Risk of Bacillus cereus in Relation to Rice and Derivatives
Abstract
:1. Introduction
2. Hazard Description and Growth in Rice
3. B. cereus Characterization Included Dose-Response Relationship
3.1. Diarrhoeal Illness
3.2. Emetic Illness
4. Evaluation of Exposition to B. cereus in Rice
5. Control Measures
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- EFSA; ECDC. The European Union One Health 2018 Zoonoses Report. Available online: https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2019.5926 (accessed on 29 January 2021).
- Thirkell, C.E.; Sloan-Gardner, T.S.; Kaczmarek, M.C.; Polkinghorne, B.G. An outbreak of Bacillus cereus toxin-mediated emetic and diarrhoeal syndromes at a restaurant in Canberra, Australia 2018. Commun. Dis. Intell. 2019, 43, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Li, Y.; Lv, J.; Liu, X.; Gao, P.; Zhen, G.; Zhang, W.; Wu, D.; Jing, H.; Li, Y.; et al. A foodborne outbreak of gastroenteritis caused by Norovirus and Bacillus cereus at a university in the Shunyi District of Beijing, China 2018: A retrospective cohort study. BMC Infect. Dis. 2019, 19, 910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, D.W.; Gary, C.B.; Kaarin, E.G.; Michael, W.P. Risk presented to minimally processed chilled foods by psychrotrophic Bacillus cereus. Trends Food Sci. Technol. 2019, 93, 94–105. [Google Scholar]
- Grande, M.J.; Lucas, R.; Abriouel, H.; Valdivia, E.; Ben Omar, N.; Maqueda, M.; Martínez-Bueno, M.; Martínez-Cañamero, M.; Galvez, A. Inhibition of toxicogenic Bacillus cereus in rice-based foods by enterocin AS-48. Int. J. Food Microbiol. 2006, 106, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Kramer, J.M.; Gilbert, R.J. Bacillus cereus and other Bacillus species. In Foodborne Bacterial Pathogens; Marcel Dekker Inc.: New York, NY, USA, 1989. [Google Scholar]
- Navaneethan, Y.; Effarizah, M.E. Prevalence, toxigenic profiles, multidrug resistance, and biofilm formation of Bacillus cereus isolated from ready-to eat cooked rice in Penang, Malaysia. Food Control 2021, 121, 107553. [Google Scholar] [CrossRef]
- Hocking, A.D.; Ailsa, D. Bacillus Cereus and Other Bacillus Species. In Foodborne Microorganisms of Public Health Significance, 6th ed.; Hocking, A.D., Ed.; Australian Institute of Food Science and Technology Inc.: North Ryde, Australia, 2003. [Google Scholar]
- Little, C.L.; Barnes, J.; Mitchell, R.T. Microbiological quality of take-away cooked rice and chicken sandwiches: Effectiveness of food hygiene training of the management. Commun. Dissease Public Health 2002, 5, 289–298. [Google Scholar]
- Lake, R.; Hudson, A.; Cressey, P. Risk profile of Bacillus spp. in rice. N. Z. Food Saf. Auth. 2004. Available online: https://www.mpi.govt.nz/dmsdocument/26138/direct (accessed on 29 January 2021).
- Maurice, B.L.; Tahar, A.S.; Shze, T.P.; Valarie, S.; Jamie, F.A.; Hashim, H.F.; Apun, K.; Radu, S. Enumeration and molecular detection of Bacillus cereus in local indigenous and imported rice grains. Agric. Food Secur. 2016, 5, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Ankolekar, C.; Rahmati, T.; Labbé, R.G. Detection of toxigenic Bacillus cereus and Bacillus thuringiensis spores in U.S. rice. Int. J. Food Microbiol. 2009, 128, 460–466. [Google Scholar] [CrossRef]
- Sarrías, J.A.; Valero, M.; Salmerón, M.C. Elimination of Bacillus cereus contamination in raw rice by electron beam irradiation. Food Microbiol. 2003, 20, 327–332. [Google Scholar] [CrossRef]
- Muthayya, S.; Sugimoto, J.D.; Montgomery, S.; Maberly, G.F. An overview of global rice production, supply, trade, and consumption. Ann. N. Y. Acad. Sci. 2014, 1324, 7–14. [Google Scholar] [CrossRef]
- Luh, B.S. Rice production. In Cereals Processing Technology; Owens, G., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2001; pp. 79–107. [Google Scholar]
- Gilbert, R.J.; Stringer, M.F.; Peace, T.C. The survival and growth of Bacillus cereus in boiled and fried rice in relation to outbreaks of food poisoning. J. Hyg. Camb. 1974, 73, 433–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shelef, L.A.; Liang, P. Antibacterial Effects of Butylated Hydroxyanisole (BHA) against Bacillus species. J. Food Sci. 1982, 47, 796–799. [Google Scholar] [CrossRef]
- Yu, S.; Yu, P.; Wang, J.; Li, C.; Guo, H.; Liu, C.; Kong, L.; Yu, L.; Wu, S.; Lei, T.; et al. A Study on Prevalence and Characterization of Bacillus cereus in Ready-to-Eat Foods in China. Front. Microbiol. 2020, 10, 30–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jessim, A.I.; Fakhry, S.S.; Alwash, S.J. Detection and Determination of Bacillus cereus in Cooked Rice and Some Types of Spices with Ribosomal 16SrRNA gene Selected from Iraqi Public Restaurants. Int. J. Bio-Resour. Stress Manag. 2017, 8, 382–387. [Google Scholar] [CrossRef]
- Messelhäußer, U.; Ehling-Schulz, M. Bacillus cereus—a Multifaceted Opportunistic Pathogen. Curr. Clin. Microbiol. Rep. 2018, 5, 120–125. [Google Scholar] [CrossRef] [Green Version]
- Rajkowski, K.T.; Bennett, R.W. Bacillus cereus. In International Handbook of Foodborne Pathogens; Miliotis, M.D., Bier, J.W., Eds.; Marcel Dekker: New York, NY, USA, 2003; Chapter 3; pp. 27–39. [Google Scholar]
- Martinez, J.; Sanchez, G.; Garay, E.; Aznar, R. valuation of phenotypic and PCR-based approaches for routine analysis of Bacillus cereus group foodborne isolates. Antonie Leeuwenhoek 2011, 99, 697–709. [Google Scholar] [CrossRef]
- Vilas-Boas, G.; Peruca, A. Biology and taxonomy of Bacillus cereus, Bacillus antrhracis and Bacillus thuringiensis. Can. J. Microbiol. 2007, 53, 673–687. [Google Scholar] [CrossRef]
- Liu, Y.; Du, J.; Lai, Q.L.; Zeng, R.Y.; Ye, D.Z.; Xu, J.; Zongze, S. Proposal of nine novel species of the Bacillus cereus group. Int. J. Syst. Evol. Microbiol, 2017, 67, 2499–2508. [Google Scholar] [CrossRef]
- Takahashi, N.; Nagai, S.; Fujita, A.; Ido, Y.; Kato, K.; Saito, A.; Moriya, Y.; Tomimatsu, Y.; Kaneta, N.; Tsujimoto, Y.; et al. Discrimination of psychrotolerant Bacillus cereus group based on MALDI-TOF MS analysis of ribosomal subunit proteins. Food Microbiol. 2020, 91, 103542. [Google Scholar] [CrossRef]
- Frentzel, H.; Kelner-Burgos, Y.; Deneke, C. Evaluation of a real-time PCR assay for the differentiation of Bacillus cereus group species. Food Control. 2021, 120, 107530. [Google Scholar] [CrossRef]
- Carroll, L.M.; Wiedmann, M.; Mukherjee, M.; Nicholas, D.C.; Mingle, L.A.; Dumas, N.B.; Cole, J.A.; Kovac, J. Characterization of Emetic and Diarrheal Bacillus cereus Strains From a 2016 Foodborne Outbreak Using Whole-Genome Sequencing: Addressing the Microbiological, Epidemiological, and Bioinformatic Challenges. Front. Microbiol. 2019, 10, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendriksen, N.B.; Hansen, B.M.; Johansen, J.E. Occurrence and pathogenic potential of Bacillus cereus group bacteria in a sandy loam. Antonie Leeuwenhoek 2006, 89, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, J.; Correa, M.; Castañeda-Sandoval, L.M. Bacillus cereus an important pathogen the microbiological control of food. Rev. Fac. Nac. Salud Publica 2016, 34, 230–242. [Google Scholar]
- Pirhonen, T.; Anderson, M.; Jääskeläinen, E.; Salkinoja-Salonen, M.; Honkanen, T.; Johansson, T.M. Biochemical an toxinc diversity of Bacillus cereus in a pasta and meat dish associated with a food-poisoning case. Food Microbiol. 2005, 22, 87–91. [Google Scholar] [CrossRef]
- Bottone, E. Bacillus cereus, a volatile human pathogen. Clin. Microbiol. Rev. 2010, 23, 382–398. [Google Scholar] [CrossRef] [Green Version]
- Gil-Turnes, C.; Freitas dos Santos, A.; Weykamp da Cruz, F. Properties of the Bacillus cereus strain used in probiotic CenBiot. Rev. Microbiol. 1999, 30, 11–15. [Google Scholar] [CrossRef]
- Finlay, W.J.; Logan, N.A.; Sutherland, A.D. Bacillus cereus emetic toxin production in cooked rice. Food Microbiol. 2002, 19, 431–439. [Google Scholar] [CrossRef]
- EFSA. Opinion of the Scientific Panel on Biological Hazards on Bacillus cereus and other Bacillus spp. in foodstuffs. EFSA J. 2005, 175, 1–48. [Google Scholar]
- Halverson, L.; Handelsman, J. Enhancement of Soybean Nodulation by Bacillus cereus UW85 in the field and in growth chamber. Appl. Environ. Microbiol. 1991, 57, 2767–2770. [Google Scholar] [CrossRef] [Green Version]
- Kotiranta, A.; Lounatmaa, K.; Haapasalo, M. Epidemiology and pathogenesis of Bacillus cereus infections. Microb. Infect. 2000, 2, 189–198. [Google Scholar] [CrossRef]
- Clavel, T.; Carlin, F.; Lairon, D.; Nguyen-The, C.; Schmitt, P. Survival of Bacillus cereus spores and vegetative cells in acid media simulating human stomach. J. Appl. Microbiol. 2004, 97, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Mols, M.; Pier, I.; Zwietering, M.H.; Abee, T. The impact of oxygen availability on stress survival and radical formation of Bacillus cereus. Int. J. Food Microbiol. 2009, 135, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Jaquette, C.B.; Beuchat, L.R. Survival and growth of psychrotrophic Bacillus cereus in dry and reconstituted infant rice cereal. J. Food Prot. 1998, 61, 1629–1635. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, A.; Ocio, M.J.; Fernandez, P.S.; Rodrigo, M.; Martinez, A. Application of non-linear regression analysis to the estimation of kinetic parameters for two enterotoxigenic strains of Bacillus cereus spores. Food Microbiol. 1999, 16, 607–613. [Google Scholar] [CrossRef]
- Penna, T.C.V.; Moraes, D.A. The influence of nisin on the thermal resistance of Bacillus cereus. J. Food Prot. 2002, 65, 415–418. [Google Scholar] [CrossRef]
- Ultee, A.; Slump, R.A.; Steging, G.; Smid; E. J. Antimicrobial activity of carvacrol toward Bacillus cereus on rice. J. Food Prot. 2000, 63, 620–624. [Google Scholar] [CrossRef]
- Granum, P.E.; Lund, T. Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Lett. 1997, 157, 223–228. [Google Scholar] [CrossRef]
- Agata, N.; Ohta, M.; Mori, M.; Isobe, M. A novel dodecadepsipeptide, cerulide, is an emetic toxin of Bacillus cereus. FEMS Microbiol. Lett. 1995, 129, 17–20. [Google Scholar]
- Berthold-Pluta, A.; Pluta, A.; Garbowska, M. The efect of selected factors on the survival of Bacillus cereus in the human gastrointestinal tract. Microb. Pathog. 2015, 82, 7–14. [Google Scholar] [CrossRef]
- Ehling-Schulz, M.; Frenzel, E.; Gohar, M. Food-bacteria interplay: Pathometabolism of emetic Bacillus cereus. Front. Microbiol. 2015, 6, 704. [Google Scholar] [CrossRef] [Green Version]
- Agata, N.; Ohta, M.; Yokoyama. K. Production of Bacillus cereus emetic toxin (cereulide) in various foods. Int. J. Food Microbiol. 2002, 73, 23–27. [Google Scholar] [CrossRef]
- Hauge, S. Food poisoning caused by aerobic spore forming bacilli. J. Appl. Bacteriol. 1955, 18, 591–595. [Google Scholar] [CrossRef]
- Dack, G.M.; Sugiyama, H.; Owens, O.J.; Kirsner, J.B. Failure to produce illness in human volunteers fed Bacillus cereus and Clostridium Perfringens. J. Infect. Dis. 1954, 94, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Langeveld, L.P.M.; van Sponsen, W.A.; van Beresteijn, E.C.H.; Notermans, S. Consumption by healthy adults of pasteurised milk with a high concentration of Bacillus cereus: A double-blind study. J. Food Prot. 1996, 59, 723–726. [Google Scholar] [CrossRef] [PubMed]
- Schoeni, J.L.; Lee Wong, A.C. Bacillus cereus food poisoning and its toxins. J. Food Prot. 2005, 68, 636–648. [Google Scholar] [CrossRef]
- Notermans, S.; Dufrenne, J.; Teunis, P.; Beumer, R.; te Giffel, M.; Peeters Weem, P. A risk assessment study of Bacillus cereus present in pasterurized milk. Food Microbiol. 1997, 14, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Granum, P.E.; Baird-Parker, T.C. Bacillus species. In The Microbiological Safety of Quality of Food; Lund, B.M., Baird-Parker, T.C., Gould, G.W., Eds.; Aspen: Gaithersburg, MD, USA, 2000; Volume 2, pp. 1029–1039. [Google Scholar]
- Tajkarimi, M. Bacillus cereus. PHR 250. Materials from Maha Hajmeer; 2007; 6p. Available online: https://www.cdfa.ca.gov/ahfss/Animal_Health/PHR250/2007/25007BcerMH__2_.pdf (accessed on 29 January 2021).
- Guinebretiere, M.; Girardin, H.; Dargaingnaratz, C.; Carlin, F.; Nguyen-The, C. Contamination flows for B. cereus and spore-forming aerobic bacteria in a cooked, pasteurized and chilled zucchini purée processing line. Int. J. Food Proct. 2003, 82, 223–232. [Google Scholar] [CrossRef]
- Jullien, C.; Benezech, T.; Carpertier, B.; Lebret, V.; Faille, C. Identification of surface characteristics relevant to the hygienic status of stainless steel for the food industry. J. Food Eng. 2003, 56, 77–87. [Google Scholar]
- Fangio, M.; Roura, S.; Fritz, R. Isolation and Identification of Bacillus spp. and Related Genera from different Starchy Foods. J. Food Sci. 2010, 75, M218–M221. [Google Scholar] [CrossRef]
- UERIA Perfil de Riesgo Bacillus cereus en Alimentos Listos Para su Consumo no Industrializados; Ministerio de la Protección Social Unidad de Evaluación de Riesgos para la Inocuidad de los Alimentos UERIA Instituto Nacional de Salud INS. 2011. Available online: https://docplayer.es/14657995-Perfil-de-riesgo-bacillus-cereus-en-alimentos-listos-para-consumo-no-industrializados.html (accessed on 29 January 2021).
- Bryan, F.L.; Bartleson, C., A.; Cristopherson, N. Hazard analysis in reference to Bacillus cereus of boiled and fried rice in Cantonese style restaurants. J. Food Proct. 1981, 44, 500–512. [Google Scholar] [CrossRef]
- Nichols, G.L.; Little, C.L.; Mithani, V.; de Louvois, K. The microbiological quality of cooked rice from restaurants and take away premises in the Unided Kigdom. J. Food Proct. 1999, 62, 877–882. [Google Scholar] [CrossRef]
- Tessi, M.A.; Arìngoli, E.E.; Pirovani, M.E.; Vincenzini, A.Z.; Sabbag, N.G.; Costa, S.C.; Garcia, C.C.; Zannier, M.S.; Silva, E.R.; Moguilevsky, M.A. Microbiological Quality and Safety of Ready-to-Eat Cooked foods from a centralized School Kitchen in Argentina. J. Food Proct. 2002, 65, 636–642. [Google Scholar] [CrossRef]
- Byrne, B.; Dunne, G.; Bolton, D.J. Thermal inactivation of Bacillus cereus and Clostridium perfringens vegetative cells and spores in pork luncheon roll. Food Microbiol. 2006, 23, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Smelt, J.P.P.M.; Hellemons, J.C.; Wouters, P.C.; Van Gerwen, S.J.C. Physiological and mathematical aspects in setting criteria for decontamination of foods by physical means. Int. J. Food Microbiol. 2002, 78, 57–77. [Google Scholar] [CrossRef]
- Van Opstal, I.; Bagamboula, C.F.; Vanmuysen, S.C.M.; Wuytack, E.Y.; Michiels, C.W. Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments. Int. J. Food Microbiol. 2004, 92, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Pina-Perez, M.C.; Silva-Angulo, A.B.; Muguerza-Marquınez, B.; Rodrigo, D.; Martınez Lopez, A. Synergistic Effect of High Hydrostatic Pressure and Natural Antimicrobials on Inactivation Kinetics of Bacillus cereus in a Liquid Whole Egg and Skim Milk Mixed Beverage. Foodborne Pathog. Dis. 2009, 6, 649–656. [Google Scholar] [CrossRef]
- Marco, A.; Ferrer, C.; Velasco, L.M.; Rodrigo, D.; Muguerza, B.; Martınez, A. Effect of olive powder and high hydrostatic pressure on the inactivation of Bacillus cereus spores in a reference medium. Foodborne Pathog. Dis. 2011, 8, 681–685. [Google Scholar] [CrossRef]
- Liao, X.Y.; Muhammad, A.I.; Chen, S.G.; Hu, Y.Q.; Ye, X.Q.; Liu, D.H.; Ding, T. Bacterial spore inactivation induced by cold plasma. Crit. Rev. Food Sci. Nutr. 2019, 59, 2562–2572. [Google Scholar] [CrossRef]
- Baia, Y.; Muhammada, A.I.; Hua, Y.; Kosekic, S.; Liaoa, X.; Chena, S.; Yea, X.; Liua, D.; Dinga, T. Inactivation kinetics of Bacillus cereus spores by Plasma activated water (PAW). Food Res. Int. 2020, 131, 109041. [Google Scholar] [CrossRef]
- Liao, X.Y.; Bai, Y.; Muhammad, A.I.; Liu, D.H.; Hu, Y.Q.; Ding, T. The application of plasma-activated water combined with mild heat for the decontamination of Bacillus cereus spores in rice (Oryza sativa L. ssp. japonica). J. Phys. D Appl. Phys. 2020, 53, 064003. [Google Scholar] [CrossRef]
- Choma, C.; Guinebretiere, M.H.; Carlin, F.; Schmitt, P.; Velge, P.; Granum, P.E.; Nguyen-The, C. Prevalence, characterization and growth of Bacillus cereus in commercial cooked chilled foods containing vegetables. J. Appl. Microbiol. 2000, 88, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Valero, M.; Leontidis, S.; Fernández, P.; Martínez, A.; Salmerón, C. Growth of Bacillus cereus in natural and acidified carrot substrates over the temperature range 5–30 °C. Food Microbiol. 2000, 17, 605–612. [Google Scholar] [CrossRef]
- Benniket, M.H.J.; Smid, E.J.; Rombouts, F.M.; Gorris, L.G.M. Growth of psychrotrophic foodborne pathogens in a solid surface model system under the influence of carbon dioxide and oxygen. Food Microbiol. 1995, 12, 509–519. [Google Scholar] [CrossRef]
- Samapundo, S.; Everaert, H.; Wandutu, J.N.; Rajkovic, A.; Uyttendaele, M.; Devlieghere, F. The influence of headspace and dissolved oxygen level on growth and haemolytic BL enterotoxin production of a psychrotolerant Bacillus weihenstephanensis isolate on potato based ready-to-eat food products. Food Microbiol. 2011, 28, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Ray, B. Nisin of Lactococus lactis ssp lactus as a food biop’reservative. In Food Biopreservatives of Natural Origen; Ray, B., Daeschel, M.A., Eds.; CRC Presss: Boca Raton, FL, USA, 1992; pp. 207–264. [Google Scholar]
- Fernandes, J.C.; Eaton, P.; Gomes, A.M.; Pintado, M.E.; Malcata, F.X. Study of the antibacterial effects of chitosans on Bacillus cereus (and its spores) by atomic force microscopy imaging and nanoindentation. Ultramicroscopy 2009, 109, 854–860. [Google Scholar] [CrossRef]
- Ferrer, C.; Ramón, D.; Muguerza, B.; Marco, A.; Martínez, A. Effect of Olive Powder on the Growth and Inhibition of Bacillus cereus. Foodborne Pathog. Dis. 2009, 6, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Andersson, A.; Ronner, U.; Granum, P.E. What problems does the food industry have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens? Int. J. Food Microbiol. 1995, 28, 145–155. [Google Scholar] [CrossRef]
- Benedict, R.C.; Partridge, T.; Wells, D.; Buchanan, R.L. Bacillus cereus, aerobic growth kinetics. J. Food Prot. 1993, 56, 211–214. [Google Scholar] [CrossRef]
- Pol, I.; Smid, E.J. Combined action of nisin and carvacrol on Bacillus cereus and Listeria monocytogenes. Lett. Appl. Microbiol. 1999, 29, 166–170. [Google Scholar] [CrossRef]
- Periago, P.M.; Moezelaar, P. The combined effect of nisin and carvacol at different pH and temperature levels on the viability of different strains of Bacillus cereus. Int. J. Food Microbiol. 2001, 68, 141–148. [Google Scholar] [CrossRef]
Control Measure | Procedure | Treatment/Effect on B. cereus | Reference |
---|---|---|---|
Control initial microbial load | Use of sodium hypochlorite and weak acids on equipment | 100 ppm sodium hypochlorite Weak acids at 30–40 °C for 20–30 min | [34] |
Inactivation | Heat treatment | D-value (90 °C) 3.99–45 min 70 °C for 12 s, 6 log reduction (vegetative cells) 105 °C 36 s, 6 log reduction (spores) | [40,62] |
High Hydrostatic Pressure (HPP) | More than 1000 MPa | [63] | |
Combined treatments | Mild heat and High Hydrostatic Pressure, between 100 and 600 MPa at 30 and 60 °C, 6 log inactivation | [64,65] | |
Olive powder 2.5% and High Hydrostatic Pressure 500 MPa had additive effect | [66] | ||
Cold Plasma (CAP) | 1.62–2.96 log CFU/mL reductions Plasma-activated water combined with mild heat, 1.5–2.12 log CFU/g reductions | [67,68,69] | |
Growth limitation or inhibition | Cold storage | Below 4 °C | [65,70,71] |
Carbon dioxide concentration higher than 40% can prevent growth of B. cereus stored at temperature lower than 8 °C | [72,73] | ||
Antimicrobials | Nisin, 500 IU/g | [74] | |
Enterocin AS-48, 20–35 µg/ml | [5] | ||
Chitosan, 2.5% (w/v) | [75] | ||
Olive powder, 2.5% (w/v) | [76] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigo, D.; Rosell, C.M.; Martinez, A. Risk of Bacillus cereus in Relation to Rice and Derivatives. Foods 2021, 10, 302. https://doi.org/10.3390/foods10020302
Rodrigo D, Rosell CM, Martinez A. Risk of Bacillus cereus in Relation to Rice and Derivatives. Foods. 2021; 10(2):302. https://doi.org/10.3390/foods10020302
Chicago/Turabian StyleRodrigo, Dolores, Cristina M. Rosell, and Antonio Martinez. 2021. "Risk of Bacillus cereus in Relation to Rice and Derivatives" Foods 10, no. 2: 302. https://doi.org/10.3390/foods10020302
APA StyleRodrigo, D., Rosell, C. M., & Martinez, A. (2021). Risk of Bacillus cereus in Relation to Rice and Derivatives. Foods, 10(2), 302. https://doi.org/10.3390/foods10020302