Chemical Characterization and Bioaccessibility Assessment of Bioactive Compounds from Umbu (Spondias tuberosa A.) Fruit Peel and Pulp Flours
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Flour Preparation
2.3. Indigestible Fraction Characterization
2.4. Determination of Bioactive Compounds
2.5. Bioaccessibility of Phenolics
2.6. Proximal Composition and Technological Properties
2.7. Statistical Analysis
3. Results
3.1. Indigestible Fraction Characterization
3.2. Bioactive Compounds
3.3. Proximal Composition and Technological Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Omena, C.M.B.; Valentim, I.B.; Guedes, G.S.; Rabelo, L.A.; Mano, C.M.; Bechara, E.J.H.; Sawaya, A.C.H.F.; Trevisan, M.T.S.; Costa, J.G.; Ferreira, R.C.S.; et al. Antioxidant, anti-acetylcholinesterase and cytotoxic activities of ethanol extracts of peel, pulp and seeds of exotic Brazilian fruits. Antioxidant, anti-acetylcholinesterase and cytotoxic activities in fruits. Food Res. Int. 2012, 49, 334–344. [Google Scholar] [CrossRef] [Green Version]
- CONAB-Companhia Nacional de Abastecimento. Acompanhamento Da Safra Brasileira. 2020. Available online: http://www.conab.gov.br/ (accessed on 23 April 2020).
- Mertens, J.; Germer, J.; Siqueira Filho, J.A.; Sauerborn, J. Spondias tuberosa Arruda (Anacardiaceae), a threatened tree of the Brazilian Caatinga? Braz. J. Biol. 2017, 77, 542–552. [Google Scholar] [CrossRef] [Green Version]
- IBGE—Instituto Brasileiro De Geografia E Estatística. Produção Extrativa Vegetal. 2019. Available online: http://www.ibge.gov.br (accessed on 23 June 2019).
- Ribeiro, L.O.; Viana, E.S.; Godoy, R.L.O.; Freitas, S.C.; Freitas, S.P.; Matta, V.M. Nutrients and bioactive compounds of pulp, peel and seed from umbu fruit. Cienc. Rural 2019, 49, e20180806. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, L.O.; Pontes, S.M.; Ribeiro, A.P.O.; Pacheco, S.; Freitas, S.P.; Matta, V.M. Avaliação do armazenamento a frio sobre os compostos bioativos e as características físico-químicas e microbiológicas do suco de umbu pasteurizado. Braz. J. Food Technol. 2017, 20, e2015095. [Google Scholar] [CrossRef]
- Neto, L.G.M.; Lira, J.S.; Torres, M.M.F.S.; Barbosa, I.C.; Melo, G.F.A.; Soares, D.J. Development of a mixed drink made from hydrosoluble soybean extract; coconut water and umbu pulp (Spondias tuberos). Acta Sci. Technol. 2016, 38, 371–376. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.S.; Santana, L.R.R.; Bispo, E.D.S.; Lopes, M.V. Use of Umbu (Spondias Tuberosa Arr. Camara) Pulp for Preparation of Diet Cereal Bar. Rev. Bras. Frutic. 2018, 40, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Almeida, A.L.S.; Albuquerque, U.P.; Castro, C.C. Reproductive biology of Spondias tuberosa Arruda (Anacardiaceae), an endemic fructiferous species of the caatinga (dry forest), under different management conditions in northeastern Brazil. J. Arid Environ. 2011, 75, 330–337. [Google Scholar] [CrossRef] [Green Version]
- López-Vargas, J.H.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Chemical, physico-chemical, technological, antibacterial and antioxidant properties of dietary fiber powder obtained from yellow passion fruit (Passiflora edulis var. flabicarpa). Food Res. Int. 2013, 51, 756–763. [Google Scholar] [CrossRef]
- Ayala-Zavala, J.F.; Vega-Veja, V.; Rosas-Domínguez, C.; Palafox-Carlos, H.; Villa-Rodriguez, J.A.; Wasim Siddiqui, M.; Dávila-Aviña, J.E.; González-Aguilar, G.A. Agro-industrial potential of exotic fruit byproducts as a source of food additives. Food Res. Int. 2011, 44, 1866–1874. [Google Scholar] [CrossRef]
- Albuquerque, J.G.; Duarte, A.M.; Conceição, M.L.; Aquino, J.S. Integral utilization of seriguela fruit (Spondias purpurea L.) in the production of cookies. Rev. Bras. Frutic. 2016, 38, 1–7. [Google Scholar] [CrossRef] [Green Version]
- San José, F.J.; Collado-Fernández, M.; López, R. Sensory evaluation of biscuits enriched with artichoke fiber-rich powders (Cynara scolymus L.). Food Sci. Nutr. 2018, 6, 160–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leão, D.P.; Franca, A.S.; Oliveira, L.S.; Bastos, R.; Coimbra, M.A. Physicochemical characterization, antioxidant capacity, total phenolic and proanthocyanidin content of flours prepared from pequi (Caryocar brasilense Camb.) fruit by-products. Food Chem. 2017, 225, 146–153. [Google Scholar] [CrossRef]
- Zielinski, A.A.F.; Ávila, S.; Ito, V.; Nogueira, A.; Wosiacki, G.; Haminiuk, C.W.I. The association between chromaticity, phenolics, carotenoids, and in vitro antioxidant activity of frozen fruit pulp in brazil: An application of chemometrics. J. Food Sci. 2014, 79, C510–C516. [Google Scholar] [CrossRef]
- Murillo, E.; Giuffrida, D.; Menchaca, D.; Dugo, P.; Torre, G.; Meléndez-Martinez, A.J.; Mondello, L. Native carotenoids composition of some tropical fruits. Food Chem. 2013, 140, 825–836. [Google Scholar] [CrossRef] [PubMed]
- Ashihara, H. Plant biochemistry trigonelline biosynthesis in Coffea arabica and Coffea canephora. In Coffee in Health and Disease Prevention; Preedy, V.R., Ed.; Elsevier: London, UK, 2015; pp. 19–27. [Google Scholar]
- Yoshinari, O.; Sato, H.; Igarashi, K. Anti-diabetic effects of pumpkin and its components, trigonelline and nicotinic acid, on Goto-Kakizaki rats. Biosci. Biotechnol. Biochem. 2017, 73, 1033. [Google Scholar] [CrossRef] [Green Version]
- Leão, D.P.; Botelho, B.G.; Oliveira, L.S.; Franca, A.S. Potential of pequi (Caryocar brasiliense Camb.) peels as source of highly esterified pectins obtained by microwave assisted extraction. LWT 2018, 87, 575–580. [Google Scholar] [CrossRef]
- Resende, L.M.; Franca, A.S.; Oliveira, L.S. Buriti (Mauritia flexuosa L. f.) fruit by-products flours: Evaluation as source of dietary fibers and natural antioxidants. Food Chem. 2019, 270, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Arranz, S.; Saura-Calixto, F.; Shaha, S.; Kroon, P.A. High contents of nonextractable polyphenols in fruits suggest that polyphenol contents of plant foods have been underestimated. J. Agric. Food Chem. 2009, 57, 7298–7303. [Google Scholar] [CrossRef]
- Malenčić, D.; Kiprovski, B.; Bursić, V.; Vuković, G.; Hristov, N.; Kondić-Špika, A. Whole grain phenolics and antioxidant activity of Triticum cultivars and wild accessions. J. Serbian Chem. Soc. 2016, 81, 499–508. [Google Scholar] [CrossRef]
- Zurita, J.; Díaz-Rubio, M.E.; Saura-Calixto, F. Improved procedure to determine non-extractable polymeric proanthocyanidins in plant foods. Int. J. Food Sci. Nutr. 2012, 63, 936–939. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jiménez, J.; Saura-Calixto, F. Fruit peels as source of non-extractable polyphenols or macromolecular antioxidants: Analysis and nutritional implications. Food Res. Int. 2018, 111, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Falcão, L.; Araújo, M.E.M. Tannins characterization in historic leathers by complementary analytical techniques ATR-FTIR, UV-Vis and chemical tests. J. Cult. Herit. 2013, 14, 499–508. [Google Scholar] [CrossRef]
- Servillo, L.; D’Onofrio, N.; Giovane, A.; Casale, R.; Cautela, D.; Ferrari, G.; Castaldo, D.; Balestrieri, M.L. The betaine profile of cereal flours unveils new and uncommon betaines. Food Chem. 2018, 239, 234–241. [Google Scholar] [CrossRef]
- Nellis, S.C.; Correia, A.F.K.; Spoto, M.H.F. Extração e quantificação de carotenoides em minitomate desidratado (Sweet Grape) através da aplicação de diferentes solventes. Braz. J. Food Technol. 2017, 20, e2016156. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Amaya, D.A. Guide to Carotenoid Analysis in Foods; OMNI (Project): Seattle, WA, USA, 2001. [Google Scholar]
- Cândido, T.N.L.; Silva, M.R.; Agostini-Costa, T.S. Bioactive compounds and antioxidant capacity of buriti (Mauritia flexuosaL f.) from the Cerrado and Amazon biomes. Food Chem. 2015, 177, 313. [Google Scholar] [CrossRef]
- Suzuki, A.H.; Oliveira, L.S.; Fante, C.A.; Franca, A.S. Use of safe substances as additives for PVC films and their effect on enzymatic browning of Gala apples. Food Bioproc. Tech. 2020, 13, 1390–1391. [Google Scholar] [CrossRef]
- Dutra, R.L.T.; Dantas, A.M.; Marques, D.A.; Batista, J.D.F.; Meireles, B.R.L.A.; Magalhães Cordeiro, A.M.T.; Magnani, M.; Borges, G.S.C. Bioaccessibility and antioxidant activity of phenolic compounds in frozen pulps of Brazilian exotic fruits exposed to simulated gastrointestinal conditions. Food Res. Int. 2017, 100, 650–657. [Google Scholar] [CrossRef]
- AOAC-Association of Official Analytical Chemists. Official Methods of Analysis of the Association of Analytical Chemists, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2005. [Google Scholar]
- Larrauri, J. New approaches in the preparation of high dietary fibre powders from fruit by-products. Trends Food Sci. Tech. 1999, 10, 3–8. [Google Scholar] [CrossRef]
- Soquetta, M.B.; Stefanello, F.S.; Huerta, K.M.; Monteiro, S.S.; Rosa, C.S.; Terra, N.N. Characterization of physiochemical and microbiological properties, and bioactive compounds of flour made from the skin bagasse of kiwi frui (Actinidia deliciosa). Food Chem. 2016, 199, 471–478. [Google Scholar] [CrossRef]
- Seixas, F.L.; Fukuda, D.L.; Turbiani, F.R.B.; Garcia, P.S.; Petkowociz, C.L.O.; Jagadevan, S.; Gimenes, M.L. Extraction of pectin from passion fruit peel (Passiflora edulis f. flavicarpa) bt microwave-induced heating. Food Hydrocoll. 2014, 38, 186–192. [Google Scholar]
- Mushtag, M.; Gani, A.; Gani, A.; Punoo, H.A.; Massodi, F.A. Use of pomegranate peel extract incorporated in film with improved properties for prolonged shelf life of fresh Himalayan cheese (Kalari/kradi). IFSET 2018, 48, 25–32. [Google Scholar] [CrossRef]
- Maran, J.P.; Priya, B. Ultrasound-assisted extraction of polysaccharide from Nephelium lappaceum L. fruit peel. Int. J. Biol. Macromol. 2014, 70, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Barros, A.S.; Mafra, I.; Ferreira, D.; Cardoso, S.; Reis, A.; Lopes da Silva, J.A.; Delgadillo, I.; Rutlefge, D.N.; Coimbra, M.A. Determination of the degree of methylesterification of pectin polysaccharides by FT-IR using an outer product PLS1 regression. Carbohydr. Polym. 2002, 50, 85–94. [Google Scholar] [CrossRef]
- Kačuráková, M.; Capek, P.; Sasinková, V.; Wellner, N.; Ebringerova, A. FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses. Carbohydr. Polym. 2000, 43, 195–203. [Google Scholar] [CrossRef]
- Robert, P.; Marquis, M.; Barron, C.; Guillon, F.; Saulnier, L. FT-IR Investigation of Cell Wall Polysaccharides from Cereal Grains. Arabinoxylan Infrared Assignment. J. Agric. Food Chem. 2005, 53, 7014–7018. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Renard, C.M.G.C.; Bureau, S.; Le Bourvellec, C. Revisiting the contribution of ATR-FTIR spectroscopy to characterize plant cell wall polysaccharides. Carbohydr. Polym. 2021, 262, 117935. [Google Scholar] [CrossRef]
- Fernando, I.P.S.; Sanjeewa, K.K.A.; Samarakoon, K.W.; Lee, W.W.; Kim, H.S.; Kim, E.A.; Gunasekara, U.K.D.S.S.; Abeytunga, D.T.U.; Nanayakkara, C.; Silva, E.D.; et al. FTIR characterization and antioxidant activity of water soluble crude polysaccharides of Sri Lankan marine algae. ALGAE 2017, 32, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Coimbra, M.A.; Barros, A.; Rutledge, D.N.; Delgadillo, I. FTIR spectroscopy as a tool for the analysis of olive pulp cell-wall polysaccharide extracts. Carbohydr. Res. 1999, 317, 145–154. [Google Scholar] [CrossRef]
- Szymanska-Chargot, M.; Chylinska, M.; Kruk, B.; Zdunek, A. Combining FTIR spectroscopy and multivariate analysis for qualitative and quantitative analysis of the cell wall composition changes during apples development. Carbohydr. Polym. 2015, 115, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Amira, A.; Behija, S.E.; Beligh, M.; Lamia, L.; Manel, I.; Mahomed, H.; Lofti, A. Effects of the ripening stage on phenolic pro-file, phytochemical composition and antioxidant activity of date palm fruit. J. Agric. Food Chem. 2012, 60, 10896–10902. [Google Scholar] [CrossRef]
- Soares, S.; Brandão, E.; Guerreiro, C.; Soares, S.; Mateus, N.; Freitas, V. Tannins in Food: Insights into the Molecular Perception of Astringency and Bitter Taste. Molecules 2020, 25, 2590. [Google Scholar] [CrossRef] [PubMed]
- Ydjedd, S.; Bouriche, S.; López-Nicolás, R.; Sánchez-Moya, T.; Frontela-Saseta, C.; Ros-Berruezo, G.; Rezgui, F.; Louaileche, H.; Kati, D.E. Effect of in vitro gastrointestinal digestion on encapsulated and nonencapsulated phenolic compounds of carob (Ceratonia siliqua L.) pulp extracts and their antioxidant capacity. J. Agric. Food Chem. 2017, 65, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Zargoosh, Z.; Ghavam, M.; Bacchetta, G.; Tavili, A. Effects of ecological factors on the antioxidant potential and total phenol content of Scrophularia striata Boiss. Sci. Rep. 2019, 9, 16021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correia, R.T.; Borges, K.C.; Medeiros, M.F.; Genovese, M.I. Bioactive compounds and phenolic-linked functionality of powdered tropical fruit residues. Food Sci. Technol. Int. 2012, 18, 539–547. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Saura-Calixto, F. Macromolecular antioxidants or non-extractable polyphenols in fruit and vegetables: Intake in four European Countries. Food Res. Int. 2015, 74, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Khandabaee, K.; Van Ree, T. Tannins: Classification and definition. Nat. Prod. Rep. 2002, 18, 641–649. [Google Scholar]
- Delpino-Ruis, A.; Eras, J.; Vilaró, F.; Cubero, M.A.; Balcells, M.; Canela-Garayoa, R. Characterisation of phenolic compounds in processed fibres from the juice industry. Food Chem. 2015, 172, 574–575. [Google Scholar] [CrossRef]
- Baluchnejadmojarad, T.; Rabiee, N.; Zabihnejad, S.; Roghani, M. Ellagic acid exerts protective effect in intrastriatal 6-hydroxydopamine rat model of Parkinson’s disease: Possible involvement of ERb/Nrf2/HO-1 signaling. Brain Res. 2017, 1662, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.R.A.; Morais, S.M.; Marques, M.M.M.; Oliveira, D.F.; Barros, C.C.; Almeida, R.R.; Ícaro, G.P.V.; Guedes, M.I.F. Chemical composition; antioxidant and antibacterial activities of two Spondias species from Northeastern Brazil. Pharm. Biol. 2012, 50, 740–746. [Google Scholar] [CrossRef]
- Stafussa, A.P.; Maciel, G.M.; Rampazzo, V.; Bona, E.; Makara, C.N.; Junior, B.D.; Haminuiuk, C.W.I. Bioactive compounds of 44 traditional and exotic Brazilian fruit pulps: Phenolic compounds and antioxidant activity. Int. J. Food Prop. 2018, 21, 106–118. [Google Scholar] [CrossRef]
- Farag, M.A.; Porzel, A.; Wessjohann, L.A. Unraveling the active hypoglycemic agent trigonelline in balanites aegyptiaca date fruit using metabolite fingerprinting by NMR. J. Pharm. Biomed. Anal. 2015, 115, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Servillo, L.; Giovane, A.; Balestrieri, M.L.; Bata-Csere, A.; Cautela, D.; Castaldo, D. Betaines in fruit of citrus genus plants. J. Agric. Food Chem. 2011, 59, 9410–9416. [Google Scholar] [CrossRef]
- Evans, L.S.; Tramantano, W.A. Trigonelline and promotion of cell arrest in G2 of various legumes. Phytochemistry 1984, 23, 1837–1840. [Google Scholar] [CrossRef]
- Berni, P.; Campoli, S.S.; Negri, T.C.; Toledo, N.M.V.; Canniatti-Brazaca, S.G. Non-conventional tropical fruits: Characterization, antioxidant potential and carotenoid bioaccessibility. Plant Foods Hum. Nutr. 2019, 74, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.G.; Olmedilla-Alonso, B.; Hornero-Méndez, D. Comprehensive database of carotenoid contents in Ibero-American foods. A valuable tool in the context of functional foods and the establishment of recommended intakes of bioactives. J. Agric. Food Chem. 2018, 66, 5055–5107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amira, A.; Guido, F.; Behija, S.E.; Manel, I.; Nesrine, Z.; Ali, F.; Mahomed, H.; Noureddine, H.A.; Lofti, A. Chemical and aroma volatile compositions of date palm (Phoenix dactylifera L.) fruits at three maturation stages. Food Chem. 2011, 127, 1744–1754. [Google Scholar] [CrossRef]
- King, A.D.; Bolin, H.R. Physiological and microbiological storage stability of minimally processed fruits and vegetables. Food Technol. 1989, 43, 132–136. [Google Scholar]
- Martínez, R.; Torres, P.; Meneses, M.A.; Figueroa, J.G.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Food Chem. 2012, 135, 1520–1526. [Google Scholar] [CrossRef]
- Raghavendra, S.N.; Swamy, S.R.R.; Rastogi, N.K.; Thharanathan, R.N. Grinding characteristics and hydration properties of coconut residue: A source of dietary fiber. J. Food Eng. 2006, 72, 281–286. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Ruiz-Navajas, T.; Martin-Sánchez, A.; Sánchez-Zapata, E.; Fernández-López, J.; Sendra, E.; Sayas-Barberá, E.; Navarro, C.; Pérez-Álvarez, J.A. Chemical, physico-chemical and functional properties of pomegranate (Punica granatum L.) bagasses powder co-product. J. Food Eng. 2012, 110, 220–224. [Google Scholar] [CrossRef]
Sample | SIF (%) | IIF (%) | TIF (%) | Pectin (%) |
---|---|---|---|---|
MPU | 4.58 ± 0.79 a | 10.19 ± 1.18 a | 14.77 | 8.73 ± 0.38 a |
SMPU | 4.30 ± 0.95 a | 9.87 ± 0.63 a | 14.17 | 14.57 ± 0.33 b |
MPE | 13.78 ± 0.51 b | 41.26 ± 2.29 b | 55.04 | 16.69 ± 0.27 c |
SMPE | 13.85 ± 1.33 b | 39.71 ± 2.39 b | 53.56 | 20.41 ± 0.06 d |
TFA-Hydrolyzable Polysaccharides | ||||
---|---|---|---|---|
Monosaccharide (%mol) | ||||
Rhamnose | MPU | SMPU | MPE | SMPE |
Fucose | 0.48 ± 0.10 c | 0.48 ± 0.08 c | 2.46 ± 0.20 a | 1.74 ± 0.07 b |
Ribose | 0.26 ± 0.04 c | 0.28 ± 0.05 c | 1.10 ± 0.08 a | 0.75 ± 0.05 b |
Arabinose | 0.38 ± 0.10 c | 0.56 ± 0.09 c | 2.17 ± 0.23 a | 1.34 ± 0.21 b |
Xylose | 7.40 ± 0.31 d | 7.98 ± 0.39 d | 18.20 ± 2.29 a,b | 21.29 ± 1.39 a |
Galactose | 1.43 ± 0.1 b | 1.26 ± 0.06 b | 3.58 ± 0.41 a | 3.55 ± 0.11 a |
Glucose | 5.82 ± 0.49 c | 5.95 ± 0.13 c | 7.45 ± 0.30 b | 14.31 ± 0.15 a |
Myo-Inositol | 82.55 ± 0.39 b | 83.07 ± 0.30 b | 63.67 ± 2.04 c | 56.66 ± 0.03 d |
2-deoxyglucose | 0.49 ± 0.02 b | 0.41 ± 0.05 b | 0.33 ± 0.10 b | 0.42 ± 0.11 b |
Mannose | 0.92 ± 0.08 a | - | 1.19 ± 0.39 a | 0.95 ± 0.40 a |
- | - | - | - | |
H2SO4-Hydrolyzable Polysaccharides | ||||
Monosaccharide (%mol) | MPU | SMPU | MPE | SMPE |
Rhamnose | - | - | - | - |
Fucose | - | - | - | - |
Ribose | - | - | - | - |
Arabinose | 6.79 ± 0.88 b | 6.56 ± 0.54 b | 14.61 ± 0.93 c | 16.73 ± 0.91 b,c |
Xylose | 0.91 ± 0.08 c | 0.89 ± 0.26 c | 3.11 ± 0.20 a | 3.25 ± 0.22 a |
Galactose | 2.64 ± 0.77 a | 3.27 ± 0.19 d | 7.71 ± 0.38 b | 7.29 ± 0.37 b |
Glucose | 89.05 ± 1.44 a | 86.33 ± 1.61 a | 67.37 ± 1.69 c | 64.55 ± 1.99 c |
Myo-Inositol | - | - | 1.00 ± 0.10 a | 1.10 ± 0.11 a |
2-deoxyglucose | - | - | - | - |
Mannose |
Sample | MPE | SMPE | MPU | SMPU |
---|---|---|---|---|
TEP | 1229.43 ± 125.34 b | 1582.70 ± 278.09 a | 380.69 ± 7.76 d | 453.95 ± 40.29 c |
(mg GAE/100 g) | (15.67%) | (18.39%) | (32.92%) | (37.73%) |
Tannins | 1056.23 ± 55.20 b | 1350.9 ± 153.95 a | 110.64 ± 13.12 d | 170.14 ± 30.17 c |
(mg TAE/100 g) | (20.06%) | (18.81%) | (107.51%) | (114.27%) |
Flavonoids | 50.61 ± 1.90 b | 62.25 ± 3.60 a | 16.38 ± 2.36 d | 35.34 ± 3.11 c |
(mg QCE/100 g) | (39.10%) | (37.93%) | (34.39%) | (31.87%) |
Phenolic acids (mg/100 g) | 122.56 | 169.55 | 253.67 | 248.50 |
NEPA (mg/100 g) | 901.89 ± 140.91 b | 1544.60 ± 296.58 a | 259.03 ± 12.50 c | 296.17 ± 13.09 c |
Hydrolyzable tannins (mg TAE/100 g) | 1348.40 ± 19.86 a | 1079.70 ± 43.31 b | 655.91 ± 11.72 c | 535.88 ± 55.83 d |
Gallotannins (mg GAE/100 g) | 139.89 ± 7.14 a | 124.97 ± 5.21 b | 63.73 ± 0.74 c | 55.66 ± 0.73 c |
Ellagitannins (mg EAE/100 g) | 1208.51 | 954.73 | 592.18 | 480.22 |
Sample | p-Coumaric Acid (mg/100 g) | Protocatechuic Acid (mg/100 g) | Procyanidin B2 (mg/100 g) | Ellagic Acid (mg/100 g) | Quercetin (mg/100 g) |
---|---|---|---|---|---|
MPE | nd | nd | 4.06 ± 0.33 b | 51.67 ± 4.67 b | 40.74 ± 9.26 b |
SMPE | 9.16 ± 1.59 a | nd | 15.22 ± 0.97 a | 83.89 ± 6.53 a | 84.83 ± 6.41 a |
MPU | 0.46 ± 0.16 c | 0.33 ± 0.03 b | 0.13 ± 0.02 d | 2.69 ± 0.49 c | nd |
SMPU | 1.24 ± 0.45 b | 2.43 ± 0.03 a | 1.71 ± 0.13 c | 2.86 ± 0.93 c | nd |
Sample | MPE | SMPE | MPU | SMPU |
---|---|---|---|---|
Acetone extraction β-carotene (mg/100 g) | 10.39 ± 0.23 b,x | 12.70 ± 0.80 a,x | 3.80 ± 0.20 c,x | 2.03 ± 0.04 d,x |
Partition β-carotene (mg/100 g) | 5.90 ± 0.28 b,y | 6.52 ± 0.93 a, y | 1.91 ± 0.43 c,y | 1.06 ± 0.15 d,y |
Saponification β-carotene (mg/100 g) | 2.28 ± 0.24 a,z | 1.40 ± 0.07 b, z | 0.51 ± 0.02 c,z | 0.13 ± 0.02 d,z |
Acetone extraction Zeaxanthin (mg/100 g) | 11.52 ± 0.48 b | 14.64 ± 0.73 a | 4.78 ± 0.01 c,x | 2.19 ± 0.04 d,x |
Partition Zeaxanthin (mg/100 g) | 6.64 ± 0.14 b,y | 7.25 ± 1.28 a,y | 22.06 ± 0.31 c,y | 1.18 ± 0.15 d,y |
Saponification Zeaxanthin (mg/100 g) | 2.69 ± 0.10 a,z | 1.53 ± 0.09 b,z | 0.59 ± 0.03 c,z | 0.19 ± 0.07 d,z |
Sample | Lutein (µg/g) | α-Tocopherol (µg/g) | α-Carotene (µg/g) | Zeaxanthin (µg/g) | β-Cryptoxanthin (µg/g) | β-Carotene (µg/g) |
---|---|---|---|---|---|---|
MPE | 0.58 ± 0.01 a | 3.40 ± 1.19 b | 2.04 ± 0.05 a | 0.46 ± 0.01 a | 5.49 ± 0.36 a | 5.03 ± 0.04 a |
SMPE | 0.62 ± 0.06 a | 6.86 ± 0.44 a | 1.71 ± 0.18 b | 0.20 ± 0.00 c | 2.30 ± 0.11 b | 3.30 ± 0.17 b |
MPU | 0.59 ± 0.01 a | 1.79 ± 0.09 c | 0.37 ± 0.03 c | 0.22 ± 0.00 b | 1.79 ± 0.15 c | 1.11 ± 0.05 c |
SMPU | 0.50 ± 0.01 b | 1.83 ± 0.08 c | 0.10 ± 0.03 d | 0.15 ± 0.01 d | 0.82 ± 0.02 d | 0.97 ± 0.04 d |
Composition (g/100 g) | |||||
---|---|---|---|---|---|
Sample | Moisture | Fat | Ash | Protein | Carbohydrate |
MPE | 8.16 ± 0.14 b | 0.69 ± 0.28 a | 3.40 ± 0.21 a | 5.87 ± 0.75 a | 81.91 |
SMPE | 7.56 ± 0.18 a | 0.71 ± 0.31 a | 2.61 ± 0.32 b | 4.49 ± 0.75 a | 84.63 |
Sample | L* | H | C* | WRC (g water/g) | ORC (g oil/g ms) | SWC (ml/g ms) | WSI (g/100 g) |
---|---|---|---|---|---|---|---|
MPE | 62.49 ± 0.13 b | 78.58 ± 0.08 b | 32.91 ± 0.29 a | 3.74 ± 0.32 a | 1.77 ± 0.24 a | 6.35 ± 1.01 a | 20.42 ± 1.81 a |
SMPE | 64.69 ± 0.20 a | 80.03 ± 0.13 a | 28.18 ± 0.05 b | 3.95 ± 0.12 a | 1.64 ± 0.02 a | 5.87 ± 0.56 a | 14.34 ± 0.74 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cangussu, L.B.; Fronza, P.; Franca, A.S.; Oliveira, L.S. Chemical Characterization and Bioaccessibility Assessment of Bioactive Compounds from Umbu (Spondias tuberosa A.) Fruit Peel and Pulp Flours. Foods 2021, 10, 2597. https://doi.org/10.3390/foods10112597
Cangussu LB, Fronza P, Franca AS, Oliveira LS. Chemical Characterization and Bioaccessibility Assessment of Bioactive Compounds from Umbu (Spondias tuberosa A.) Fruit Peel and Pulp Flours. Foods. 2021; 10(11):2597. https://doi.org/10.3390/foods10112597
Chicago/Turabian StyleCangussu, Laís B., Pãmella Fronza, Adriana S. Franca, and Leandro S. Oliveira. 2021. "Chemical Characterization and Bioaccessibility Assessment of Bioactive Compounds from Umbu (Spondias tuberosa A.) Fruit Peel and Pulp Flours" Foods 10, no. 11: 2597. https://doi.org/10.3390/foods10112597
APA StyleCangussu, L. B., Fronza, P., Franca, A. S., & Oliveira, L. S. (2021). Chemical Characterization and Bioaccessibility Assessment of Bioactive Compounds from Umbu (Spondias tuberosa A.) Fruit Peel and Pulp Flours. Foods, 10(11), 2597. https://doi.org/10.3390/foods10112597