Optimization of Protein Extraction of Oenological Interest from Grape Seed Meal Using Design of Experiments and Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grape Seeds Meal
2.2. Proximate Composition of Defatted Grape Seeds Meal
2.3. Optimal pH of Protein Precipitation
2.4. Protein Extraction and Optimization of Extraction Process: Response Surface Methodology (RSM)
2.5. Determination of Amino Acid Content of OGSPC
2.6. Phenolic Compounds Extraction of Grape Seed Meal
2.7. Demucilaging Temperature of Grape Seed Meal
3. Results and Discussion
3.1. Proximate Composition of Grape Seed Meal
3.2. Optimal pH of Protein Precipitation
3.3. Optimization of Extraction Conditions by Response Surface Methodology (RSM)
3.3.1. Response Surface Modeling
3.3.2. Optimization Based on the Protein Content
3.4. Amino Acid Composition of OGSPC
3.5. Polyphenol Removal and Demucilaging Temperature: Effect on the Purity of Protein Isolates
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Christ, K.L.; Burritt, R.L. Critical environmental concerns in wine production: An integrative review. J. Clean. Prod. 2013, 53, 232–242. [Google Scholar] [CrossRef]
- Ruggieri, L.; Cadena, E.; Martínez-Blanco, J.; Gasol, C.M.; Rieradevall, J.; Gabarrell, X.; Gea, T.; Sort, X.; Sánchez, A. Recovery of organic wastes in the Spanish wine industry. Technical, economic and environmental analyses of the composting process. J. Clean. Prod. 2009, 17, 830–838. [Google Scholar] [CrossRef] [Green Version]
- Laufenberg, G.; Kunz, B.; Nystroem, M. Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementation. Bioresour. Technol. 2003, 87, 167–198. [Google Scholar] [CrossRef]
- Bustamante, M.A.; Moral, R.; Paredes, C.; Perez-Espinosa, A.; Moreno-Caselles, J.; Perez-Murcia, M.D. Agrochemical characterisation of the solid by-products and residues from the winery and distillery industry. Waste Manag. 2008, 28, 372–380. [Google Scholar] [CrossRef]
- Ping, L.; Brosse, N.; Sannigrahi, P.; Ragauskas, A. Evaluation of grape stalks as a bioresource. Ind. Crop. Prod. 2011, 33, 200–204. [Google Scholar] [CrossRef]
- Garcia-Lomillo, J.; Gonzalez-SanJose, M.L. Applications of Wine Pomace in the Food Industry: Approaches and Functions. Compr. Rev. Food Sci. Food Saf. 2017, 16, 3–22. [Google Scholar] [CrossRef]
- Busse-Valverde, N.; Gómez-Plaza, E.; López-Roca, J.M.; Gil-Muñoz, R.; Fernández-Fernández, J.I.; Bautista-Ortín, A.B. Effect of Different Enological Practices on Skin and Seed Proanthocyanidins in Three Varietal Wines. J. Agric. Food Chem. 2010, 58, 11333–11339. [Google Scholar] [CrossRef]
- Grimplet, J.; Wheatley, M.D.; Jouira, H.B.; Deluc, L.G.; Cramer, G.R.; Cushman, J.C. Proteomic and selected metabolite analysis of grape berry tissues under well-watered and water-deficit stress conditions. Proteomics 2009, 9, 2503–2528. [Google Scholar] [CrossRef] [Green Version]
- Tian, B.; Harrison, R.; Morton, J.; Deb-Choudhury, S. Proteomic Analysis of Sauvignon Blanc Grape Skin, Pulp and Seed and Relative Quantification of Pathogenesis-Related Proteins. PLoS ONE 2015, 10, e0130132. [Google Scholar] [CrossRef] [Green Version]
- Giribaldi, M.; Giuffrida, M.G. Heard it through the grapevine: Proteomic perspective on grape and wine. J. Proteom. 2010, 73, 1647–1655. [Google Scholar] [CrossRef]
- Robinson, S.P.; Davies, C. Molecular biology of grape berry ripening. Aust. J. Grape Wine Res. 2000, 6, 175–188. [Google Scholar] [CrossRef]
- Salazar, F.N.; López, F.; Chiffelle, I.; López, R.; Peña-Neira, A. Evaluation of pathogenesis-related protein content and protein instability of seven white grape (Vitis vinifera L.) clones from Casablanca Valley, Chile. Eur. Food Res. Technol. 2012, 234, 509–515. [Google Scholar] [CrossRef]
- Gazzola, D.; Vincenzi, S.; Gastaldon, L.; Tolin, S.; Pasini, G.; Curioni, A. The proteins of the grape (Vitis vinifera L.) seed endosperm: Fractionation and identification of the major components. Food Chem. 2014, 155, 132–139. [Google Scholar] [CrossRef]
- Gazzola, D.; Vincenzi, S.; Marangon, M.; Pasini, G.; Curioni, A. Grape seed extract: The first protein-based fining agent endogenous to grapes. Aust. J. Grape Wine Res. 2017, 23, 215–225. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, T.; Liu, W.; Zhao, G. Physicochemical characteristics and functional properties of grape (Vitis vinifera L.) seeds protein. Int. J. Food Sci. Technol. 2011, 46, 635–641. [Google Scholar] [CrossRef]
- Iturmendi, N.; Durán, D.; Marín-Arroyo, M.R. Fining of red wines with gluten or yeast extract protein. Int. J. Food Sci. Technol. 2010, 45, 200–207. [Google Scholar] [CrossRef]
- Marchal, R.; Marchal-Delahaut, L.; Lallement, A.; Jeandet, P. Wheat Gluten Used as a Clarifying Agent of Red Wines. J. Agric Food Chem. 2002, 50, 177–184. [Google Scholar] [CrossRef]
- Vincenzi, S.; Dinnella, C.; Recchia, A.; Monteleone, E.; Gazzola, D.; Pasini, G.; Curioni, A. Grape seed proteins: A new fining agent for astringency reduction in red wine. Aust. J. Grape Wine Res. 2013, 19, 153–160. [Google Scholar] [CrossRef]
- Deng, Y.; Huang, L.; Zhang, C.; Xie, P.; Cheng, J.; Wang, X.; Li, S. Physicochemical and functional properties of Chinese quince seed protein isolate. Food Chem. 2019, 283, 539–548. [Google Scholar] [CrossRef]
- Lam, A.C.Y.; Can Karaca, A.; Tyler, R.T.; Nickerson, M.T. Pea protein isolates: Structure, extraction, and functionality. Food Rev. Int. 2016, 34, 126–147. [Google Scholar] [CrossRef]
- Mir, N.A.; Riar, C.S.; Singh, S. Effect of pH and holding time on the characteristics of protein isolates from Chenopodium seeds and study of their amino acid profile and scoring. Food Chem. 2019, 272, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Wani, A.A.; Sogi, D.S.; Grover, L.; Saxena, D.C. Effect of temperature, alkali concentration, mixing time and meal/solvent ratio on the extraction of watermelon seed proteins-a response surface approach. Biosyst. Eng. 2006, 94, 67–73. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Deepanshu, G.; Snehasis, C.; Jyoti, G. Optimizing the extraction of protein from Prosopis cineraria seeds using response surface methodology and characterization of seed protein concentrate. LWT-Food Sci. Technol. 2020, 117, 108630. [Google Scholar] [CrossRef]
- Firatligil-Durmus, E.; Evranuz, O. Response surface methodology for protein extraction optimization of red pepper seed (Capsicum frutescens). LWT-Food Sci. Technol. 2010, 43, 226–231. [Google Scholar] [CrossRef]
- Wani, A.A.; Kaur, D.; Ahmed, I.; Sogi, D.S. Extraction optimization of watermelon seed protein using response surface methodology. LWT-Food Sci. Technol. 2008, 41, 1514–1520. [Google Scholar] [CrossRef]
- Nayak, C.A.; Rastogi, N.K. Optimization of solid–liquid extraction of phytochemicals from Garcinia indica Choisy by response surface methodology. Food. Res. Int. 2013, 50, 550–556. [Google Scholar] [CrossRef]
- Borges, G.D.S.C.; Vieira, F.G.K.; Copetti, C.; Gonzaga, L.V.; Fett, R. Optimization of the extraction of flavanols and anthocyanins from the fruit pulp of Euterpe edulis using the response surface methodology. Food. Res. Int. 2011, 44, 708–715. [Google Scholar] [CrossRef]
- Malik, M.A.; Saini, C.S. Polyphenol removal from sunflower seed and kernel: Effect on functional and rheological properties of protein isolates. Food Hydrocoll. 2017, 63, 705–715. [Google Scholar] [CrossRef]
- Kaushik, P.; Dowling, K.; McKnight, S.; Barrow, C.J.; Wang, B.; Adhikari, B. Preparation, characterization and functional properties of flax seed protein isolate. Food Chem. 2016, 197, 212–220. [Google Scholar] [CrossRef]
- Castriotta, G.; Canella, M. Protein classification and nitrogen extractability of grape seed meal. J. Agric. Food Chem. 1978, 26, 763–765. [Google Scholar] [CrossRef]
- Fantozzi, P. Grape seed: A potential source of protein. J. Am. Oil Chem. Soc. 1981, 58, 1027–1031. [Google Scholar] [CrossRef]
- Felhi, S.; Baccouch, N.; Ben Salah, H.; Smaoui, S.; Allouche, N.; Gharsallah, N.; Kadri, A. Nutritional constituents, phytochemical profiles, in vitro antioxidant and antimicrobial properties, and gas chromatography–mass spectrometry analysis of various solvent extracts from grape seeds (Vitis vinifera L.). Food Sci. Biotechnol. 2016, 25, 1537–1544. [Google Scholar] [CrossRef] [PubMed]
- Chenyan, L.; Xiaoling, J.; Meiliang, L.; Jingyun, Y.; Guanghua, Z. Optimization of Extraction Process of Crude Protein from Grape Seeds by RSM. Food Sci. Technol. Res. 2011, 17, 437–445. [Google Scholar] [CrossRef] [Green Version]
- Lestari, D.; Mulder, W.; Sanders, J. Improving Jatropha curcas seed protein recovery by using counter current multistage extraction. Biochem. Eng. J. 2010, 50, 16–23. [Google Scholar] [CrossRef]
- Triveni, R.; Shamala, T.R.; Rastogi, N.K. Optimised production and utilisation of exopolysaccharide from Agrobacterium radiobacter. Process. Biochem. 2001, 36, 787–795. [Google Scholar] [CrossRef]
- Mizubuti, I.Y.; Biondo Júnior, O.; de Oliveira Souza, L.W.; dos Santos Ferreira da Silva, R.S.; Ida, E.I. Response surface methodology for extraction optimization of pigeon pea protein. Food Chem. 2000, 70, 259–265. [Google Scholar] [CrossRef]
- Qiao, D.; Hu, B.; Gan, D.; Sun, Y.; Ye, H.; Zeng, X. Extraction optimized by using response surface methodology, purification and preliminary characterization of polysaccharides from Hyriopsis cumingii. Carbohydr. Polym. 2009, 76, 422–429. [Google Scholar] [CrossRef]
- Guerreo-Ochoa, M.R.; Pedreschi, R.; Chirinos, R. Optimised methodology for the extraction of protein from quinoa (Chenopodium quinoa Willd.). Int. J. Food Sci. Technol. 2015, 50, 1815–1822. [Google Scholar] [CrossRef]
- Feyzi, S.; Milani, E.; Golimovahhed, Q.A. Grass Pea (Lathyrus sativus L.) Protein Isolate: The Effect of Extraction Optimization and Drying Methods on the Structure and Functional Properties. Food Hydrocoll. 2018, 74, 187–196. [Google Scholar] [CrossRef]
- Liadakis, G.N.; Tzia, C.; Oreopoulou, V.; Thomopoulos, C.D. Protein isolation from tomato seed meal, extraction optimization. J. Food Sci. 1995, 60, 477–482. [Google Scholar] [CrossRef]
- Igartuburu, J.M.; del Río, R.M.; Massanet, G.M.; Montiel, J.A.; Pando, E.; Luis, F.R. Study of agricultural by-products. Extractability and amino acid composition of grapeseed (Vitis vinifera) proteins. J. Sci. Food Agric. 1991, 54, 489–493. [Google Scholar] [CrossRef]
Independent Variables | Coded Symbols | Coded Factor Levels | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
pH | x1 | 8.5 | 9.5 | 10.5 |
Temperature (°C) | x2 | 25 | 35 | 45 |
Meal/water ratio (w/v) | x3 | 1:6 | 1:9 | 1:12 |
Extraction time (h) | x4 | 1 | 2 | 3 |
Coded Variables | Uncoded Variables | Protein Content (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
x1 (pH) | x2 (T) | x3 (m/w) | x4 (time) | x1 (pH) | x2 (T) | x3 (m/w) | x4 (time) | Experimental 1 | Predicted |
−1 | −1 | 0 | 0 | 8.5 | 25 | 1:9 | 2 | 42.87 ± 3.16 bc | 38.23 |
−1 | 0 | −1 | 0 | 8.5 | 35 | 1:6 | 2 | 44.89 ± 6.91 bcd | 45.36 |
−1 | 0 | 0 | −1 | 8.5 | 35 | 1:9 | 1 | 43.06 ± 1.32 bc | 44.18 |
−1 | 0 | 0 | 1 | 8.5 | 35 | 1:9 | 3 | 38.71 ± 2.06 ab | 41.49 |
−1 | 0 | 1 | 0 | 8.5 | 35 | 1:12 | 2 | 34.81 ± 1.20 a | 39.72 |
−1 | 1 | 0 | 0 | 8.5 | 45 | 1:9 | 2 | 57.93 ± 0.63 hi | 53.29 |
0 | −1 | −1 | 0 | 9.5 | 25 | 1:6 | 2 | 54.15 ± 1.35 efghi | 55.09 |
0 | −1 | 0 | −1 | 9.5 | 25 | 1:9 | 1 | 54.71 ± 4.68 efghi | 55.34 |
0 | −1 | 0 | 1 | 9.5 | 25 | 1:9 | 3 | 53.45 ± 1.03 efghi | 53.79 |
0 | −1 | 1 | 0 | 9.5 | 25 | 1:12 | 2 | 53.05 ± 0.43 efghi | 52.45 |
0 | 0 | −1 | −1 | 9.5 | 35 | 1:6 | 1 | 50.83 ± 1.14 defg | 51.34 |
0 | 0 | −1 | 1 | 9.5 | 35 | 1:6 | 3 | 53.22 ± 0.55 efghi | 52.82 |
0 | 0 | 0 | 0 | 9.5 | 35 | 1:9 | 2 | 47.94 ± 1.27 cde | 53.34 |
0 | 0 | 0 | 0 | 9.5 | 35 | 1:9 | 2 | 56.88 ± 1.43 ghi | 53.34 |
0 | 0 | 0 | 0 | 9.5 | 35 | 1:9 | 2 | 55.19 ± 2.25 fghi | 53.34 |
0 | 0 | 1 | −1 | 9.5 | 35 | 1:12 | 1 | 53.38 ± 0.71 efghi | 52.93 |
0 | 0 | 1 | 1 | 9.5 | 35 | 1:12 | 3 | 53.30 ± 1.95 efghi | 51.03 |
0 | 1 | −1 | 0 | 9.5 | 45 | 1:6 | 2 | 52.84 ± 1.10 efghi | 54.91 |
0 | 1 | 0 | −1 | 9.5 | 45 | 1:9 | 1 | 58.86 ± 0.93 i | 57.79 |
0 | 1 | 0 | 1 | 9.5 | 45 | 1:9 | 3 | 59.13 ± 0.82 i | 57.77 |
0 | 1 | 1 | 0 | 9.5 | 45 | 1:12 | 2 | 55.70 ± 1.39 ghi | 57.36 |
1 | −1 | 0 | 0 | 10.5 | 25 | 1:9 | 2 | 56.97 ± 1.17 ghi | 60.31 |
1 | 0 | −1 | 0 | 10.5 | 35 | 1:6 | 2 | 51.80 ± 1.23 efgh | 48.20 |
1 | 0 | 0 | −1 | 10.5 | 35 | 1:9 | 1 | 53.25 ± 0.27 efghi | 52.51 |
1 | 0 | 0 | 1 | 10.5 | 35 | 1:9 | 3 | 52.73 ± 1.40 efghi | 53.64 |
1 | 0 | 1 | 0 | 10.5 | 35 | 1:12 | 2 | 56.89 ± 3.26 ghi | 53.65 |
1 | 1 | 0 | 0 | 10.5 | 45 | 1:9 | 2 | 48.34 ± 1.14 cdef | 51.68 |
Source | DF | Coefficients | Sum of Squares | Mean Squares | F-Value | p-Value |
---|---|---|---|---|---|---|
Intercept | −713.726 | |||||
Linear | ||||||
x1 (pH) | 1 | 132.810 | 185.3846 | 185.3846 | 11.95148 | 0.004743 |
x2 (T) | 1 | 4.034 | 14.7821 | 14.7821 | 0.95298 | 0.348231 |
x3 (water/meal ratio) | 1 | 907.545 | 0.0299 | 0.0299 | 0.00193 | 0.965698 |
x4 (extraction time) | 1 | −12.887 | 0.1229 | 0.1229 | 0.00792 | 0.930552 |
Quadratic | ||||||
x12 | 1 | −5.341 | 152.1330 | 152.1330 | 9.8078 | 0.008664 |
x22 | 1 | 0.029 | 44.2030 | 44.2030 | 2.8497 | 0.117186 |
x32 | 1 | −830.218 | 8.3426 | 8.3426 | 0.53783 | 0.477416 |
x42 | 1 | −0.043 | 0.0101 | 0.0101 | 0.00065 | 0.980106 |
Interaction | ||||||
x1 × 2 | 1 | −0.592 | 140.3019 | 140.3019 | 9.04507 | 0.010913 |
x1 × 3 | 1 | −66.581 | 33.0650 | 33.0650 | 2.13165 | 0.169965 |
x1 × 4 | 1 | 0.955 | 3.6492 | 3.6492 | 0.23526 | 0.636385 |
x2 × 3 | 1 | −3.053 | 6.9524 | 6.9524 | 0.44821 | 0.515861 |
x2 × 4 | 1 | 0.038 | 0.5887 | 0.5887 | 0.03795 | 0.848803 |
x3 × 4 | 1 | 20.290 | 3.0708 | 3.0708 | 0.19797 | 0.664285 |
Residual | 12 | - | 186.1372 | 15.5114 | - | - |
Lack of fit | 10 | - | 141.0803 | 14.1080 | 0.626233 | 0.749869 |
Pure error | 2 | - | 45.0568 | 22.5384 | - | - |
Total | 26 | - | 966.5705 | - | - | - |
R2 | 0.80743 | |||||
R2 (adjusted) | 0.58275 | |||||
CV (%) | 4.073 |
Amino Acid | Grape Seed Protein Concentrate 1 (GSPC) | |
---|---|---|
g aa/100 g Protein | % | |
Asp | 7.18 ± 0.28 | 8.42 |
Thr | 1.77 ± 0.06 | 2.07 |
Ser | 3.35 ± 0.14 | 3.93 |
Glu | 27.93 ± 0.98 | 32.76 |
Gly | 7.96 ± 0.29 | 9.34 |
Ala | 3.23 ± 0.14 | 3.79 |
Cus | 0.80 ± 0.02 | 0.94 |
Val | 3.67 ±0.15 | 4.30 |
Met | 1.19 ± 0.05 | 1.40 |
Ile | 2.93 ± 0.11 | 3.43 |
Leu | 4.73 ± 0.25 | 5.55 |
Tyr | 2.65 ± 0.08 | 3.11 |
Trp | - | - |
Phe | 3.89 ± 0.15 | 4.56 |
His | 1.81 ± 0.02 | 2.13 |
Lys | 1.98 ± 0.04 | 2.33 |
Arg | 7.29 ± 0.27 | 8.55 |
Pro | 2.88 ± 0.20 | 3.38 |
Sample | Extraction Conditions | Protein Content 1 (%) | |||
---|---|---|---|---|---|
pH | T (°C) | w:m (w/v) | Time (h) | ||
Grape seed protein concentrate (GSPC) | 10 | 36 | 9:1 | 2 | 55.35 ± 0.10 a |
Grape seed protein concentrate without phenols | 10 | 36 | 9:1 | 2 | 59.6 ± 2.48 b |
Grape seed protein concentrate without mucilage | 10 | 36 | 9:1 | 2 | 58.06 ± 0.39 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baca-Bocanegra, B.; Nogales-Bueno, J.; Hernández-Hierro, J.M.; Heredia, F.J. Optimization of Protein Extraction of Oenological Interest from Grape Seed Meal Using Design of Experiments and Response Surface Methodology. Foods 2021, 10, 79. https://doi.org/10.3390/foods10010079
Baca-Bocanegra B, Nogales-Bueno J, Hernández-Hierro JM, Heredia FJ. Optimization of Protein Extraction of Oenological Interest from Grape Seed Meal Using Design of Experiments and Response Surface Methodology. Foods. 2021; 10(1):79. https://doi.org/10.3390/foods10010079
Chicago/Turabian StyleBaca-Bocanegra, Berta, Julio Nogales-Bueno, José Miguel Hernández-Hierro, and Francisco José Heredia. 2021. "Optimization of Protein Extraction of Oenological Interest from Grape Seed Meal Using Design of Experiments and Response Surface Methodology" Foods 10, no. 1: 79. https://doi.org/10.3390/foods10010079
APA StyleBaca-Bocanegra, B., Nogales-Bueno, J., Hernández-Hierro, J. M., & Heredia, F. J. (2021). Optimization of Protein Extraction of Oenological Interest from Grape Seed Meal Using Design of Experiments and Response Surface Methodology. Foods, 10(1), 79. https://doi.org/10.3390/foods10010079