–45 |
Smeets M. et al. [50] | 2019 | Belgium | Retrospective study | 111 | 26 |
Sygouros A. et al. [51] | 2014 | Turkey | Retrospective study | 26 | 18.8 |
Wang C. et al. [52] | 2023 | China | Prospective study | 40 | 22.42 ± 3.38 |
Williams B.J.D. et al. [53] | 2012 | USA | Retrospective Study | 120 | 29.5 (22–39) |
Winsauer H. et al. [54] | 2021 | Austria | Retrospective study | 33 | 29.1 ± 10.2 (18–58) |
Yoon A. et al. [55] | 2020 | USA | Retrospective study | 75 | 30.5 ± 8.5 |
First Author and Year [Reference] | Data Collection | Intervention (Type of Expansion) | Intervention (Appliance Design) | Protocol of Expansion (Until the Planned/Desired Expansion Was Achieved) |
---|---|---|---|---|
Abate A. et al., 2023 [30] | EMG Examinations | SARPE (Le fort I osteotomy + midpalatal osteotomy) | Tooth-borne Hyrax-type expander | 7-day latency period, then one activation (0.25 mm) twice daily |
Al-Ouf K. et al., 2010 [31] | Study models | SARPE (Bilateral osteotomies on both sides of the midpalatal suture in the floor of the nasal cavity starting from the posterior border and continuing towards the anterior border of the piriform aperture) | Tooth-borne Hyrax-type expander | Four activations (0.25 mm each) intra-operatively; 7-day latency period. Daily activation protocol not specified |
Basu S. et al., 2023 [32] | Clinical evaluation; introral and extraoral photographs; cephalograms; OPT; study models; CBCT measurements | MARPE (Group A: corticopuncture-facilitated BBRME Group B: conventional MARPE) | Group A: tooth-bone-borne Hyrax-type expander Group B: bone-borne | Both groups: one activation intra-operatively; two activations daily until the appearance of midline diastema, then one activation per day |
Choi E.H.A. et al., 2023 [33] | CBCT measurements; periapical x-rays | MARPE | Tooth-bone-borne Hyrax-type expander | One activation (0.2 mm) daily |
Contar C.M.M. et al., 2009 [34] | Clinical evaluation; study models; cephalograms; periapical x-rays | SARPE (modified Le Fort I osteotomy + midpalatal osteotomy) | Tooth-borne Hyrax-type expander | 5-day latency period; two activations (0.25 mm) per day, one every 12 h |
Daif E.T., 2014 [35] | Photographs, study models, cephalograms, CBCT measurements | SARPE (Bilateral zygomatic buttress osteotomy + midpalatal osteotomy) | Tooth-borne Hyrax-type expander | Eight activations (0.25 mm each) intraoperatively; 5-day latency period, then two activations per day |
Drobyshev A. et al., 2021 [36] | CBCT measurements | SARPE (Le Fort I osteotomy + midpalatal osteotomy) | Bone-borne TPD | 7-day latency period, then activations from 0.3 mm to 1 mm daily |
First Author and Year [Reference] | Data Collection | Intervention (Type of Expansion) | Intervention (Appliance Design) | Protocol of Expansion (Until the Planned/Desired Expansion Was Achieved) |
Fernández Sanromán J. et al., 2010 [37] | Clinical evaluation; OPT; cephalograms; study models | SARPE (Zygomaticomaxillary buttress osteotomy + midpalatal osteotomy) | Two Hyrax-type expanders: Bone-borne and tooth-bone-borne | 7-day latency period; three activations (0.2 mm each) daily |
Goldenberg D.C. et al., 2007 [38] | Photographs; study models; cephalograms; CBCT measurements | SARPE (modified Le Fort I osteotomy + midpalatal osteotomy) | Tooth-borne Hyrax-type expander | Four activations (0.25 mm each) intraoperatively; 3- day latency period, then two activations per day |
Gunbay T. et al., 2008 [39] | Clinical evaluation; cephalograms; study models | SARPE (osteotomies of the anterior, lateral, and medial of the maxilla’s sutures) | Bone-borne TPD | 7-day latency period; Five activations (0.2 mm each) per day |
Karabiber G. et al., 2019 [40] | Intraoral and extraoral photographs; CBCT measurements | Unilateral SARPE (asymmetric anterior and lateral osteotomies + asymmetric PMD + midpalatal osteotomy) | Asymmetrically designed tooth-borne Hyrax-type expander | 5-day latency period, then two activations (0.25 mm each) daily |
Kayalar E. et al., 2015 [41] | CBCT measurements | SARPE (Le Fort I osteotomy + midpalatal osteotomy + PMD) | Tooth-borne Hyrax type expander; Tooth-bone-borne Hyrax-type expander | Intraoperative activation until a diastema of 1 mm was shown. Two activations (0.25 mm each) per day |
Leyder P. et al., 2018 [42] | Clinical evaluation; CBCT measurements; study models | SARPE (Le Fort I osteotomy + down fracture + medial or single lateral corticotomy) | Three types of TPD: Tooth-borne (n = 36), bone-borne (n = 11), tooth-bone-borne (n = 8) | Intraoperative activation to achieve less than 3 mm osseous separation; 4-day latency period, then activation of 0.53 mm daily |
Lim H., 2017 et al. [43] | CBCT measurements | MARPE | Tooth-bone-borne (modified) Hyrax-type expander | Two activations (0.2 mm each) per day |
Pereira M.D. et al., 2017 [44] | Clinical evaluation; study models; cephalograms; OPT; periapical and occlusal x-rays; | SARPE (Le Fort I osteotomy + PMD) | Tooth-borne Haas- (n = 29) and Hyrax-(n = 61) type expanders | Eight activations (0.2 mm each) intraoperatively; 4-day latency period, then two activations per day |
First Author and Year [Reference] | Data Collection | Intervention (Type of Expansion) | Intervention (Appliance Design) | Protocol of Expansion (Until the Planned/Desired Expansion Was Achieved) |
Ploder O. et al., 2020 [45] | Clinical evaluation; radiographic evaluation; study models | SARPE (Le Fort I osteotomy + midpalatal osteotmy + PMD) | Tooth-borne splint-type appliance Bone-borne appliance (TPD device) Bone-borne appliance (OMI appliance) | Tooth-borne appliance: 6-day latency period, then three activations (0.2 mm each) per day TPD appliance: 4 to 6-day latency period, then two activations (0.5 mm each) per day OMI appliance: 5-day latency period, then three activations (0.17 mm each) per day |
Rachmiel A. et al., 2020 [46] | Clinical evaluation | SARPE | Tooth-borne Hyrax-type expander | Two activations (0.25 mm each) per day |
Sant’Ana L.F.M. et al., 2016 [47] | Clinical evaluation; occlusal radiographs; Pain questionnaire | SARPE (Group 1: partial bilateral maxillary antero-lateral ostoeotomies + midpalatal osteotomy; Group 2: bilateral maxillary antero-lateral ostoeotomies) | Tooth-borne Hyrax-type expander | Four activations (0.25 mm each) intraoperatively; 2-day latency period, then one activation twice a day |
Seeberger R. et al., 2015 [48] | CBCT measurements | SARPE (Subtotal Le Fort I osteotomy + PMD) | Two types of device: tooth-borne Hyrax-type expander and bone-borne TPD | Tooth-borne group: Four activations (0.2 mm each) intraoperatively; 5 to 7-day latency period, then two activations per day; Bone-borne group: same protocol but each activation was 0.25 mm |
Sendyk M. et al., 2018 [49] | Clinical evaluation | SARPE (Le fort I osteotomy + PMD + osteotomy of the anterior region of the maxilla) | Tooth-borne Hyrax-type expander | Two activations per day, one in the morning, and one at night |
Smeets M. et al., 2019 [50] | Clinical evaluation; CBCT measurements | SARPE (Le Fort I osteotomy + PMD + midpalatal osteotomy) | Tooth-borne Hyrax-type expander + Bone-borne TPD expander | 7-day latency period, then two activations (0.25 mm each) daily |
First Author and Year [Reference] | Data Collection | Intervention (Type of Expansion) | Intervention (Appliance Design) | Protocol of Expansion (Until the Planned/Desired Expansion Was Achieved) |
Sygouros A. et al. 2014 [51] | CBCT measurements | SARPE (Le Fort I+ 2 groups: SARPE with PMD and SARPE without PMD) | Tooth-borne Hyrax-type expander | Eight activations (0.25 mm each) intraoperatively; 3-day latency period, then two activations daily |
Wang C. et al., 2023 [52] | CBCT measurements | MARPE | Tooth-borne Hyrax-type expander | Two activations (0.2 mm each) per day until a diastema was observed between the maxillary central incisors, then one activation daily |
Williams B.J.D. et al., 2012 [53] | Clinical evaluation | SARPE (Le Fort I Osteotomy + Midpalatal osteotomy + interdental osteotomy + PMD) | Tooth-borne (n = 118) and bone-borne (n = 2) appliances | 5 to 7-day latency period; two activations (0.25 mm each) per day |
Winsauer H. et al., 2021 [54] | Clinical evaluation; CBCT measurements | MARPE Patients without visible diastema after 4 months underwent SARPE | Bone-borne MICRO-4 expander | MARPE Group: two activations (0.17 mm each) per day for the first week; then six activations and six deactivations daily, plus every third day, the device was additionally activated by 0.17 mm SARPE group: 5-day latency period, then three activations a day (0.5 mm daily) |
Yoon A. et al., 2020 [55] | CBCT measurements; polysomnography; questionnaire | SARPE (Le Fort I + midpalatal osteotomy) | Tooth-bone-borne expander | 5 to 7-day latency period, then one activation (0.25 mm) per day |
First Author, Year [Reference] | Intervention Type | Expansion Failure | Asymmetric Expansion | Dentoalveolar | Surgical | Appliance-Related Issues |
---|---|---|---|---|---|---|
Abate A. et al., 2023 [30] | SARPE | N/R | N/R | N/R | Hematoma (100%) Swelling (100%) | N/R |
Al-Ouf K. et al., 2010 [31] | SARPE | N/R | N/R | N/R | Swelling | N/R |
Basu S. et al., 2023 [32] | MARPE | N/R | N/R | Dental tipping (100% group B > group A); Buccal alveolar bone loss (100% group B > group A) | N/R | N/R |
Choi E.H.A. et al., 2023 [33] | MARPE | 16% | N/R | Dental tipping (100%) | Thickening of the nasal mucous membrane | Screw failure |
Contar C.M.M. et al., 2009 [34] | SARPE | N/R | N/R | Gingival recession (14%) | Pain (14%) Wound dehiscence (14%) | Appliance deformation (7%) |
Daif E.T., 2014 [35] | SARPE | N/R | N/R | Temporary impairment of the pulp sensitivity | Edema Discomfort | N/R |
Drobyshev A. et al., 2021 [36] | SARPE | Insufficient expansion (5%) Relapse (3%) | 4% | Gingival recession (0.7%) Tooth discoloration (0.5%) Alveolar bone loss (0.3%) | Paresthesia (30%) Palatal mucosa inflammation (9%) or necrosis (0.1%) Bleeding (1.1%) Maxillary sinus perforation (0.9%) | Distraction device displacement (9%) Distractor’s loss (3%) |
First Author, Year [Reference] | Intervention Type | Expansion Failure | Asymmetric Expansion | Dentoalveolar | Surgical | Appliance-Related Issues |
Fernández Sanromán J. et al., 2010 [37] | SARPE | N/R | N/R | N/R | Palatal mucosa inflammation (erosions, ulcers) (100%) | N/R |
Goldenberg D.C. et al., 2007 [38] | SARPE | N/R | N/R | Tooth mobility (13%) | Pain (80%) Edema | N/R |
Gunbay T. et al., 2008 [39] | SARPE | N/R | N/R | Tooth necrosis (20%) Buccal displacement of the left alveolar segment (10%) | Pain (30%) Nasal bleeding (20%) Wound dehiscence (20%) Inter-incisal septum fracture (20%) | Loosening of the distractor (20%) |
Karabiber G. et al., 2019 [40] | SARPE | N/R | N/R | Dental tipping (100%) Buccal alveolar bone loss (100%) | N/R | N/R |
Kayalar E. et al., 2015 [41] | SARPE | N/R | N/R | Dental tipping (100%) Buccal alveolar bone loss (50%) Root resorption (100%) | N/R | N/R |
Leyder P. et al., 2018 [42] | SARPE | Insufficient expansion (1.8%) Planned diastema not achieved (3.6%) | 20% | Tooth necrosis (3.6%) Gingival recession (3.6%) | Palatal mucosal slough (3.6%) | Screw deformation (3.6%) Osteosynthesis removal (3.6%) |
Lim H. et al., 2017 [43] | MARPE | 17% | N/R | Dental tipping (100%) Buccal alveolar bone loss (100%) | N/R | N/R |
Pereira M.D. et al., 2017 [44] | SARPE | N/R | 6% | Tooth discoloration (6%) | Pain (4%) Local infection (2%) | N/R |
Ploder O. et al., 2020 [45] | SARPE | N/R | 4% | Periodontal attachment loss (4%) Tooth necrosis (4%) Tooth mobility (2%) Root resorption (4%) | N/R | Screw loosening (9%) Screw fracture (4%) |
Rachmiel A. et al., 2020 [46] | SARPE | N/R | N/R | Gingival recession (6%) Alveolar bone loss (3%) | N/R | N/R |
Sant’Ana L.F.M. et al., 2016 [47] | SARPE | 29% (only in the group without midpalatal osteotomy) | N/R | N/R | Discomfort Pain Edema | N/R |
Seeberger R. et al., 2015 [48] | SARPE | N/R | N/R | Dental tipping (100%) | N/R | N/R |
Sendyk M. et al.,2018 [49] | SARPE | N/R | N/R | Periodontal attachment loss (100%) Gingival recession (100%) | N/R | N/R |
Smeets M. et al., 2019 [50] | SARPE | N/R | 9% | Bone resorption at midline (3%) Gingival recession (2%) Tooth mobility (2%) | Bleeding (4%) Pain (13%) Neurosensory disturbances (27%) Infection (4%) Lacrimation (1%) | Mechanical failure (3%) |
Sygouros A. et al. 2014 [51] | SARPE | N/R | N/R | Dental tipping (100%) Alveolar bending (100%) | N/R | N/R |
Wang C. et al., 2023 [52] | MARPE | N/R | N/R | Dental tipping (100%) Alveolar bone loss (100%) | N/R | N/R |
Williams B.J.D. et al., 2012 [53] | SARPE | Insufficient expansion (7%) | 8% | Tooth discoloration (4%) Gingival recession (10%) Alveolar bone loss (6%) Loss of teeth (2%) | Epistaxis (3%) Hematoma (n = 3) Wound infection (7%) Palatal mucosa necrosis (0.8%) Hypoesthesia (3%) Sinus infection (2%) Subcutaneous emphysema (2%) | N/R |
Winsauer H. et al., 2021 [54] | MARPE | 15% | N/R | N/R | N/R | Screw deformation (15%) |
SARPE | N/R | N/R | N/R | Soft tissue inflammation (3%) | Abutment loss (3%) | |
Yoon A. et al., 2020 [55] | SARPE | N/R | Minor asymmetric expansion | Tooth necrosis (5%) Periodontal attachment loss (3%) | Paresthesia Dehiscence (3%) Palatal fistula (1%) | N/R |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sicca, N.; Benedetti, G.; Nieri, A.; Vitale, S.; Lopponi, G.; Mura, S.; Verdecchia, A.; Spinas, E. Comparison of Side Effects Between Miniscrew-Assisted Rapid Palatal Expansion (MARPE) and Surgically Assisted Rapid Palatal Expansion (SARPE) in Adult Patients: A Scoping Review. Dent. J. 2025, 13, 47. https://doi.org/10.3390/dj13020047
Sicca N, Benedetti G, Nieri A, Vitale S, Lopponi G, Mura S, Verdecchia A, Spinas E. Comparison of Side Effects Between Miniscrew-Assisted Rapid Palatal Expansion (MARPE) and Surgically Assisted Rapid Palatal Expansion (SARPE) in Adult Patients: A Scoping Review. Dentistry Journal. 2025; 13(2):47. https://doi.org/10.3390/dj13020047
Chicago/Turabian StyleSicca, Nicolò, Giulia Benedetti, Agnese Nieri, Sara Vitale, Gaia Lopponi, Silvia Mura, Alessio Verdecchia, and Enrico Spinas. 2025. "Comparison of Side Effects Between Miniscrew-Assisted Rapid Palatal Expansion (MARPE) and Surgically Assisted Rapid Palatal Expansion (SARPE) in Adult Patients: A Scoping Review" Dentistry Journal 13, no. 2: 47. https://doi.org/10.3390/dj13020047
APA StyleSicca, N., Benedetti, G., Nieri, A., Vitale, S., Lopponi, G., Mura, S., Verdecchia, A., & Spinas, E. (2025). Comparison of Side Effects Between Miniscrew-Assisted Rapid Palatal Expansion (MARPE) and Surgically Assisted Rapid Palatal Expansion (SARPE) in Adult Patients: A Scoping Review. Dentistry Journal, 13(2), 47. https://doi.org/10.3390/dj13020047