Effect of Dietary Curcumin Supplementation on Duck Growth Performance, Antioxidant Capacity and Breast Meat Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Birds and Husbandry
2.3. Sample Collection
2.4. Antioxidant Enzyme Assay
2.5. Determination of pH and Color
2.6. Shear Force Assay
2.7. Determination of Drip Loss
2.8. Determination of Cooking Loss
2.9. Determination of Water Mobility and Distribution
2.10. Thiobarbituric Acid Reactive Substance (TBARS) Assay
2.11. Determination of Carbonyl Content
2.12. Myofibrillar Protein (MP) Sulfhydryl Content Assay
2.13. Determination of Myofibrillar Protein Solubility
2.14. Determination of Volatile Compounds
2.15. Statistical Analysis
3. Results
3.1. Growth Performance of Ducks
3.2. Antioxidant Enzyme
3.3. Meat Quality
3.3.1. Changes in Meat Colour
3.3.2. pH Values Changes
3.3.3. Changes in Shear Force, Drip Loss, Cooking Loss and Water Distribution
3.4. Changes of TBARS, Carbonyl and Sulfhydryl Contents
3.5. Solubility of Myofibrillar Protein
3.6. Particle Size of Myofibrillar Protein
3.7. Volatile Compounds Content
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, M.A.; Ali, S.; Yang, H.; Kamboh, A.A.; Ahmad, Z.; Tume, R.K.; Zhou, G. Improvement of color, texture and food safety of ready-to-eat high pressure-heat treated duck breast. Food Chem. 2019, 277, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Lima, D.M.; Rangel, A.; Urbano, S.; Mitzi, G.; Moreno, G.M. Dxidação lipídica da carne ovina. Acta Vet. Bras. 2013, 7, 14–28. [Google Scholar]
- Wang, Z.; He, Z.; Gan, X.; Li, H. Interrelationship among ferrous myoglobin, lipid and protein oxidations in rabbit meat during refrigerated and superchilled storage. Meat Sci. 2018, 146, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.J.; Pang, Q.; Liu, R.Q.; Yang, H.; Liu, F.J.; Wang, M.; Shan, A.S.; Feng, X.J. Dietary curcumin decreased lipid oxidation and enhanced the myofibrillar protein structure of the duck (Anas platyrhynchos) breast muscle when subjected to storage. LWT—Food Sci. Technol. 2020, 133, 109986. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Swelum, A.A.; Arif, M.; Abo Ghanima, M.M.; Shukry, M.; El-Tarabily, K.A. Curcumin, the active substance of turmeric: Its effects on health and ways to improve its bioavailability. J. Sci. Food Agric. 2021, 101, 5747–5762. [Google Scholar] [CrossRef]
- Goel, A.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin as “Curecumin”: From kitchen to clinic. Biochem. Pharmacol. 2008, 75, 787–809. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.; Gupta, R.K.; Srivastava, R. Curcumin-the yellow magic. Asian J. Appl. Sci. 2011, 4, 343–354. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Huang, H.; Zhou, L.; Li, W.; Zhou, H.; Hou, G.; Liu, J.; Hu, L. Effects of dietary supplementation with turmeric rhizome extract on growth performance, carcass characteristics, antioxidant capability, and meat quality of wenchang broiler chickens. Ital. J. Anim. Sci. 2016, 14, 345–349. [Google Scholar] [CrossRef]
- Sahin, K.; Orhan, C.; Tuzcu, Z.; Tuzcu, M.; Sahin, N. Curcumin ameloriates heat stress via inhibition of oxidative stress and modulation of Nrf2/HO-1 pathway in quail. Food Chem. Toxicol. 2012, 50, 4035–4041. [Google Scholar] [CrossRef]
- Kusmayadi, A.; Bachtiar, K.R.; Prayitno, C.H. The effects of mangosteen peel (Garcinia mangostana L.) and Turmeric (Curcuma domestica Val) flour dietary supplementation on the growth performance, lipid profile, and abdominal fat content in Cihateup ducks. Vet. World 2019, 12, 402. [Google Scholar] [CrossRef]
- Nasir, R.; Naeem, M.; Rui, Y.; Xiang, Z.; Tian, W. Effect of dietary supplementation of curcumin on growth performance, intestinal morphology and nutrients utilization of broiler chicks. J. Poult. Sci. 2013, 50, 44–52. [Google Scholar]
- Kim, D.K.; Lillehoj, H.S.; Lee, S.H.; Jang, S.I.; Bravo, D. Dietary Curcuma longa enhances resistance against Eimeria maxima and Eimeria tenella infections in chickens. Poult. Sci. 2013, 92, 2635–2643. [Google Scholar] [CrossRef]
- Liu, L.L.; He, J.H.; Xie, H.B.; Yang, Y.S.; Li, J.C.; Zou, Y. Resveratrol induces antioxidant and heat shock protein mRNA expression in response to heat stress in black-boned chickens. Poult. Sci. 2014, 93, 54–62. [Google Scholar] [CrossRef]
- Khan, R.U.; Naz, S.; Javdani, M.; Nikousefat, Z.; Selvaggi, M.; Tufarelli, V.; Laudadio, V. The use of turmeric (Curcuma longa) in poultry feed. Worlds Poult. Sci. J. 2012, 68, 97–103. [Google Scholar] [CrossRef]
- Daneshyar, M. The effect of dietary turmeric on antioxidant properties of thigh meat in broiler chickens after slaughter. Anim. Sci. J. 2012, 83, 599–604. [Google Scholar] [CrossRef]
- Jin, S.; Pang, Q.; Yang, H.; Diao, X.P.; Feng, X.J. Effects of dietary resveratrol supplementation on the chemical composition, oxidative stability and meat quality of ducks (Anas platyrhynchos). Food Chem. 2021, 363, 130263. [Google Scholar] [CrossRef]
- Han, G.; Zhang, L.; Li, Q.; Wang, Y.; Chen, Q.; Kong, B. Impacts of different altitudes and natural drying times on lipolysis, lipid oxidation and flavour profile of traditional Tibetan yak jerky. Meat Sci. 2019, 162, 108030. [Google Scholar] [CrossRef]
- Mercier, Y.; Gatellier, P.; Viau, M. Effect of dietary fat and vitamin E on colour stability and on lipid and protein oxidation in turkey meat during storage. Meat Sci. 1998, 48, 301–318. [Google Scholar] [CrossRef]
- Wang, B.; Kong, B.; Li, F.; Liu, Q.; Zhang, H.; Xia, X. Changes in the thermal stability and structure of protein from porcine longissimus dorsi induced by different thawing methods. Food Chem. 2020, 316, 126375. [Google Scholar] [CrossRef]
- Ruan, D.; Wang, W.C.; Lin, C.X.; Fouad, A.M.; Chen, W.; Xia, W.G.; Wang, S.; Luo, X.; Zhang, W.H.; Yan, S.J. Effects of curcumin on performance, antioxidation, intestinal barrier and mitochondrial function in ducks fed corn contaminated with ochratoxin A. Animal 2018, 13, 42–52. [Google Scholar] [CrossRef]
- El-Hack, A.; Mohamed, E.; Alaidaroos, B.A.; Farsi, R.M.; Abou-Kassem, D.E.; El-Saadony, M.T.; Ashour, E.A. Impacts of supplementing broiler diets with biological curcumin, zinc nanoparticles and Bacillus licheniformis on growth, carcass traits, blood indices, meat quality and cecal microbial load. Animals 2021, 11, 1878. [Google Scholar] [CrossRef]
- Rajput, N.; Ali, S.; Naeem, M.; Khan, M.A.; Wang, T. The effect of dietary supplementation with the natural carotenoids curcumin and lutein on pigmentation, oxidative stability and quality of meat from broiler chickens affected by a coccidiosis challenge. Br. Poult. Sci. 2014, 55, 501–509. [Google Scholar] [CrossRef]
- Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2019, 54, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Nawab, A.; Li, G.; Liu, W.; Lan, R.; An, L. Effect of dietary curcumin on the antioxidant status of laying hens under high- temperature condition. J. Therm. Biol. 2019, 86, 102449. [Google Scholar] [CrossRef]
- Jin, S.J.; Yang, H.; Jiao, Y.H.; Pang, Q.; Wang, Y.J.; Wang, M.; Shan, A.S.; Feng, X.J. Dietary curcumin alleviated acute ileum damage of ducks (Anas platyrhynchos) induced by AFB1 through regulating Nrf2-ARE and NF-κB signaling pathways. Foods 2021, 10, 1370. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Luo, J.Q.; Yu, B.; Zheng, P.; Huang, Z.Q.; Mao, X.B.; Chen, D.W. Dietary resveratrol supplementation improves meat quality of finishing pigs through changing muscle fiber characteristics and antioxidative status. Meat Sci. 2015, 102, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, L.; Zhao, X.H.; Chen, X.Y.; Yang, L.; Geng, Z.Y. Dietary resveratrol supplementation prevents transport-stress-impaired meat quality of broilers through maintaining muscle energy metabolism and antioxidant status. Poult. Sci. 2017, 96, 2219–2225. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Sun, S.; Bai, Y.; Luo, Z.; Li, Z.; Shi, B.; Shan, A. Effects of dietary resveratrol supplementation in sows on antioxidative status, myofiber characteristic and meat quality of offspring. Meat Sci. 2020, 167, 108176. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Z.; Lu, C.; Bai, K.; Zhang, L.; Wang, T. Effect of various levels of dietary curcumin on meat quality and antioxidant profile of breast muscle in broilers. J. Agric. Food Chem. 2015, 63, 3880–3886. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Yan, E.; He, J.; Zhong, X.; Zhang, L.; Wang, C.; Wang, T. Dietary supplemented curcumin improves meat quality and antioxidant status of intrauterine growth retardation growing pigs via Nrf2 signal pathway. Animals 2020, 10, 539. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhang, M.; Bhandari, B.; Gao, Z. Effects of malondialdehyde-induced protein modification on water functionality and physicochemical state of fish myofibrillar protein gel. Food Res. Int. 2016, 86, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Cheng, K.; Niu, Y.; Zheng, X.C.; Zhang, H.; Chen, Y.P.; Zhang, M. A comparison of natural (D-α-tocopherol) and synthetic (DL-α-tocopherol acetate) vitamin E supplementation on the growth performance, meat quality and oxidative status of broilers. Asian-Australas. J. Anim. Sci. 2016, 29, 681–688. [Google Scholar] [CrossRef] [Green Version]
- Xue, S.; Xu, X.; Shan, H.; Wang, H.; Yang, J.; Zhou, G. Effects of high-intensity ultrasound, high-pressure processing, and high-pressure homogenization on the physicochemical and functional properties of myofibrillar proteins. Innov. Food Sci. Emerg. Technol. 2018, 45, 354–360. [Google Scholar] [CrossRef]
- Zhang, M.; Xia, X.; Liu, Q.; Chen, Q.; Kong, B. Changes in microstructure, quality and water distribution of porcine longissimus muscles subjected to ultrasound-assisted immersion freezing during frozen storage. Meat Sci. 2019, 151, 24–32. [Google Scholar] [CrossRef]
- Jin, S.; Wang, M.; Yang, H.; Shan, A.; Feng, X. Dietary supplementation of resveratrol improved the oxidative stability and spatial conformation of myofibrillar protein in frozen-thawed duck breast meat. Food Biosci. 2021, 43, 101261. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Y.; Jin, S.; Pang, Q.; Shan, A.; Feng, X.J. Dietary resveratrol alleviated lipopolysaccharide-induced ileitis through Nrf2 and NF-kappaB signalling pathways in ducks (Anas platyrhynchos). J. Anim. Physiol. Anim. Nutr. 2021, 2. online ahead of print. [Google Scholar] [CrossRef]
- Karami, M.; Alimon, A.R.; Goh, Y.M. Effect of vitamin E, Andrographis paniculata and turmeric as dietary antioxidant supplementation on lipid and color stability of goat meat. Small Rumin. Res. 2011, 97, 67–71. [Google Scholar] [CrossRef]
- Kim, Y.H.; Huff-Lonergan, E.; Sebranek, J.G.; Lonergan, S.M. High-oxygen modified atmosphere packaging system induces lipid and myoglobin oxidation and protein polymerization. Meat Sci. 2010, 85, 759–767. [Google Scholar] [CrossRef]
- Li, F.; Wang, B.; Kong, B.; Shi, S.; Xia, X. Decreased gelling properties of protein in mirror carp (Cyprinus carpio) are due to protein aggregation and structure deterioration when subjected to freeze-thaw cycles. Food Hydrocoll. 2019, 97, 105223. [Google Scholar] [CrossRef]
- Hu, H.; Fan, X.; Zhou, Z.; Xu, X.; Fan, G.; Wang, L.; Huang, X.; Pan, S.; Zhu, L. Acid-induced gelation behavior of soybean protein isolate with high intensity ultrasonic pre-treatments. Ultrason. Sonochem. 2013, 20, 187–195. [Google Scholar] [CrossRef]
- Cheng, J.; Xu, L.; Xiang, R.; Liu, X.; Zhu, M. Effects of mulberry polyphenols on oxidation stability of sarcoplasmic and myofibrillar proteins in dried minced pork slices during processing and storage. Meat Sci. 2020, 160, 107973. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Song, H.; Ma, C. Aroma-active compounds of beijing roast duck. Flavour Fragr. J. 2009, 24, 186–191. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.; Zhang, D.; Shen, Q.; Pan, T.; Hui, T.; Ma, J. Characterization of key aroma compounds in beijing roasted duck by gas chromatography-olfactometry-mass spectrometry, odor-activity values, and aroma-recombination experiments. J. Agric. Food Chem. 2019, 67, 5847–5856. [Google Scholar] [CrossRef] [PubMed]
- Muriel, E.; Antequera, T.; Petron, M.J.; Andres, A.I.; Ruiz, J. Volatile compounds in Iberian dry-cured loin. Meat Sci. 2004, 68, 391–400. [Google Scholar] [CrossRef]
- North, M.K.; Zotte, A.D.; Hoffman, L.C. The effects of dietary quercetin supplementation on the meat quality and volatile profile of rabbit meat during chilled storage. Meat Sci. 2019, 158, 107905. [Google Scholar] [CrossRef]
- Wang, G.S. Medical uses of mylabris in ancient China and recent studies. J. Ethnopharmacol. 1989, 26, 147–162. [Google Scholar] [CrossRef]
- Wang, Y.J.; Wang, M.; Shan, A.S.; Feng, X.J. Avian host defense cathelicidins: Structure, expression, biological functions, and potential therapeutic applications. Poult. Sci. 2020, 99, 6434–6445. [Google Scholar] [CrossRef]
- Jin, S.; Yang, H.; Liu, F.; Diao, X.; Pang, Q.; Liu, R.; Wang, M.; Wang, Y.; Liu, M.; Zhou, X.; et al. Effect of dietary curcumin on the growth performance, serum antioxidation and meat quality of ducks (Anas platyrhynchos). Available online: https://www.researchsquare.com/article/rs-58095/v1 (accessed on 18 August 2020).
Items | Groups | SEM | p-Value | p-Value | ||||
---|---|---|---|---|---|---|---|---|
T0 | T300 | T400 | T500 | Liner | Quadratic | |||
IF, g | 33.94 | 33.93 | 33.98 | 33.87 | 0.81 | 0.999 | - | - |
FW, g | 1255.51 b | 1341.96 a | 1353.26 a | 1362.01 a | 33.72 | 0.018 | 0.002 | 0.006 |
WG, g | 1221.57 b | 1308.04 a | 1319.28 a | 1328.14 a | 33.33 | 0.018 | 0.001 | 0.005 |
FI, g | 4779.55 b | 5050.54 a | 5066.60 a | 5129.95 a | 80.52 | 0.020 | 0.001 | 0.001 |
F/C, g/g | 3.92 | 3.87 | 3.84 | 3.86 | 0.087 | 0.828 | 0.385 | 0.657 |
Items | T0 | T300 | T400 | T500 | SEM | p-Value | p-Value | |
---|---|---|---|---|---|---|---|---|
Linear | Quadratic | |||||||
Colour parameters | ||||||||
L *15 min | 39.60 | 38.25 | 38.16 | 37.30 | 0.544 | 0.147 | 0.020 | 0.070 |
L *24 h | 45.60 a | 44.00 ab | 42.34 b | 43.23 b | 0.006 | 0.002 | 0.002 | 0.006 |
a *15 min | 15.31 | 17.49 | 18.14 | 18.72 | 0.880 | 0.775 | <0.001 | <0.001 |
a *24 h | 14.56 b | 15.68 b | 15.80 b | 15.98 a | 0.334 | 0.002 | <0.001 | 0.001 |
b *15 min | 5.20 | 5.11 | 4.91 | 4.88 | 0.183 | 0.254 | 0.010 | 0.191 |
b *24 h | 5.18 | 4.90 | 4.84 | 3.76 | 0.155 | 0.141 | 0.027 | 0.063 |
pH | ||||||||
pH15 min | 5.71 b | 5.81 ab | 5.92 a | 5.94 a | 0.076 | 0.019 | 0.002 | 0.008 |
pH24 h | 5.13 | 5.30 | 5.31 | 5.33 | 0.081 | 0.084 | 0.013 | 0.034 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, S.; Yang, H.; Liu, F.; Pang, Q.; Shan, A.; Feng, X. Effect of Dietary Curcumin Supplementation on Duck Growth Performance, Antioxidant Capacity and Breast Meat Quality. Foods 2021, 10, 2981. https://doi.org/10.3390/foods10122981
Jin S, Yang H, Liu F, Pang Q, Shan A, Feng X. Effect of Dietary Curcumin Supplementation on Duck Growth Performance, Antioxidant Capacity and Breast Meat Quality. Foods. 2021; 10(12):2981. https://doi.org/10.3390/foods10122981
Chicago/Turabian StyleJin, Sanjun, Hao Yang, Fangju Liu, Qian Pang, Anshan Shan, and Xingjun Feng. 2021. "Effect of Dietary Curcumin Supplementation on Duck Growth Performance, Antioxidant Capacity and Breast Meat Quality" Foods 10, no. 12: 2981. https://doi.org/10.3390/foods10122981
APA StyleJin, S., Yang, H., Liu, F., Pang, Q., Shan, A., & Feng, X. (2021). Effect of Dietary Curcumin Supplementation on Duck Growth Performance, Antioxidant Capacity and Breast Meat Quality. Foods, 10(12), 2981. https://doi.org/10.3390/foods10122981