Primary Evaluation of Shape Recovery of Orthodontic Aligners Fabricated from Shape Memory Polymer (A Typodont Study)
Abstract
:1. Introduction
2. Material and Methods
2.1. Specimens’ Preparation
2.2. Testing of Shape Memory Correction on the Typodont Model
2.3. Analysis of Digital Models
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Availability of Data and Material
References
- Ojima, K.; Kau, C.H. A perspective in accelerated orthodontics with aligner treatment. Semin. Orthod. 2017, 23, 76–82. [Google Scholar] [CrossRef]
- Boyd, R.L. Esthetic Orthodontic Treatment Using the Invisalign Appliance for Moderate to Complex Malocclusions. J. Dent. Educ. 2008, 72, 948–967. [Google Scholar] [CrossRef] [PubMed]
- Phan, X.; Ling, P.H. Clinical limitations of Invisalign. J. Can. Dent. Assoc. 2007, 73, 263–266. [Google Scholar]
- Mehta, F.; Mehta, S. Aligners: The rapidly growing trend in orthodontics around the world. Indian J. Basic Appl. Med. Res. 2014, 3, 402–409. [Google Scholar]
- Thukral, R.; Gupta, A. Invisalign: Invisible Orthodontic Treatment-A Review. J. Adv. Med. Dent. Sci. Res. 2015, 3, S42. [Google Scholar]
- Elkholy, F.; Schmidt, F.; Jäger, R.; Lapatki, B.G. Forces and moments delivered by novel, thinner PET-G aligners during labiopalatal bodily movement of a maxillary central incisor: An in vitro study. Angle Orthod. 2016, 86, 883–890. [Google Scholar] [CrossRef] [Green Version]
- Ercoli, F.; Tepedino, M.; Parziale, V.; Luzi, C. A comparative study of two different clear aligner systems. Prog. Orthod. 2014, 15, 31. [Google Scholar] [CrossRef]
- Momtaz, P. The Effect of Attachment Placement and Location on Rotational Control of Conical Teeth Using Clear Aligner Therapy. UNLV Theses, Dissertations, Professional Papers, and Capstones. 2712. 2016. Available online: https://digitalscholarship.unlv.edu/thesesdissertations/2712/ (accessed on 3 March 2021).
- Zheng, M.; Liu, R.; Ni, Z.; Yu, Z. Efficiency, effectiveness and treatment stability of clear aligners: A systematic review and meta-analysis. Orthod. Craniofacial Res. 2017, 20, 127–133. [Google Scholar] [CrossRef]
- Simon, M.; Keilig, L.; Schwarze, J.; Jung, B.A.; Bourauel, C. Forces and moments generated by removable thermoplastic aligners: Incisor torque, premolar derotation, and molar distalization. Am. J. Orthod. Dentofac. Orthop. 2014, 145, 728–736. [Google Scholar] [CrossRef]
- Simon, M.; Keilig, L.; Schwarze, J.; Jung, B.A.; Bourauel, C. Treatment outcome and efficacy of an aligner technique—Regarding incisor torque, premolar derotation and molar distalization. BMC Oral Health 2014, 14, 68. [Google Scholar] [CrossRef] [Green Version]
- Elkholy, F.; Schmidt, F.; Jäger, R.; Lapatki, B.G. Forces and moments applied during derotation of a maxillary central incisor with thinner aligners: An in-vitro study. Am. J. Orthod. Dentofac. Orthop. 2017, 151, 407–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morton, J.; Derakhshan, M.; Kaza, S.; Li, C. Design of the Invisalign system performance. Semin. Orthod. 2017, 23, 3–11. [Google Scholar] [CrossRef]
- Bruni, A.; Serra, F.G.; Deregibus, A.; Castroflorio, T. Shape-Memory Polymers in Dentistry: Systematic Review and Patent Landscape Report. Materials 2019, 12, 2216. [Google Scholar] [CrossRef] [Green Version]
- Lendlein, A.; Kelch, S. Shape-memory polymers. Angew. Chem. Int. Ed. 2002, 41, 2034–2057. [Google Scholar] [CrossRef]
- Sun, L.; Huang, W.; Ding, Z.; Zhao, Y.; Wang, C.; Purnawali, H.; Tang, C. Stimulus-responsive shape memory materials: A review. Mater. Des. 2012, 33, 577–640. [Google Scholar] [CrossRef]
- Lendlein, A. Progress in actively moving polymers. J. Mater. Chem. 2010, 20, 3332–3334. [Google Scholar] [CrossRef]
- Meng, H.; Li, G. A review of stimuli-responsive shape memory polymer composites. Polymer 2013, 54, 2199–2221. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Ding, Z.; Wang, C.; Wei, J.; Zhao, Y.; Purnawali, H. Shape memory materials. Mater. Today 2010, 13, 54–61. [Google Scholar] [CrossRef]
- Voit, W.; Ware, T.; Dasari, R.R.; Smith, P.; Danz, L.; Simon, D.; Barlow, S.; Marder, S.R.; Gall, K. High-Strain Shape-Memory Polymers. Adv. Funct. Mater. 2009, 20, 162–171. [Google Scholar] [CrossRef]
- Huang, W.M.; Yang, B.; Fu, Y.Q. Polyurethane Shape Memory Polymers; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Baudis, S.; Behl, M.; Lendlein, A. Smart Polymers for Biomedical Applications. Macromol. Chem. Phys. 2014, 215, 2399–2402. [Google Scholar] [CrossRef]
- Jung, Y.C.; Cho, J.W. Application of shape memory polyurethane in orthodontic. J. Mater. Sci. Mater. Med. 2010, 21, 2881–2886. [Google Scholar] [CrossRef]
- Silverman, E.; Cohen, M. Orthodontic Appliance. U.S. Patent US3461559A, 19 August 1969. [Google Scholar]
- Choi, Y.; Kim, K.-T. Orthodontic Appliance by Using a Shape Memory Polymer. U.S. Patent US20050003318A1, 1 June 2005. [Google Scholar]
- Lai, M.-L.; Rule, J.D. Orthodontic Appliance Having Continuous Shape Memory. US 20200315747A1, 8 October 2020. [Google Scholar]
- Xie, T. Tunable polymer multi-shape memory effect. Nat. Cell Biol. 2010, 464, 267–270. [Google Scholar] [CrossRef]
- Caruso, S.; Nota, A.; Ehsani, S.; Maddalone, E.; Ojima, K.; Tecco, S. Impact of molar teeth distalization with clear aligners on occlusal vertical dimension: A retrospective study. BMC Oral Health 2019, 19, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Caruso, S.; Darvizeh, A.; Zema, S.; Gatto, R.; Nota, A. Management of a Facilitated Aesthetic Orthodontic Treatment with Clear Aligners and Minimally Invasive Corticotomy. Dent. J. 2020, 8, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, K.; Ojima, K.; Dan, C.; Upadhyay, M.; AlShehri, A.; Kuo, C.-L.; Mu, J.; Uribe, F.; Nanda, R. Evaluation of open bite closure using clear aligners: A retrospective study. Prog. Orthod. 2020, 21, 1–9. [Google Scholar] [CrossRef]
- Emara, A.; Sharma, N.; Halbeisen, F.S.; Msallem, B.; Thieringer, F.M. Comparative Evaluation of Digitization of Diagnostic Dental Cast (Plaster) Models Using Different Scanning Technologies. Dent. J. 2020, 8, 79. [Google Scholar] [CrossRef]
- Sfondrini, M.F.; Gandini, P.; Malfatto, M.; Di Corato, F.; Trovati, F.; Scribante, A. Computerized Casts for Orthodontic Purpose Using Powder-Free Intraoral Scanners: Accuracy, Execution Time, and Patient Feedback. BioMed Res. Int. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Zhang, X.; Hou, J.; Xu, M.; Luo, X.; Ma, D.; Kim, B.K. Studies on thermally stimulated shape memory effect of segmented polyurethanes. J. Appl. Polym. Sci. 1997, 64, 1511–1516. [Google Scholar] [CrossRef]
- Behl, M.; Lendlein, A. Shape-memory polymers. Mater. Today 2007, 10, 20–28. [Google Scholar] [CrossRef]
- Liu, C.; Qin, H.; Mather, P.T. Review of progress in shape-memory polymers. J. Mater. Chem. 2007, 17, 1543–1558. [Google Scholar] [CrossRef]
- Nakasima, A.; Hu, J.R.; Ichinose, M.; Shimada, H. Potential application of shape memory plastic as elastic material in clinical orthodontics. Eur. J. Orthod. 1991, 13, 179–186. [Google Scholar] [CrossRef]
- Jeong, H.M.; Lee, S.Y.; Kim, B.K. Shape memory polyurethane containing amorphous reversible phase. J. Mater. Sci. 2000, 35, 1579–1583. [Google Scholar] [CrossRef]
- Yen, F.-S.; Lin, L.-L.; Hong, J.-L. Hydrogen-bond interactions between urethane- urethane and urethane- ester linkages in a liquid crystalline poly (ester- urethane). Macromolecules 1999, 32, 3068–3079. [Google Scholar] [CrossRef]
- McKiernan, R.L.; Heintz, A.M.; Hsu, S.L.; Atkins, E.D.T.; Penelle, J.; Gido, S.P. Influence of Hydrogen Bonding on the Crystallization Behavior of Semicrystalline Polyurethanes. Macromolecules 2002, 35, 6970–6974. [Google Scholar] [CrossRef]
- Bourauel, C.; Freudenreich, D.; Vollmer, D.; Kobe, D.; Drescher, D. Simulation of orthodontic tooth movements. J. Orofac. Orthop. 1999, 60, 136–151. [Google Scholar] [CrossRef]
Type | Name | Description | Use |
---|---|---|---|
Models | Model T | The typodont. | Scanned with fully aligned teeth (Scan 0, which was used for software manipulation). The movable central incisor tooth was used for showing the amount of movement achieved by the shape memory recovery of the aligner. |
Model 0 | The 3D printed resin model with full mal-alignment (1.9 mm) | Used for fabrication of a guiding splint used for repositioning of the typodont movable central incisor tooth to the zero position. | |
Model 1 | The 3D printed resin model with partial mal-alignment (1.2 mm), i.e., partial correction (0.7 mm) | Used for reforming of the aligners. | |
Model 2 | The 3D printed resin model with full correction (1.9 mm) | Used for thermoforming of the aligners. | |
Scans | Scan 0 | A scan of the fully aligned typodont model. | Used for software manipulation and production of models 0, 1, and 2. |
Scan 1 | A scan of the typodont model after using the guiding splint to move the central incisor tooth to the fully mal-aligned position. | Ideally should correspond to Model 0 shape. | |
Scan 2 | A scan of the typodont model after the movement of the central incisor tooth by using the reformed aligner. | Used for superimposition of the scans and measurement of amount of the tooth movement. | |
Scan 3 | A scan of the typodont model after the movement of the central incisor tooth by using the activated aligner received the first activation cycle. | Used for superimposition of the scans and measurement of amount of the tooth movement. | |
Scan 4 | A scan of the typodont model after the movement of the central incisor tooth by using the activated aligner received the second activation cycle. | Used for superimposition of the scans and measurement of amount of the tooth movement. |
Scan 1 vs. 2 | Scan 1 vs. 3 | Scan 1 vs. 4 | ||||
---|---|---|---|---|---|---|
TC | AC | TC | AC | TC | AC | |
Planned movement | 0.70 | 0.70 | 1.50 | 0.80 | 1.90 | 0.40 |
Aligner 1 | 0.94 | 0.94 | 1.65 | 0.71 | 1.76 | 0.11 |
Aligner 2 | 0.98 | 0.98 | 1.64 | 0.66 | 1.70 | 0.06 |
Aligner 3 | 0.96 | 0.96 | 1.61 | 0.65 | 1.72 | 0.11 |
Aligner 4 | 0.95 | 0.95 | 1.60 | 0.65 | 1.70 | 0.10 |
Aligner 5 | 0.87 | 0.87 | 1.65 | 0.78 | 1.74 | 0.09 |
Aligner 6 | 0.97 | 0.97 | 1.52 | 0.55 | 1.83 | 0.31 |
Aligner 7 | 0.90 | 0.90 | 1.55 | 0.65 | 1.84 | 0.29 |
Mean (mm) | 0.94 | 0.94 | 1.60 | 0.66 | 1.76 | 0.15 |
SD | 0.04 | 0.04 | 0.07 | 0.07 | 0.10 | 0.10 |
Correction % (divided by 1.9 mm total movement) | 49.47% | 49.47% | 84.21% | 34.74% | 92.63% | 7.59% |
Recovery | Added Movement | % Recovery of Shape Memory Component Per Step (Divided by Total 1.2 mm) | % Recovery of Activated Shape Memory Component Per Step (Divided by Total 0.96 mm) |
---|---|---|---|
Spontaneous | 0.24 mm | 20% | |
First activation | 0.66 mm | 55% | 68.75% |
Second activation | 0.15 mm | 12.5% | 15.63% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elshazly, T.M.; Keilig, L.; Alkabani, Y.; Ghoneima, A.; Abuzayda, M.; Talaat, S.; Bourauel, C.P. Primary Evaluation of Shape Recovery of Orthodontic Aligners Fabricated from Shape Memory Polymer (A Typodont Study). Dent. J. 2021, 9, 31. https://doi.org/10.3390/dj9030031
Elshazly TM, Keilig L, Alkabani Y, Ghoneima A, Abuzayda M, Talaat S, Bourauel CP. Primary Evaluation of Shape Recovery of Orthodontic Aligners Fabricated from Shape Memory Polymer (A Typodont Study). Dentistry Journal. 2021; 9(3):31. https://doi.org/10.3390/dj9030031
Chicago/Turabian StyleElshazly, Tarek M., Ludger Keilig, Yasmine Alkabani, Ahmed Ghoneima, Moosa Abuzayda, Sameh Talaat, and Christoph P. Bourauel. 2021. "Primary Evaluation of Shape Recovery of Orthodontic Aligners Fabricated from Shape Memory Polymer (A Typodont Study)" Dentistry Journal 9, no. 3: 31. https://doi.org/10.3390/dj9030031
APA StyleElshazly, T. M., Keilig, L., Alkabani, Y., Ghoneima, A., Abuzayda, M., Talaat, S., & Bourauel, C. P. (2021). Primary Evaluation of Shape Recovery of Orthodontic Aligners Fabricated from Shape Memory Polymer (A Typodont Study). Dentistry Journal, 9(3), 31. https://doi.org/10.3390/dj9030031