Chemical Content of Five Molluscan Bivalve Species Collected from South Korea: Multivariate Study and Safety Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Criteria for the Species Selection and Sample Collection
Sample Preparation
2.2. Analysis of Elements
2.2.1. Chemicals, Standards, and Reference Materials
2.2.2. Instrumentation
2.2.3. Quality Control
2.3. Multivariate Analysis
2.4. Exposure Assessment and Risk Characterization for Toxic Elements Cd, Pb, and Hg
2.4.1. Preparation of Concentration Data of Elements
2.4.2. Consumption Data
2.4.3. Exposure Calculation
2.4.4. Risk Characterization
3. Results and Discussion
3.1. Elements Content in Bivalve Species
3.1.1. Macro and Micro Elements Content
3.1.2. Toxic Elements Content
3.2. Multivariate Analysisas a Tool to Distinguish Selected Species by Elements Content
3.3. Deterministic Dietary Intake and Nutritional Point
3.3.1. Essential Elements Cu, Zn, Fe, Mn, and Co
3.3.2. Other Elements: Cr, Ni, and Se
3.4. Chronic Exposure to Toxic Elements Cd, Pb, and Hg for Korean Population
3.4.1. Consumption Data of V. philippinarum and M. yessoensis by Korean Consumers
3.4.2. Chronic Exposure and Risk Characterization for Korean Population for Cd, Pb and Hg through Consumption of Manila Clam and Yesso Scallop
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Barbosa, I.D.S.; Brito, G.B.; Dos Santos, G.L.; Santos, L.N.; Teixeira, L.S.; Araujo, R.G.; Korn, M.G.A. Multivariate data analysis of trace elements in bivalve molluscs: Characterization and food safety evaluation. Food Chem. 2019, 273, 64–70. [Google Scholar] [CrossRef]
- Mai, B.X.; Fu, J.M.; Sheng, G.Y.; Kang, Y.H.; Lin, Z.; Zhang, G.; Min, Y.S.; Zeng, E.Y. Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China. Environ. Pollut. 2002, 117, 457–474. [Google Scholar] [CrossRef]
- Fung, C.N.; Lam, J.C.W.; Zheng, G.J.; Connell, D.W.; Monirith, I.; Tanabe, S.; Richardson, B.J.; Lam, P.K.S. Mussel-based monitoring of trace metal and organic contaminants along the east coast of China using Pernaviridis and Mytilus edulis. Environ. Pollut. 2004, 127, 203–216. [Google Scholar] [CrossRef]
- Yusof, A.M.; Yanta, N.F.; Wood, A.K.H. The use of bivalves as bio-indicators in the assessment of marine pollution along a coastal area. J. Radioanal. Nucl. Chem. 2004, 259, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Hong, H.; Wang, X.; Lin, J.; Chen, W.; Li, X. Determination and load of organophosphorus and organochlorine pesticides at water from Jiulong River Estuary, China. Mar. Pollut. Bull. 2002, 45, 397–402. [Google Scholar] [CrossRef]
- Zuykov, M.; Pelletier, E.; Harper, D.A.T. Bivalve mollusks in metal pollution studies: From bioaccumulation to biomonitoring. Chemosphere 2013, 93, 201–208. [Google Scholar] [CrossRef]
- Li, P.M.; Gao, X.L. Trace elements in major marketed marine bivalves from six northern coastal cities of China: Concentrations and risk assessment for human health. Ecotoxicol. Environ. Saf. 2014, 109, 1–9. [Google Scholar] [CrossRef]
- Kim, S.K.; Oh, J.R.; Shim, W.J.; Lee, D.H.; Yim, U.H.; Hong, S.H.; Shin, Y.B.; Lee, D.S. Geographical distribution and accumulation features of organochlorine residues in bivalves from coastal areas of South Korea. Mar. Pollut. Bull. 2002, 45, 268–279. [Google Scholar] [CrossRef]
- Pan, K.; Wang, W.X. Trace metal contamination in estuarine and coastal environments in China. Sci. Total Environ. 2012, 421, 3–16. [Google Scholar] [CrossRef]
- Park, M.S.; Kim, H.N.; Bahk, G.J. The analysis of food safety incidents in South Korea, 1998–2016. Food Control 2017, 81, 196–199. [Google Scholar] [CrossRef]
- Cervantes, M.A.; Jiménez-Cárceles, F.J.; Álvarez-Rogel, J. As, Cd, Cu, Mn, Pb, and Zn contents in sediments and mollusks (Hexaplextrunculus and Tapes decussatus) from coastal zones of a Mediterranean lagoon (Mar Menor, SE Spain) affected by mining wastes. J. Water Air Soil Pollut. 2009, 200, 289–304. [Google Scholar] [CrossRef]
- Roméo, M.; Frasila, C.; Gnassia-Barelli, M.; Damiens, G.; Micu, D.; Mustata, G. Biomonitoring of trace metals in the Black Sea (Romania) using mussels Mytilus galloprovincialis. Water Res. 2005, 39, 596–604. [Google Scholar] [CrossRef]
- Olmedo, P.; Hernández, A.F.; Pla, A.; Femia, P.; Navas-Acien, A.; Gil, F. Determination of essential elements (copper, manganese, selenium and zinc) in fish and shellfish samples. Risk and nutritional assessment and mercury-selenium balance. Food Chem. Toxicol. 2013, 62, 299–307. [Google Scholar] [CrossRef]
- de Souza, M.M.; Windmöller, C.C.; Hatje, V. Shellfish from Todosos Santos Bay, Bahia, Brazil: Treat or threat? Mar. Pollut. Bull. 2011, 62, 2254–2263. [Google Scholar] [CrossRef] [Green Version]
- Silva, E.; Viana, Z.C.V.; Souza, N.F.A.; Korn, M.G.A.; Santos, V.L.C.S. Assessment of essential elements and chemical contaminants in thirteen fish species from the Bay Aratu, Bahia, Brasil. Braz. J. Biol. 2016, 76, 871–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, E.; Costa, F.N.; Souza, T.L.; Viana, Z.C.; Souza, A.S.; Korn, M.G.; Ferreira, S.L. Assessment of Trace Elements in Tissues of Fish Species: Multivariate Study and Safety Evaluation. J. Braz. Chem. Soc. 2016, 27, 2234–2245. [Google Scholar] [CrossRef]
- Sfriso, A.A.; Chiesa, S.; Sfriso, A.; Buosi, A.; Gobbo, L.; BoscoloGnolo, A.; Argese, E. Spartial distribution, bioaccumulation profiles and risk for consumption of edible bivales: A comparison among rezor clam, Manila clam and cockles in the Venice Lagoon. Sci. Total Environ. 2018, 643, 579–591. [Google Scholar] [CrossRef]
- Sun, X.; Zeng, Y.; Yu, T.; Wu, B.; Lui, Z.; Zhou, L.; Tian, J.; Yang, A. Developmental dynamics of myogenesis in Yesso Scallop Patinopecten yessoensis. Comp. Biochem. Physiol. B 2019, 228, 51–60. [Google Scholar] [CrossRef]
- Bao, Y.; Li, L.; Zhang, G. The manganese superoxide dismutase gene in bay scallop Argopecten irradians: Cloning, 3D modelling and mRNA expression. Fish Shellfish Immunol. 2008, 25, 425–432. [Google Scholar] [CrossRef]
- KNHANES, Korean National Health and Nutrition Examination Survey. Body Weight of Korean Population. 2016–2018. Available online: http://knhanes.cdc.go.kr/ (accessed on 1 March 2020).
- Vinci, R.M.; Jacxsens, L.; De Meulenaer, B.; Decononk, F.; Matsiko, E.; Lachat, C.; de Schaetzen, T.; Canfyn, M.; Van Overmeire, I.; Kolsteren, P.; et al. Occurance of volatile organic compounds in foods from the Belgian market and dietary exposure assessment. Food Control. 2015, 52, 1–8. [Google Scholar] [CrossRef]
- Van de Perre, E.; Jacxsens, L.; Lachat, C.; El Tahan, F.; De Meulenaer, B. Impact of maximum levels in European legislation on exposure of mycotoxins in dried products: Case of aflatoxin B1 and ochratoxin A in nuts and dried fruits. Food Chem. Toxicol. 2015, 75, 112–117. [Google Scholar] [CrossRef]
- European Food Safety Authority. Update: Use of the benchmark dose approach in risk assessment. EFSA J. 2017, 15, 4658. Available online: https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2017.4658 (accessed on 1 May 2020).
- Claeys, W.; De Meulenaer, B.; De Saeger, S.; Matthys, C.; Pussemierf, L.; Rajkovic, A.; Scippo, M.L.; Vleminckx, C.; Van Huffel, X.; Hoet, P. Position paper on the use of an “estimated acceptable concentration” (EAC) as basis for a control policy’s action level for carcinogens unintentionally present in food. Trends Food Sci. Technol. 2020, in press. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific Opinion on Lead in Food. EFSA Panel on Contaminants in the Food Chain (CONTAM). EFSA J. 2010, 8, 1570. Available online: https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2010.1570 (accessed on 1 February 2020).
- European Food Safety Authority. Statement on tolerable weekly intake for cadmium. EFSA J. 2011, 9, 1975. Available online: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2011.1975 (accessed on 1 February 2020).
- European Food Safety Authority. Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 2012, 10, 2985. Available online: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2012.2985 (accessed on 1 February 2020).
- Mok, J.S.; Lee, D.S.; Sim, K.B.; Yoon, H.D. Mineral content and nutritional evaluation of marine invertebrates from the coast of Korea. Korean J. Fish. Aquat. Sci. 2009, 42, 93–103. [Google Scholar] [CrossRef]
- Pan, K.; Wang, W.X. Biodynamics to explain the difference of copper body concentrations in five marine bivalve species. Environ. Sci. Technol. 2009, 43, 2137–2143. [Google Scholar] [CrossRef]
- World Health Organization (WHO), Food and Agriculture Organization of the United Nations. Joint FAO/WHO Expert Committee on Food Additives. Sixty-Seventh Meeting. Rome, 20–29 June 2006. Available online: http://www.fao.org/3/a-at874e.pdf (accessed on 1 February 2020).
- Pan, K.; Wang, W. Allometry of cadmium and zinc concentrations and bioaccumulation in the scallop Chlamysnobilis. Mar. Ecol. Prog. Ser. 2008, 365, 115–126. [Google Scholar] [CrossRef]
- Suzuki, T.; Nakamura, A.; Satoh, Y.; Inai, C.; Furukohri, T.; Arita, T. Primary structure of chain I of the heterodimeric hemoglobin from the blood clam Barbatia virescens. J. Protein Chem. 1992, 11, 629–633. [Google Scholar] [CrossRef]
- Lai, J.F.; Dobbs, J.; Dunn, M.A. Evaluation of clams as a food source of iron: Total iron, heme iron, aluminum, and in vitro iron bioavailability in live and processed clams. J. Food Compos. Anal. 2012, 25, 47–55. [Google Scholar] [CrossRef]
- Taniguchi, C.N.; Dobbs, J.; Dunn, M.A. Heme iron, non-hem iron, and mineral content of blood clams (Anadora spp.) compared to Manila clams (V. philippinarum), Pacific oysters (C. gigas), and beef liver (B. taurus). J. Food Compos. Anal. 2017, 7, 49–55. [Google Scholar] [CrossRef]
- Lafabrie, C.; Pergent, G.; Kantin, R.; Pergent-Martini, C.; Gonzalez, J.L. Trace metals assessment in water, sediment, mussel and seagrass species--validation of the use of Posidonia oceanica as a metal biomonitor. Chemosphere 2007, 68, 2033–2039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnakumar, P.K.; Qurban, M.A.; Stiboller, M.; Nachman, K.E.; Joydas, T.V.; Manikandan, K.P.; Mushir, S.A.; Francesconi, K.A. Arsenic and arsenic species in shellfish and finfish from the western Arabian Gulf and consumer health risk assessment. Sci. Total Environ. 2016, 566, 1235–1244. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Evaluation of Certain Contaminants in Food. Seventy-Second Meeting of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series 2011. 959. Available online: https://apps.who.int/iris/bitstream/handle/10665/44514/WHO_TRS_959_eng.pdf?sequence=1&isAllowed=y (accessed on 1 February 2020).
- Tao, H.C.; Zhao, K.Y.; Ding, W.Y.; Li, J.B.; Liang, P.; Wu, S.C.; Wong, M.H. The level of mercury contamination in mariculture sites at the estuary of Pearl River and the potential health risk. Environ. Pollut. 2016, 219, 829–836. [Google Scholar] [CrossRef]
- García-Hernández, J.; Ortega-Vélez, M.I.; Contreras-Paniagua, A.D.; Aguilera-Márquez, D.; Leyva-García, G.; Torre, J. Mercury concentrations in seafood and the associated risk in women with high fish consumption from coastal villages of Sonora, Mexico. Food Chem. Toxicol. 2018, 120, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.; Kim, S.; Park, H.; Jung, S.; Lee, S.; Kim, Y.; Choi, M. Exposure assessment for methyl and total mercury from seafood consumption in Korea, 2005 to 2008. J. Environ. Monit. 2011, 13, 2400–2405. [Google Scholar] [CrossRef]
- Burger, J.; Gochfeld, M. Mercury and selenium levels in 19 species of saltwater fish from New Jersey as a function of species, size, and season. Sci. Total Environ. 2011, 409, 1418–1429. [Google Scholar] [CrossRef] [Green Version]
- Olmedo, P.; Pla, A.; Hernández, A.F.; Barbier, F.; Ayouni, L.; Gil, F. Determination of toxic elements (mercury, cadmium, lead, tin and arsenic) in fish and shellfish samples. Risk assessment for the consumers. Environ. Int. 2013, 59, 63–72. [Google Scholar] [CrossRef]
- Peterson, S.A.; Ralston, N.V.C.; Peck, D.V.; van Sickle, J.; Robertson, J.D.; Spate, V.L.; Morris, J.S. How might selenium moderate the toxic effects of mercury in stream fish of the western U.S.? Environ. Sci. Technol. 2009, 43, 3919–3925. [Google Scholar] [CrossRef]
- Ralston, N.V.C.; Blackwell, J.L.; Raymond, L.J. Importance of molar ratios in selenium-dependent protection against methylmercury toxicity. Biol. Trace Elem. Res. 2007, 119, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Ralston, N.V.C. Selenium health benefit values as seafood safety criteria. EcoHealth 2008, 5, 442–455. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No 1881/2006. Commission Regulation (EC) No. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, 364, 5–24. Available online: http://extwprlegs1.fao.org/docs/pdf/eur68134.pdf (accessed on 1 February 2020).
- Chelomin, V.P.; Bobkova, E.A.; Lukyanova, O.N.; Chekmasova, N.M. Cadmium-induced alterations in essential trace element homoeostasis in the tissues of scallop Mizuhopectenyessoensis. Camp. Biochem. Physiol. 1995, 110, 329–335. [Google Scholar] [CrossRef]
- Kim, M.; Wolt, J.D. Probabilistic risk assessment of dietary cadmium in the South Korean population. Food Addit. Contam. Part A 2011, 28, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Ortea, I.; Gallardo, J.M. Investigation of production method, geographical origin and species authentication in commercially relevant shrimps using stable isotope ratio and/or multi-element analyses combined with chemometrics: An exploratory analysis. Food Chem. 2015, 170, 145–153. [Google Scholar] [CrossRef]
- Bilandžić, N.; Sedak, M.; Čalopek, B.; Džafić, N.; Ostojić, D.M.; Potočnjak, D. Metal Content in Four Shellfish Species from the Istrian Coast of Croatia. Bull. Environ. Contam. Toxicol. 2015, 95, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Loaiza, I.; Pillet, M.; De Boeck, G.; De Troch, M. Peruvian scallop Argopecten purpuratus: From a key aquaculture species to a promising biondicator species. Chemosphere 2020, 239, 124767. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.; Shim, W.J.; Jang, M.; Han, G.M.; Hong, S.H. Abundance and characteristics of microplastics in market bivalves from South Korea. Environ. Pollut. 2019, 245, 1107–1116. [Google Scholar] [CrossRef]
- The Korean Nutrition Society (KNS). Dietary Reference Intakes for Koreans. Seoul, South Korea. 2005. Available online: http://www.kns.or.kr (accessed on 1 February 2020).
- European Food Safety Authority. Scientific opinion on dietary reference values for copper. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). EFSA J. 2015, 13, 4253. Available online: https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2015.4253 (accessed on 1 February 2020). [CrossRef]
- European Food Safety Authority. Tolerable Upper Intake Levels for Vitamins and Minerals. Scientific Committee on Food, Scientific Panel on Dietetic Products, Nutrition and Allergies. 2006. Available online: http://www.efsa.europa.eu/sites/default/files/efsa_rep/blobserver_assets/ndatolerableuil.pdf (accessed on 1 February 2020).
- European Food Safety Authority. Scientific opinion on dietary reference values for cobalamin (vitamin B12). EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). EFSA J. 2015, 13, 4150. Available online: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2015.4150 (accessed on 1 February 2020).
- European Food Safety Authority. Scientific opinion on dietary reference values for chromium. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). EFSA J. 2014, 12, 3845. Available online: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2014.3845 (accessed on 1 February 2020). [CrossRef] [Green Version]
- Babaahmadifooladi, M.; Jacxsens, L.; Van de Wiele, T.; Du Laing, G. Gap analysis of nickel bioaccessibility and bioavailability in different food matrices and its impact on the nickel exposure assessment. Food Res. Int. 2020, 129, 108866. [Google Scholar] [CrossRef] [Green Version]
- Liao, W.; Wang, G.; Li, K.; Zhao, W. Change of Arsenic Speciation in Shellfish after Cooking and Gastrointestinal Digestion. J. Agric. Food Chem. 2018, 66, 7805–7814. [Google Scholar] [CrossRef] [PubMed]
- Amiard, J.C.; Amiard-Triqueta, C.; Charbonnier, L.; Mesnila, A.; Rainbow, P.S.; Wang, W.X. Bioaccessibility of essential and non-essential metals in commercial shellfish from Western Europe and Asia. Food Chem. Toxicol. 2008, 6, 2010–2022. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Wang, W.X. Oral bioaccessibility of toxic metals in contaminated oysters and relationships with metal internal sequestration. Ecotoxicol. Environ. Saf. 2014, 110, 261–268. [Google Scholar] [CrossRef]
- Mihucz, V.G.; Tatar, E.; Virag, I.; Zang, C.; Jao, Y.; Zaray, G. Arsenic removal from rice by washing and cooking with water. Food Chem. 2007, 105, 1718–1725. [Google Scholar] [CrossRef]
Element | Venerupis Philippinarum (n = 15) | Anandara Broughtonii (n = 7) | Tegillarca Granosa (n = 12) | Argopecten Irradians (n = 8) | Mizohopecten Yessoensis (n = 6) |
---|---|---|---|---|---|
mg/g | |||||
Ca | 0.58 ± 0.22 | 0.44 ± 0.19 | 0.75 ± 0.46 | 0.54 ± 0.15 | 0.20 ± 0.06 |
Mg | 0.40 ± 0.06 | 0.56 ± 0.16 | 0.50 ± 0.10 | 0.46 ± 0.04 | 0.39 ± 0.08 |
K | 2.50 ± 0.47 | 1.98 ± 0.52 | 2.50 ± 0.60 | 2.46 ± 0.94 | 2.50 ± 0.99 |
Na | 3.63 ± 0.49 | 4.06 ± 0.78 | 2.95 ± 0.58 | 4.10 ± 0.56 | 2.59 ± 1.38 |
µg/g | |||||
Co | 0.15 ± 0.03 | 0.05 ± 0.03 | 0.06 ± 0.02 | 0.07 ± 0.01 | 0.03 ± 0.01 |
Cr | 0.08 ± 0.03 | 0.08 ± 0.04 | 0.10 ± 0.04 | 0.06 ± 0.04 | 0.07 ± 0.01 |
Cu | 0.76 ± 0.12 | 1.06 ± 0.64 | 1.21 ± 0.59 | 0.75 ± 0.15 | 1.39 ± 0.91 |
Mn | 1.32 ± 0.50 | 3.59 ± 2.32 | 3.72 ± 1.72 | 25.15 ± 3.10 | 0.57 ± 0.14 |
Ni | 0.58 ± 0.18 | 0.08 ± 0.03 | 0.12 ± 0.05 | 0.04 ± 0.01 | 0.74 ± 0.11 |
Se | 0.52 ± 0.09 | 0.35 ± 0.14 | 0.53 ± 0.13 | 0.37 ± 0.14 | 0.42 ± 0.03 |
Zn | 8.37 ± 0.98 | 11.75 ± 3.07 | 12.46 ± 2.63 | 43 ± 19 | 14.5 ± 5.0 |
Fe | 35.0 ± 22.0 | 55.8 ± 29.1 | 68.6 ± 23.0 | 14.0 ± 3.3 | 15.4 ± 14 |
Toxic elements | |||||
As | 2.61 ± 0.30 | 1.41 ± 0.77 | 1.49 ± 0.49 | 1.07 ± 0.29 | 0.99 ± 0.23 |
Cd | 0.11 ± 0.04 | 0.50 ± 0.48 | 0.86 ± 0.54 | 0.44 ± 0.21 | 2.05 ± 0.55 |
Hg | 0.05 ± 0.03 | 0.03 ± 0.01 | 0.05 ± 0.03 | 0.03 ± 0.01 | 0.03 ± 0.02 |
Pb | 0.03 ± 0.07 | 0.09 ± 0.07 | 0.12 ±0.13 | 0.08 ± 0.04 | 0.09 ± 0.02 |
Exposure (μg/kg BW per day) | Risk | |||||
---|---|---|---|---|---|---|
Element | Mean ± S.D. | P50 | P75 | P90 | P99 | Risk Characterization MOE for P90 or TWI) |
V. philippinarum (Manila clam) | ||||||
Cd | 0.003 ± 0.006 | 0.001 | 0.003 | 0.06 | 0.024 | 0% population exceeding TWI = 2.5 μg/kg BW per week |
Pb * | 0.001 ± 0.004 | 0 | 0.001 | 0.002 | 0.016 | MOE P90 with BMDL01 12 µg/kgBW.day = 5581 |
Hg | 0.001 ± 0.003 | 0.000 | 0.001 | 0.003 | 0.014 | 0% population exceeding TWI = 4 μg/kg BW per week |
M. yessoensis (Yesso scallop) | ||||||
Cd | 0.088 ± 0.402 | 0.008 | 0.047 | 0.178 | 1.215 | 5.30% population exceeding TWI = 2.5 μg/kg BW per week |
Pb | 0.004 ± 0.017 | 0 | 0.002 | 0.008 | 0.056 | MOE P90 with BMDL01 12 µg/kgBW.day = 1448 |
Hg | 0.001 ± 0.007 | 0.000 | 0.001 | 0.002 | 0.017 | 0% population exceeding TWI = 4 μg/kg BW per week |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutić, J.; Jovanović, V.; Jacxsens, L.; Tondeleir, J.; Ristivojević, P.; Djurdjić, S.; Rajković, A.; Veličković, T.Ć. Chemical Content of Five Molluscan Bivalve Species Collected from South Korea: Multivariate Study and Safety Evaluation. Foods 2021, 10, 2690. https://doi.org/10.3390/foods10112690
Mutić J, Jovanović V, Jacxsens L, Tondeleir J, Ristivojević P, Djurdjić S, Rajković A, Veličković TĆ. Chemical Content of Five Molluscan Bivalve Species Collected from South Korea: Multivariate Study and Safety Evaluation. Foods. 2021; 10(11):2690. https://doi.org/10.3390/foods10112690
Chicago/Turabian StyleMutić, Jelena, Vesna Jovanović, Liesbeth Jacxsens, Jannes Tondeleir, Petar Ristivojević, Sladjana Djurdjić, Andreja Rajković, and Tanja Ćirković Veličković. 2021. "Chemical Content of Five Molluscan Bivalve Species Collected from South Korea: Multivariate Study and Safety Evaluation" Foods 10, no. 11: 2690. https://doi.org/10.3390/foods10112690
APA StyleMutić, J., Jovanović, V., Jacxsens, L., Tondeleir, J., Ristivojević, P., Djurdjić, S., Rajković, A., & Veličković, T. Ć. (2021). Chemical Content of Five Molluscan Bivalve Species Collected from South Korea: Multivariate Study and Safety Evaluation. Foods, 10(11), 2690. https://doi.org/10.3390/foods10112690