Impact of Pre-Mortem Factors on Meat Quality: An Update
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Matarneh, S.K.; Silva, S.L.; Gerrard, D.E. New insights in muscle biology that alter meat quality. Annu. Rev. Anim. Biosci. 2021, 9, 355–377. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Rivas, P.A.; Chauhan, S.S.; Ha, M.; Fegan, N.; Dunshea, F.R.; Warner, R.D. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci. 2020, 162, 108025. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, G.; Ushio, H.; Ji, H. Application of magnetic resonance technologies in aquatic biology and seafood science. Fish. Sci. 2019, 85, 1–17. [Google Scholar] [CrossRef]
- Ellies-Oury, M.-P.; Hocquette, J.-F.; Chriki, S.; Conanec, A.; Farmer, L.; Chavent, M.; Saracco, J. Various statistical approaches to assess and predict carcass and meat quality traits. Foods 2020, 9, 525. [Google Scholar] [CrossRef] [PubMed]
- Biondi, L.; Randazzo, C.L.; Russo, N.; Pino, A.; Natalello, A.; Van Hoorde, K.; Caggia, C. Dietary supplementation of tannin-extracts to lambs: Effects on meat fatty acids composition and stability and on microbial characteristics. Foods 2019, 8, 469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Needham, T.; Gous, R.M.; Lambrechts, H.; Pieterse, E.; Hoffman, L.C. Combined effect of dietary protein, ractopamine, and immunocastration on boar taint compounds, and using testicle parameters as an indicator of success. Foods 2020, 9, 1665. [Google Scholar] [CrossRef] [PubMed]
- Dalle Zotte, A.; Gleeson, E.; Franco, D.; Cullere, M.; Lorenzo, J.M. Proximate composition, amino acid profile, and oxidative stability of slow-growing indigenous chickens compared with commercial broiler chickens. Foods 2020, 9, 546. [Google Scholar] [CrossRef] [PubMed]
- Gkarane, V.; Ciulu, M.; Altmann, B.A.; Schmitt, A.O.; Mörlein, D. The effect of algae or insect supplementation as alternative protein sources on the volatile profile of chicken meat. Foods 2020, 9, 1235. [Google Scholar] [CrossRef] [PubMed]
- Tuell, J.R.; Park, J.-Y.; Wang, W.; Cooper, B.; Sobreira, T.; Cheng, H.-W.; Kim, Y.H.B. Effects of photoperiod regime on meat quality, oxidative stability, and metabolites of postmortem broiler fillet (M. Pectoralis major) muscles. Foods 2020, 9, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ripoll, G.; Alcalde, M.J.; Argüello, A.; Córdoba, M.d.G.; Panea, B. Effect of rearing system on the straight and branched fatty acids of goat milk and meat of suckling kids. Foods 2020, 9, 471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ripoll, G.; Alcalde, M.J.; Córdoba, M.G.; Casquete, R.; Argüello, A.; Ruiz-Moyano, S.; Panea, B. Influence of the use of milk replacers and pH on the texture profiles of raw and cooked meat of suckling kids. Foods 2019, 8, 589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, B.; Kaneko, G.; Xie, J.; Li, Z.; Tian, J.; Gong, W.; Zhang, K.; Xia, Y.; Yu, E.; Wang, G. Value-added carp products: Multi-class evaluation of crisp grass carp by machine learning-based analysis of blood indexes. Foods 2020, 9, 1615. [Google Scholar] [CrossRef] [PubMed]
- Mwangi, F.W.; Charmley, E.; Gardiner, C.P.; Malau-Aduli, B.S.; Kinobe, R.T.; Malau-Aduli, A.E. Diet and genetics influence beef cattle performance and meat quality characteristics. Foods 2019, 8, 648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, H. Sustainable Food Systems Concept and Framework; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- Prakash, B.; Singh, P.P.; Kumar, A.; Gupta, V. Prospects of omics technologies and bioinformatics approaches in food science. In Functional and Preservative Properties of Phytochemicals; Elsevier: Amsterdam, The Netherlands, 2020; pp. 317–340. [Google Scholar]
- Chen, L.; Liu, J.; Kaneko, G.; Xie, J.; Wang, G.; Yu, D.; Li, Z.; Ma, L.; Qi, D.; Tian, J. Quantitative phosphoproteomic analysis of soft and firm grass carp muscle. Food Chem. 2020, 303, 125367. [Google Scholar] [CrossRef] [PubMed]
- Yu, E.; Fu, B.; Wang, G.; Li, Z.; Ye, D.; Jiang, Y.; Ji, H.; Wang, X.; Yu, D.; Ehsan, H.; et al. Proteomic and metabolomic basis for improved textural quality in crisp grass carp (Ctenopharyngodon idellus C. et V) fed with a natural dietary pro-oxidant. Food Chem. 2020, 325, 126906. [Google Scholar] [CrossRef] [PubMed]
- Hocquette, J.-F.; Ellies-Oury, M.-P.; Legrand, I.; Pethick, D.; Gardner, G.; Wierzbicki, J.; Polkinghorne, R.J.; Hocquette, J.-F.; Polkinghorne, R. Research in beef tenderness and palatability in the era of big data. Meat Muscle Biol. 2020, 4, 4. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaneko, G. Impact of Pre-Mortem Factors on Meat Quality: An Update. Foods 2021, 10, 2749. https://doi.org/10.3390/foods10112749
Kaneko G. Impact of Pre-Mortem Factors on Meat Quality: An Update. Foods. 2021; 10(11):2749. https://doi.org/10.3390/foods10112749
Chicago/Turabian StyleKaneko, Gen. 2021. "Impact of Pre-Mortem Factors on Meat Quality: An Update" Foods 10, no. 11: 2749. https://doi.org/10.3390/foods10112749
APA StyleKaneko, G. (2021). Impact of Pre-Mortem Factors on Meat Quality: An Update. Foods, 10(11), 2749. https://doi.org/10.3390/foods10112749