Postharvest Reduction of Salmonella enterica on Tomatoes Using a Pelargonic Acid Emulsion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Cultures
2.2. Tomato Inoculation
2.3. Emulsion Preparation
2.4. Preparation of Wash Systems
2.5. Simulated Postharvest Treatment of Inoculated Samples
2.6. Cross-Contamination to Uninoculated Samples
2.7. Simulated Storage and Examination
2.8. Texture Analyses
2.9. Statistical Analysis
3. Results
3.1. Reduction of Salmonella on Inoculated Tomatoes Over Time
3.2. Cross-Contamination on SUS Tomatoes
3.3. Effect of Sanitizers on Fruit Texture Over Time
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Centers for Disease Control and Prevention (CDC). Estimates of Foodborne Illness in the United States. 2011. Available online: https://www.cdc.gov/foodborneburden/index.html (accessed on 8 December 2020).
- U.S. Food & Drug Administration (FDA). Food Safety Modernization Act (FSMA). 2015. Available online: http://www.fda.gov/Food/GuidanceRegulation/FSMA/ (accessed on 8 December 2020).
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States—Major pathogens. Emerg. Infect. Dis. 2011, 17, 7. [Google Scholar] [CrossRef]
- Callejón, R.M.; Rodriguez-Naranjo, M.I.; Ubeda, C.; Hornedo-Ortega, R.; Garcia-Parrilla, M.C.; Troncoso, A.M. Reported foodborne outbreaks due to fresh produce in the United States and European Union: Trends and causes. Foodborne Pathog. Dis. 2015, 12, 32–38. [Google Scholar] [CrossRef]
- Guo, X.; Chen, J.; Brackett, R.E.; Beuchat, L.R. Survival of Salmonellae on and in tomato plants from the time of inoculation at flowering and early stages of fruit development through fruit ripening. Appl. Environ. Microbiol. 2001, 67, 4760–4764. [Google Scholar] [CrossRef] [Green Version]
- Ryser, E.T.; Hao, J.; Yan, Z.Y. Internalization of pathogens in produce. In Microbial Safety of Fresh Produce; Fan, X., Niemira, B.A., Doona, C.J., Feeherry, F.E., Gravani, R.B., Eds.; Blackwell Publishing and the Institute of Food Technologists: Ames, IA, USA, 2009; pp. 55–80. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Outbreaks of Salmonella infections associated with eating roma tomatoes—United States and Canada, 2004. Morb. Mortal. Wkly. Rep. 2005, 54, 325–328. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5413a1.htm (accessed on 8 December 2020).
- Waller, P. A decade of Salmonella tomato outbreaks. In Foodborne Illness Outbreaks; Clark, M., Ed.; Food Poison Journal, 2015; Available online: https://www.foodpoisonjournal.com/foodborne-illness-outbreaks/a-decade-of-Salmonella-tomato-outbreaks/ (accessed on 8 December 2020).
- U.S. Food & Drug Administration (FDA). Standards for the growing, harvesting, packing, and holding of produce for human consumption. Fed. Regist. 2015, 80, 74353–74642. Available online: https://www.federalregister.gov/documents/2015/11/27/2015-28159/standards-for-the-growing-harvesting-packing-and-holding-of-produce-for-human-consumption (accessed on 8 December 2020).
- Gombas, D.; Beckman, E.; Brown, R.; Carey, B.; Colace, F.; Garren, D.; Gurris, J.; Kempf, B.; Procacci, J.; Ram, W.; et al. Commodity Specific Food Safety Guidelines for the Fresh Tomato Supply Chain; United Fresh Produce Association: Washington DC, USA, 2008; pp. 8–53. [Google Scholar]
- United Fresh Produce Association. Commodity Specific Food Safety Guidelines for the Fresh Tomato Supply Chain, 3rd ed.; United Fresh Produce Association: Washington, DC, USA, 2018; Available online: https://www2.unitedfresh.org/forms/store/ProductFormPublic/commodity-specific-food-safety-guidelines-for-the-fresh-tomato-supply-chain-3rd (accessed on 8 December 2020).
- Herdt, J.; Feng, H. Aqueous antimicrobial treatments to improve fresh and fresh-cut produce safety. In Microbial Safety of Fresh Produce; Fan, X., Niemira, B.A., Doona, C.J., Feeherry, F.E., Gravani, R.B., Eds.; Blackwell Publishing and the Institute of Food Technologists: Ames, IA, USA, 2009; pp. 169–190. [Google Scholar]
- Hoorfar, J. Global Safety of Fresh Produce: A Handbook of Best Practice, Innovative Commercial Solutions and Case Studies; Woodhead Publishing: Oxford, UK; Philadelphia, PA, USA, 2014. [Google Scholar]
- Dunn, L.L.; Harness, M.L.; Smith, D.M.; Gorman, S.J.; Zhong, Q.; Davidson, P.M.; Critzer, F.J. Essential oil emulsions as postharvest sanitizers to mitigate Salmonella cross-contamination on peppers. J. Food Prot. 2019, 82, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.D.; Ravishankar, S.; Juneja, V.K. Interventions for fresh produce. In Microbial Control and Food Preservation; Springer: New York, NY, USA, 2017; pp. 199–223. [Google Scholar]
- New Jersey Department of Health and Senior Services. Hazardous Substance Fact Sheet: Peroxyacetic Acid. 2004. Available online: https://www.nj.gov/health/eoh/rtkweb/documents/fs/1482.pdf (accessed on 8 December 2020).
- Rodgers, S.L.; Cash, J.N.; Siddiq, M.; Ryser, E.T. A comparison of different chemical sanitizers for inactivating Escherichia coli O157: H7 and Listeria monocytogenes in solution and on apples, lettuce, strawberries, and cantaloupe. J. Food Prot. 2004, 67, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Beuchat, L.; Nail, B.; Adler, B.; Clavero, M. Efficacy of spray application of chlorinated water in killing pathogenic bacteria on raw apples, tomatoes, and lettuce. J. Food Prot. 1998, 61, 1305–1311. [Google Scholar] [CrossRef]
- Neo, S.Y.; Lim, P.Y.; Phua, L.K.; Khoo, G.H.; Kim, S.J.; Lee, S.C.; Yuk, H.G. Efficacy of chlorine and peroxyacetic acid on reduction of natural microflora, Escherichia coli O157: H7, Listeria monocyotgenes and Salmonella spp. on mung bean sprouts. Food Microbiol. 2013, 36, 475–480. [Google Scholar] [CrossRef]
- Takeuchi, K.; Frank, J.F. Penetration of Escherichia coli O157: H7 into lettuce tissues as affected by inoculum size and temperature and the effect of chlorine treatment on cell viability. J. Food Prot. 2000, 63, 434–440. [Google Scholar] [CrossRef]
- Kumar, G.D.; Macarisin, D.; Micallef, S.A. Salmonella enterica filamentation induced by pelargonic acid is a transient morphotype. Appl. Environ. Microbiol. 2019, 85, e02191-18. [Google Scholar]
- Kumar, G.D.; Micallef, S.A. Susceptibility of Salmonella enterica isolates from tomato farm environments to fatty acids naturally found on tomato fruit. Foodborne Pathog. Dis. 2017, 14, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.D.; Solval, K.M.; Mishra, A.; Macarisin, D. Antimicrobial efficacy of pelargonic acid micelles against Salmonella varies by surfactant, serotype and stress response. Sci. Rep. 2020, 10, 1–13. [Google Scholar]
- Kegley, S.; Conlisk, E.; Moses, M. Marin Municipal Water District Vegetation Management Plan Herbicide Risk Assessment; Pesticide Research Institute: Berkeley, CA, USA, 2010; Available online: https://www.marinwater.org/DocumentCenter/View/259/Herbicide-Risk-Assessment-Chapter-1-Summary-January-10-2010 (accessed on 8 December 2020).
- Pohanish, R.P. Sittig’s Handbook of Pesticides and Agricultural Chemicals, 2nd ed.; William Andrew: Norwich, NY, USA, 2014. [Google Scholar]
- Breeuwer, P.; De Reu, J.C.; Drocourt, J.; Rombouts, F.M.; Abee, T. Nonanoic Acid, a fungal self-inhibitor, prevents germination of Rhizopus oligosporus sporangiospores by dissipation of the pH gradient. Appl. Environ. Microbiol. 1997, 63, 178–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chadeganipour, M.; Haims, A. Antifungal activities of pelargonic and capric acid on Microsporum gypseum. Mycoses 2001, 44, 109–112. [Google Scholar] [CrossRef]
- Pimentel, J.; Richardson, K. Antimicrobial Formulations with Pelargonic Acid; Anitox Corporation: Lawrenceville, GA, USA, 2015. [Google Scholar]
- U.S. Environmental Protection Agency (EPA). Pelargonic Acid (217500) Fact Sheet. 2000. Available online: https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-217500_01-Apr-00.pdf (accessed on 8 December 2020).
- U.S. Environmental Protection Agency (EPA). Pelargonic acid (nonanoic acid); Exemption from the requirement of a pesticide tolerance. Fed. Regist. 2003, 68, 7931–7935. Available online: https://www.federalregister.gov/documents/2003/02/19/03-3842/pelargonic-acid-nonanoic-acid-exemption-from-the-requirement-of-a-pesticide-tolerance (accessed on 8 December 2020).
- Cornell Cooperative Extension. Storage Guidelines for Fruits & Vegetables. 2001. Available online: http://chemung.cce.cornell.edu/resources/storage-guidelines-for-fruits-vegetables (accessed on 8 December 2020).
- Suslow, T.V.; Cantwell, M. Tomato: Recommendations for Maintaining Postharvest Quality. Produce Facts; Postharvest Technology Research & Information Center: Davis, CA, USA, 2009. [Google Scholar]
- Pinheiro, J.; Alegria, C.; Abreu, M.; Gonçalves, E.M.; Silva, C.L.M. Use of UV-C postharvest treatment for extending fresh whole tomato (Solanum lycopersicum, cv. Zinac) shelf-life. J. Food Sci. Technol. 2015, 52, 5066–5074. [Google Scholar] [CrossRef] [Green Version]
- Arazuri, S.; Jarén, C.; Arana, J.I.; Pérez de Ciriza, J.J. Influence of mechanical harvest on the physical properties of processing tomato (Lycopersicon esculentum Mill.). J. Food Eng. 2007, 80, 190–198. [Google Scholar] [CrossRef]
- Luo, Y.; Nou, X.; Millner, P.; Zhou, B.; Shen, C.; Yang, Y.; Wu, Y.; Wang, Q.; Feng, H.; Shelton, D. A pilot plant scale evaluation of a new process aid for enhancing chlorine efficacy against pathogen survival and cross-contamination during produce wash. Int. J. Food Microbiol. 2012, 158, 133–139. [Google Scholar] [CrossRef]
- Penn State University Extension. Keeping Produce Fresh: Postharvest Handling for Market Growers and Farm-to-Institution Sales. 2017. Available online: https://extension.psu.edu/keeping-produce-fresh-best-practices-for-producers (accessed on 8 December 2020).
- Zhuang, R.; Beuchat, L.; Angulo, F. Fate of Salmonella montevideo on and in raw tomatoes as affected by temperature and treatment with chlorine. Appl. Environ. Microbiol. 1995, 61, 2127–2131. [Google Scholar] [CrossRef] [Green Version]
- Becker, B.R.; Fricke, B.A. Transpiration and Respiration of Fruits and Vegetables. Science et Technique du Froid. 1996. Available online: http://b.web.umkc.edu/beckerb/publications/chapters/trans_resp.pdf (accessed on 8 December 2020).
- Dubois-Brissonnet, F.; Naïtali, M.; Mafu, A.A.; Briandet, R. Induction of fatty acid composition modifications and tolerance to biocides in Salmonella enterica serovar Typhimurium by plant-derived terpenes. Appl. Environ. Microbiol. 2011, 77, 906–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naïtali, M.; Dubois-Brissonnet, F.; Cuvelier, G.; Bellon-Fontaine, M.-N. Effects of pH and oil-in-water emulsions on growth and physicochemical cell surface properties of Listeria monocytogenes: Impact on tolerance to the bactericidal activity of disinfectants. Int. J. Food Microbiol. 2009, 130, 101–107. [Google Scholar] [CrossRef] [PubMed]
- López-Gálvez, F.; Truchado, P.; Tudela, J.A.; Gil, M.I.; Allende, A. Critical points affecting the microbiological safety of bell peppers washed with peroxyacetic acid in a commercial packinghouse. Food Microbiol. 2020, 88, 103409. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Farber, J. The effects of various disinfectants against Listeria monocytogenes on fresh-cut vegetables. Food Microbiol. 1996, 13, 311–321. [Google Scholar] [CrossRef]
- Ricke, S. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult. Sci. 2003, 82, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Brilhante São José, J.F.; Dantas Vanetti, M.C. Effect of ultrasound and commercial sanitizers in removing natural contaminants and Salmonella enterica Typhimurium on cherry tomatoes. Food Control 2012, 24, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Stepanović, S.; Ćirković, I.; Ranin, L.; Svabić-Vlahović, M. Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Lett. Appl. Microbiol. 2004, 38, 428–432. [Google Scholar] [CrossRef]
- Doyle, M.P.; Buchanan, R.L. Food Microbiology: Fundamentals and Frontiers, 4th ed.; American Society for Microbiology Press: Washington, DC, USA, 2013. [Google Scholar]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 8158, Nonanoic Acid. 2020. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Nonanoic-acid (accessed on 8 December 2020).
- Davidson, G.R.; Kaminski, C.N.; Ryser, E.T. Impact of organic load on Escherichia coli O157:H7 survival during pilot-scale processing of iceberg lettuce with acidified sodium hypochlorite. J. Food Prot. 2014, 77, 1669–1681. [Google Scholar] [CrossRef]
- Shen, C.; Luo, Y.; Nou, X.; Wang, Q.; Millner, P. Dynamic effects of free chlorine concentration, organic load, and exposure time on the inactivation of Salmonella, Escherichia coli O157: H7, and non-O157 Shiga toxin–producing Ecoli. J. Food Prot. 2013, 76, 386–393. [Google Scholar] [CrossRef]
- Davidson, G.R.; Kaminski-Davidson, C.N.; Ryser, E.T. Persistence of Escherichia coli O157: H7 during pilot-scale processing of iceberg lettuce using flume water containing peroxyacetic acid-based sanitizers and various organic loads. Int. J. Food Microbiol. 2017, 248, 22–31. [Google Scholar] [CrossRef]
- Fan, X.; Gurtler, J.B.; Sokorai, K.J. Tomato type and post-treatment water rinse affect efficacy of acid washes against Salmonella enterica inoculated on stem scars of tomatoes and product quality. Int. J. Food Microbiol. 2018, 280, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Vandekinderen, I.; Van Camp, J.; Devlieghere, F.; Veramme, K.; Denon, Q.; Ragaert, P.; De Meulenaer, B. Effect of decontamination agents on the microbial population, sensorial quality, and nutrient content of grated carrots (Daucus carota L.). J. Agric. Food Chem. 2008, 56, 5723–5731. [Google Scholar] [CrossRef] [PubMed]
- Kondo, N.; Murata, M.; Isshiki, K. Efficiency of sodium hypochlorite, fumaric acid, and mild heat in killing native microflora and Escherichia coli O157: H7, Salmonella Typhimurium DT104, and Staphylococcus aureus attached to fresh-cut lettuce. J. Food Prot. 2006, 69, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Coleman, R.; Penner, D. Desiccant activity of short chain fatty acids. Weed Technol. 2006, 20, 410–415. [Google Scholar] [CrossRef]
- Aboagye-Nuamah, F.; Hussein, Y.; Ackun, A. Biochemical properties of six varieties of tomato from Brong Ahafo region of Ghana as influenced by the ripening condition and drying. Afr. J. Food 2018, 18, 13095–13109. [Google Scholar] [CrossRef]
- Allende, A.; Desmet, M.; Vanstreels, E.; Verlinden, B.E.; Nicolaï, B.M. Micromechanical and geometrical properties of tomato skin related to differences in puncture injury susceptibility. Postharvest Biol. Technol. 2004, 34, 131–141. [Google Scholar] [CrossRef]
- Han, S.; Micallef, S.A. Environmental metabolomics of the tomato plant surface provides insights on Salmonella enterica colonization. Appl. Environ. Microbiol. 2016, 82, 3131–3142. [Google Scholar] [CrossRef] [Green Version]
- Pobiega, K.; Przybył, J.L.; Żubernik, J.; Gniewosz, M. Prolonging the shelf life of cherry tomatoes by pullulan coating with ethanol extract of propolis during refrigerated storage. Food Bioprocess Technol. 2020, 13, 1447–1461. [Google Scholar] [CrossRef]
- Furia, T.E. CRC Handbook of Food Additives; CRC Press: Boca Raton, FL, USA, 1973; Volume 1. [Google Scholar]
- Human Metabolome Database. Metabocard for Pelargonic Acid (HMDB0000847). 2005. Available online: https://hmdb.ca/metabolites/HMDB0000847 (accessed on 8 December 2020).
Treatment | Mean pH |
---|---|
PAA | 3.71 ± 0.05 |
PAA + OL | 3.85 ± 0.06 |
30 mM PEL | 3.91 ± 0.04 |
30 mM PEL + OL | 4.06 ± 0.04 |
50 mM PEL | 3.89 ± 0.04 |
50mM PEL + OL | 4.06 ± 0.04 |
Chlorine | 7.00 ± 0.02 1 |
Chlorine + OL | 7.00 ± 0.02 1 |
Storage Time (d) | ||||||
---|---|---|---|---|---|---|
0 | 1 | 7 | ||||
Log CFU/g | ||||||
Sanitizer | ||||||
Chlorine | 7.03 ± 0.06 | a 1A 2 | 5.38 ± 0.30 | aB | 5.28 ± 0.26 | aB |
PAA | 6.73 ± 0.10 | aA | 3.23 ± 0.51 | bB | 2.92 ± 0.50 | bB |
30 mM PEL | 5.76 ± 0.08 | bA | 1.86 ± 0.21 | cB | 1.00 ± 0.00 | cC |
50 mM PEL | 5.37 ± 0.17 | bA | 1.16 ± 0.08 | cB | 1.15 ± 0.10 | cB |
No treatment | ||||||
Water | 7.35 ± 0.05 | 7.59 ± 0.06 | 7.57 ± 0.11 | |||
NR | 7.53 ± 0.11 | 7.96 ± 0.14 | 7.73 ± 0.22 | |||
Contrasts | ||||||
Sanitizer vs. Water | ||||||
Chlorine × Water | ns | ** | ** | |||
PAA × Water | ns | *** | *** | |||
30 mM PEL × Water | ** | *** | *** | |||
50 mM PEL × Water | ** | *** | *** | |||
Sanitizer vs. NR | ||||||
Chlorine × NR | ns | ** | ** | |||
PAA × NR | ns | *** | *** | |||
30 mM PEL × NR | ** | *** | *** | |||
50 mM PEL × NR | ** | *** | *** | |||
No treatment | ||||||
Water × NR | ns | ns | ns |
Treatments | Storage Time (d) | |||||
---|---|---|---|---|---|---|
0 | 1 | 7 | ||||
Force (N) | ||||||
Chlorine | 9.04 ± 0.55 | ab 1A 2 | 9.00 ± 0.45 | aA | 8.68 ± 0.69 | aA |
PAA | 8.81 ± 0.66 | abA | 9.85 ± 0.66 | aA | 8.41 ± 0.45 | aA |
30 mM PEL | 8.51 ± 0.83 | abA | 4.68 ± 0.19 | bB | 3.94 ± 0.15 | bB |
50 mM PEL | 7.23 ± 0.29 | bA | 4.61 ± 0.34 | bB | 3.51 ± 0.21 | bB |
Water | 9.02 ± 0.48 | abA | 9.93 ± 0.57 | aA | 9.21 ± 0.40 | aA |
NR | 9.82 ± 0.72 | aA | 9.80 ± 0.49 | aA | 8.68 ± 0.59 | aA |
Treatments | Storage Time (d) | |||||
---|---|---|---|---|---|---|
0 | 1 | 7 | ||||
Force (N) | ||||||
Chlorine | 15.47 ± 0.84 | a 1A 2 | 16.24 ± 1.30 | aA | 18.80 ± 0.78 | aA |
PAA | 16.87 ± 1.30 | aB | 15.29 ± 0.72 | aB | 19.46 ± 1.58 | aA |
30 mM PEL | 17.27 ± 1.06 | aA | 7.01 ± 0.29 | bB | 8.60 ± 0.49 | bB |
50 mM PEL | 15.30 ± 1.69 | aA | 7.17 ± 0.54 | bB | 6.14 ± 0.33 | bB |
Water | 16.17 ± 0.63 | aB | 16.45 ± 1.16 | aB | 20.54 ± 1.50 | aA |
NR | 15.82 ± 1.09 | aB | 16.47 ± 0.63 | aB | 19.99 ± 1.09 | aA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
White, E.; Kumar, G.D.; da Silva, A.L.B.R.; Kerr, W.L.; Cimowsky, S.; Widmer, J.A.; Dunn, L.L. Postharvest Reduction of Salmonella enterica on Tomatoes Using a Pelargonic Acid Emulsion. Foods 2021, 10, 178. https://doi.org/10.3390/foods10010178
White E, Kumar GD, da Silva ALBR, Kerr WL, Cimowsky S, Widmer JA, Dunn LL. Postharvest Reduction of Salmonella enterica on Tomatoes Using a Pelargonic Acid Emulsion. Foods. 2021; 10(1):178. https://doi.org/10.3390/foods10010178
Chicago/Turabian StyleWhite, Elizabeth, Govindaraj Dev Kumar, Andre Luiz Biscaia Ribeiro da Silva, William L. Kerr, Samuel Cimowsky, J. Andrew Widmer, and Laurel L. Dunn. 2021. "Postharvest Reduction of Salmonella enterica on Tomatoes Using a Pelargonic Acid Emulsion" Foods 10, no. 1: 178. https://doi.org/10.3390/foods10010178
APA StyleWhite, E., Kumar, G. D., da Silva, A. L. B. R., Kerr, W. L., Cimowsky, S., Widmer, J. A., & Dunn, L. L. (2021). Postharvest Reduction of Salmonella enterica on Tomatoes Using a Pelargonic Acid Emulsion. Foods, 10(1), 178. https://doi.org/10.3390/foods10010178