Evaluating the Lipid Quality of Yellowfin Tuna (Thunnus albacares) Harvested from Different Oceans by Their Fatty Acid Signatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sampling
2.3. Intramuscular Total Lipid Content and Fatty Acid Composition
2.4. Lipid Quality Indices
2.5. Statistical Analysis
3. Results and Discussion
3.1. Lipid Content and Fatty Acid Profile
3.2. Nutritional Value
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2020. Available online: https://www.fao.org/state-of-fisheries-aquaculture (accessed on 19 July 2021).
- WWF. Tuna. Available online: https://www.worldwildlife.org/industries/tuna (accessed on 12 May 2021).
- EUMOFA. The EU Fish Market. 2020. Available online: https://www.eumofa.eu/pt/the-eu-fish-market-2020-edition-is-now-online (accessed on 19 July 2021).
- NFI. Top 10 List for Seafood Consumption-About Seafood. Available online: https://aboutseafood.com/about/top-ten-list-for-seafood-consumption/ (accessed on 19 July 2021).
- GVR. Global Canned Tuna Market Size & Share Report, 2020–2027. Available online: https://www.grandviewresearch.com/industry-analysis/canned-tuna-market (accessed on 19 July 2021).
- Keim, S.A.; Branum, A.M. Dietary intake of polyunsaturated fatty acids and fish among US children 12–60 months of age. Matern. Child Nutr. 2015, 11, 987–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vannice, G.; Rasmussen, H. Position of the academy of nutrition and dietetics: Dietary fatty acids for healthy adults. J. Acad. Nutr. Diet. 2014, 114, 136–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calder, P.C. n-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin. Nutr. 2006, 83, 1505S–1519S. [Google Scholar] [CrossRef]
- Khalili Tilami, S.; Sampels, S. Nutritional value of fish: Lipids, proteins, vitamins, and minerals. Rev. Fish. Sci. Aquac. 2018, 26, 243–253. [Google Scholar] [CrossRef]
- Korsmeyer, K.E.; Dewar, H.; Lai, N.C.; Graham, J.B. The aerobic capacity of tunas: Adaptation for multiple metabolic demands. Comp. Biochem. Physiol. -A Physiol. 1996, 113, 17–24. [Google Scholar] [CrossRef]
- Zudaire, I.; Murua, H.; Grande, M.; Pernet, F.; Bodin, N. Accumulation and mobilization of lipids in relation to reproduction of yellowfin tuna (Thunnus albacares) in the Western Indian Ocean. Fish. Res. 2014, 160, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Al-Busaidi, M.; Yesudhason, P.; Al-Rabhi, W.; Al-Harthy, K.; Al-Waili, A.; Al-Mazrooei, N.; Al-Habsi, S. Fatty acid profile and selected chemical contaminants in yellowfin tuna from the Arabian Sea. Int. J. Food Prop. 2015, 18, 2764–2775. [Google Scholar] [CrossRef] [Green Version]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipids from animals tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Ozório, R.O.A.; Escorcio, C.; Bessa, R.J.B.; Ramos, B.; Gonçalves, J.F.M. Comparative effects of dietary l-carnitine supplementation on diploid and triploid rainbow trout (Oncorhynchus mykiss). Aquac. Nutr. 2012, 18, 189–201. [Google Scholar] [CrossRef]
- Bondia-Pons, I.; Moltó-Puigmartí, C.; Castellote, A.I.; López-Sabater, M.C. Determination of conjugated linoleic acid in human plasma by fast gas chromatography. J. Chromatogr. A 2007, 1157, 422–429. [Google Scholar] [CrossRef]
- Arakawa, K.; Sagai, M. Species differences in lipid peroxide levels in lung tissue and investigation of their determining factors. Lipids 1986, 21, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs: II. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Moradi, Y.; Bakar, J.; Motalebi, A.A.; Syed Muhamad, S.H.; Che Man, Y. A review on fish lipid: Composition and changes during cooking methods. J. Aquat. Food Prod. Technol. 2011, 20, 379–390. [Google Scholar] [CrossRef]
- Peng, S.; Chen, C.; Shi, Z.; Lu, W. Amino acid and fatty acid composition of the muscle tissue of Yellowfin Tuna (Thunnus albacares) and Bigeye Tuna (Thunnus obesus). J. Food Nutr. Res. 2013, 1, 42–45. [Google Scholar] [CrossRef]
- Sardenne, F.; Kraffe, E.; Amiel, A.; Fouché, E.; Debrauwer, L.; Ménard, F.; Bodin, N. Biological and environmental influence on tissue fatty acid compositions in wild tropical tunas. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2017, 204, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Bahurmiz, O.M. Proximate and fatty acid composition of three tuna species from Hadhramout coast of the Arabian Sea, Yemen. Hadhramout Univ. J. Nat. Appl. Sci. 2019, 16, 63–71. [Google Scholar]
- Murthy, L.N.; Rao, B.M.; Prasad, M.M. Biochemical and microbiological evaluation of tuna Loin processing waste. Fish. Technol. 2012, 49, 45–49. [Google Scholar]
- Biji, K.B.; Kumari, K.R.R.; Anju, K.A.; Mathew, S.; Ravishankar, C.N. Quality Characteristics of Yellowfin Tuna (Thunnus albacares) in the fish landing Centre at Cochin, India. Fish. Technol. 2006, 53, 313–319. [Google Scholar]
- Vaske, T., Jr.; Castello, J.P. Conteúdo estomacal da albacora-laje, Thunnus albacares, durante o inverno e primavera no sul do Brasil. Rev. Bras. Biol. 1998, 58, 639–647. [Google Scholar] [CrossRef] [Green Version]
- Vaske, T., Jr.; Vooren, C.M.; Lessa, R.P. Feeding habits of yellowfin tuna (Thunnus albacares), and wahoo (Acanthocybium solandri) in the saint peter and saint Paul archipelago, Brazil. Bol. Inst. Pesca 2003, 29, 173–181. [Google Scholar]
- Olson, R.; Duffy, L.; Kuhnert, P.; Galván-Magaña, F.; Bocanegra-Castillo, N.; Alatorre-Ramírez, V. Decadal diet shift in yellowfin tuna Thunnus albacares suggests broad-scale food web changes in the eastern tropical Pacific Ocean. Mar. Ecol. Prog. Ser. 2014, 497, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Tocher, D.R.; Bendiksen, E.Å.; Campbell, P.J.; Bell, J.G. The role of phospholipids in nutrition and metabolism of teleost fish. Aquaculture 2008, 280, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Dalsgaard, J.; St. John, M.; Kattner, G.; Müller-Navarra, D.; Hagen, W. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 2003, 46, 225–340. [Google Scholar] [CrossRef] [PubMed]
- Tocher, D.R. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish. Sci. 2003, 11, 107–184. [Google Scholar] [CrossRef]
- British Department of Health. Nutritional Aspects of Cardiovascular Disease; Report on Health and Social Subjects, No. 46; HMSO: London, UK, 1994.
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Cordain, L.; Eaton, S.B.; Sebastian, A.; Mann, N.; Lindeberg, S.; Watkins, B.A.; O’Keefe, J.H.; Brand-Miller, J. Origins and evolution of the Western diet: Health implications for the 21st century. Am. J. Clin. Nutr. 2005, 81, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- EFSA. Dietary Reference Values for nutrients Summary Report; EFSA Supporting Publications: Parma, Italy, 2017; p. 14. [Google Scholar]
Ocean of Origin | Atlantic | Indian | Pacific |
---|---|---|---|
Sample size (n) | 15 | 15 | 15 |
Weight (mean ± standard deviation; kg) | 31.7 ± 4.9 | 50.6 ± 5.8 | 37.3 ± 12.0 |
Fishing year | 2020 | 2020 | 2020 |
Fishing periods | 24 September–26 October | 4 April–14 June | 20 March–23 April |
FAO fishing areas | 34 | 51 | 71 |
Atlantic | Indian | Pacific | SEM | p | ||||
---|---|---|---|---|---|---|---|---|
TL | 0.85 | 1.30 | 1.11 | 0.571 | 0.109 | |||
Partial sums (mg/100 g and (% of total FA)) | ||||||||
Σ SFA | 132.3 b | (36.7%) | 355.5 a | (43.8%) | 329.6 a,b | (43.5%) | 59.14 | 0.020 |
Σ MUFA | 55.6 b | (14.9%) | 180.2 a | (19.8%) | 145.2 a,b | (17.9%) | 33.35 | 0.033 |
Σ PUFA | 171.1 | (48.3%) | 238.1 | (36.3%) | 278.4 | (38.6%) | 34.24 | 0.094 |
Σ n-3 PUFA | 150.0 | (42.4%) | 196.3 | (29.6%) | 232.1 | (32.2%) | 28.99 | 0.146 |
Σ n-6 PUFA | 21.1 b | (5.98%) | 41.8 a | (6.77%) | 46.3 a | (6.40%) | 5.331 | 0.004 |
Fatty acid ratios and lipid quality indices | ||||||||
PUFA/SFA 1 | 1.322 a | 0.854 b | 0.893 b | 0.203 | <0.001 | |||
n3/n6 2 | 7.122 a | 4.530 b | 5.076 b | 0.634 | <0.001 | |||
h/H 3 | 2.510 a | 1.724 b | 1.693 b | 0.312 | <0.001 | |||
AI 4 | 0.436 b | 0.643 a | 0.640 a | 0.095 | <0.001 | |||
TI 5 | 0.253 b | 0.425 a | 0.378 a | 0.075 | <0.001 | |||
PI 6 | 350.6 a | 250.9 b | 269.0 b | 44.52 | <0.001 |
Ocean | Statistics | ||||
---|---|---|---|---|---|
Atlantic | Indian | Pacific | RSD | p | |
C10:0 | 0.34 a | 0.33 a | 0.08 b | 0.324 | 0.004 |
C14:0 | 1.13 b | 1.56 a,b | 1.85 a | 0.488 | <0.001 |
C15:0 | 0.42 b | 0.65 a | 0.65 a | 0.128 | <0.001 |
C16:0 | 23.1 b | 29.3 a | 28.6 a | 2.545 | <0.001 |
C17:0 | 0.72 b | 0.88 a | 0.99 a | 0.141 | <0.001 |
C18:0 | 10.5 | 10.3 | 10.2 | 1.172 | 0.722 |
C20:0 | 0.14 c | 0.23 b | 0.34 a | 0.080 | <0.001 |
C21:0 | 0.03 c | 0.05 b | 0.07 a | 0.015 | <0.001 |
C22:0 | 0.10 c | 0.15 b | 0.24 a | 0.057 | <0.001 |
C23:0 | 0.05 c | 0.07 b | 0.10 a | 0.022 | <0.001 |
C24:0 | 0.22 b | 0.23 b | 0.35 a | 0.043 | <0.001 |
C16:1 n-7 | 1.30 b | 2.88 a | 3.32 a | 0.974 | <0.001 |
C17:1 n-7 | 0.07 | 0.11 | 0.06 | 0.053 | 0.058 |
C18:1 n-11 | 0.08 b | 0.13 a | 0.12 a | 0.031 | <0.001 |
C18:1 n-9 | 12.5 b | 15.8 a | 13.1 b | 2.864 | 0.007 |
C20:1n-9 | 0.42 b | 0.48 a,b | 0.63 a | 0.206 | 0.022 |
C22:1 n-9 | 0.04 | 0.05 | 0.05 | 0.016 | 0.329 |
C24:1 n-9 | 0.51 a,b | 0.40 b | 0.58 a | 0.119 | <0.001 |
C18:2 n-6 | 0.90 b | 0.99 a,b | 1.05 a | 0.150 | 0.022 |
C18:3 n-6 | 0.03 b | 0.06 a | 0.06 a | 0.016 | 0.001 |
C20:2 n-6 | 0.22 b | 0.32 a | 0.23 b | 0.050 | <0.001 |
C20:3 n-6 | 0.10 b | 0.18 a | 0.18 a | 0.025 | <0.001 |
C20:4 n-6 | 4.75 | 5.25 | 4.89 | 1.385 | 0.600 |
C22:2 n-6 | 0.02 | 0.02 | 0.03 | 0.008 | 0.482 |
C18:3 n-3 | 0.19 b | 0.27 a,b | 0.32 a | 0.102 | 0.004 |
C20:3 n-3 | 0.09 | 0.09 | 0.09 | 0.027 | 0.871 |
C20:5 n-3 | 3.72 a,b | 3.34 b | 4.03 a | 0.507 | 0.003 |
C22:6 n-3 | 38.4 a | 25.9 b | 27.8 b | 4.994 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domingues, V.F.; Quaresma, M.; Sousa, S.; Rosas, M.; Ventoso, B.; Nunes, M.L.; Delerue-Matos, C. Evaluating the Lipid Quality of Yellowfin Tuna (Thunnus albacares) Harvested from Different Oceans by Their Fatty Acid Signatures. Foods 2021, 10, 2816. https://doi.org/10.3390/foods10112816
Domingues VF, Quaresma M, Sousa S, Rosas M, Ventoso B, Nunes ML, Delerue-Matos C. Evaluating the Lipid Quality of Yellowfin Tuna (Thunnus albacares) Harvested from Different Oceans by Their Fatty Acid Signatures. Foods. 2021; 10(11):2816. https://doi.org/10.3390/foods10112816
Chicago/Turabian StyleDomingues, Valentina F., Mário Quaresma, Sara Sousa, Mónica Rosas, Breixo Ventoso, Maria Leonor Nunes, and Cristina Delerue-Matos. 2021. "Evaluating the Lipid Quality of Yellowfin Tuna (Thunnus albacares) Harvested from Different Oceans by Their Fatty Acid Signatures" Foods 10, no. 11: 2816. https://doi.org/10.3390/foods10112816