Effects of Argon-Based and Nitrogen-Based Modified Atmosphere Packaging Technology on the Quality of Pomegranate (Punica granatum L. cv. Wonderful) Arils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vegetal Materials
2.2. Experimental Design
- -
- CTR: 20.9% O2 + 0.04% CO2 (passive-MAP);
- -
- MAPN2: 10% O2 + 5% CO2 + 85% N2;
- -
- MAPAr: 10% O2 + 5% CO2 + 85% Ar.
2.3. Physico-Chemical Analysis
2.4. Colorimetric Analysis
2.5. Headspace Gas Composition
2.6. Microbiological Analysis
2.7. Sensory Evaluation
2.8. Statistical Analysis
3. Results and Discussion
3.1. Physico-Chemical Analysis
3.2. Colorimetric Analysis
3.3. Headspace Gas Composition
3.4. Microbiological Analysis
3.5. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Özgüven, A.I.; yılmaz, C. Pomegranate Growing in Turkey. Options Mediterr. Ser. Semin. Mediterr. 2000, 42, 41–48. [Google Scholar]
- Nanda, S.; Sudhakar Rao, D.V.; Krishnamurthy, S. Effects of Shrink Film Wrapping and Storage Temperature on the Shelf Life and Quality of Pomegranate Fruits Cv. Ganesh. Postharv. Biol. Technol. 2001, 22, 61–69. [Google Scholar] [CrossRef]
- La Malfa, S.; Continella, A.; Pannitteri, C.; Sorbello, D.; Cicero, L.L.; Gentile, A. Melograno in Sicilia: Valorizzazione del Germoplasma Autoctono ed Interventi per la Filiera Produttiva. Not. RGV 2014, XIV, 10. [Google Scholar]
- Artés, F.; Gómez, P.; Artés-Hernández, F. Physical, Physiological and Microbial Deterioration of Minimally Fresh Processed Fruits and Vegetables. Food Sci. Technol. Int. 2007, 13, 177–188. [Google Scholar] [CrossRef]
- Elyatem, S.M.; Kader, A.A. Post-Harvest Physiology and Storage Behaviour of Pomegranate Fruits. Sci. Hortic. 1984, 24, 287–298. [Google Scholar] [CrossRef]
- Ben-Arie, R.; Or, E. The Development and Control of Husk Scald on «Wonderful» Pomegranate Fruit during Storage. J. Am. Soc. Hortic. Sci. 1986, 111, 395–399. [Google Scholar]
- Ilhami Köksal, A. Research on the Storage of Pomegranate (Cv. Gök Bahçe) under Different Conditions. In Proceedings of the International Symposium on Postharvest Handling of Fruits and Vegetables, Leuven, Belgium, 29 August–2 September 1988; pp. 295–302. [Google Scholar]
- Palma, A.; Continella, A.; Malfa, S.L.; Gentile, A.; D’Aquino, S. Overall Quality of Ready-to-Eat Pomegranate Arils Processed from Cold Stored Fruit. Postharv. Biol. Technol. 2015, 109, 1–9. [Google Scholar] [CrossRef]
- Gil, M.I.; Martınez, J.A.; Artés, F. Minimally Processed Pomegranate Seeds. LWT Food Sci. Technol. 1996, 29, 708–713. [Google Scholar] [CrossRef]
- Kader, A.A.; Chordas, A.; Elyatem, S. Responses of Pomegranates to Ethylene Treatment and Storage Temperature. Calif. Agric. 1984, 38, 14–15. [Google Scholar]
- Ergun, M.; Ergun, N. Maintaining Quality of Minimally Processed Pomegranate Arils by Honey Treatments. Br. Food J. 2009, 111, 396–406. [Google Scholar] [CrossRef] [Green Version]
- Artés, F.; Tudela, J.; Gil, M. Improving the Keeping Quality of Pomegranate Fruit by Intermittent Warming. Z. Für Leb. Forsch. A 1998, 207, 316–321. [Google Scholar] [CrossRef]
- Defilippi, B.G.; Whitaker, B.D.; Hess-Pierce, B.M.; Kader, A.A. Development and Control of Scald on Wonderful Pomegranates during Long-Term Storage. Postharv. Biol. Technol. 2006, 41, 234–243. [Google Scholar] [CrossRef]
- Mirdehghan, S.H.; Rahemi, M.; Serrano, M.; Guillén, F.; Martínez-Romero, D.; Valero, D. The Application of Polyamines by Pressure or Immersion as a Tool to Maintain Functional Properties in Stored Pomegranate Arils. J. Agric. Food Chem. 2007, 55, 755–760. [Google Scholar] [CrossRef] [PubMed]
- Waskar, D. Studies on Extension of Postharvest Life of Pomegranate Fruits’ Bhagawa’. Acta Hortic. 2011, 890, 455–460. [Google Scholar] [CrossRef]
- Caleb, O.J.; Opara, U.L.; Witthuhn, C.R. Modified Atmosphere Packaging of Pomegranate Fruit and Arils: A Review. Food Bioprocess. Technol. 2012, 5, 15–30. [Google Scholar] [CrossRef]
- Kader, A.A. Regulation of Fruit Physiology by Controlled/Modified Atmospheres. Acta Hortic. 1995, 398, 59–70. [Google Scholar] [CrossRef]
- Fonseca, S.C.; Oliveira, F.A.; Brecht, J.K. Modelling Respiration Rate of Fresh Fruits and Vegetables for Modified Atmosphere Packages: A Review. J. Food Eng. 2002, 52, 99–119. [Google Scholar] [CrossRef]
- Dhineshkumar, V.; Ramasamy, D.; Srivastav, P. Modified Atmosphere Packaging of Pomegranate Arils: Review. Int. J. Appl. Eng. Technol. 2015, 5, 8–24. [Google Scholar]
- Sepulveda, E.; Galletti, L.; Sáenz, C.; Tapia, M. Minimal Processing of Pomegranate Var. Wonderful. CIHEAM Opitions Mediterr. 2000, 42, 237–242. [Google Scholar]
- Banda, K.; Caleb, O.J.; Jacobs, K.; Opara, U.L. Effect of Active-Modified Atmosphere Packaging on the Respiration Rate and Quality of Pomegranate Arils (Cv. Wonderful). Postharv. Biol. Technol. 2015, 109, 97–105. [Google Scholar] [CrossRef]
- Artés, F.; Villaescusa, R.; Tudela, J. Modified Atmosphere Packaging of Pomegranate. J. Food Sci. 2000, 65, 1112–1116. [Google Scholar] [CrossRef]
- Caleb, O.J.; Opara, U.L.; Mahajan, P.V.; Manley, M.; Mokwena, L.; Tredoux, A.G. Effect of Modified Atmosphere Packaging and Storage Temperature on Volatile Composition and Postharvest Life of Minimally-Processed Pomegranate Arils (Cvs.‘Acco’ and ‘Herskawitz’). Postharv. Biol. Technol. 2013, 79, 54–61. [Google Scholar] [CrossRef]
- López-Rubira, V.; Conesa, A.; Allende, A.; Artés, F. Shelf Life and Overall Quality of Minimally Processed Pomegranate Arils Modified Atmosphere Packaged and Treated with UV-C. Postharv. Biol. Technol. 2005, 37, 174–185. [Google Scholar] [CrossRef]
- Shete, M.B.; Workar, D.P. Internal Break down of Pomegranate Fruits—a Review. J. Maharashtra Agric. Univ. 2005, 30, 59–61. [Google Scholar]
- Spencer, K. The Use of Argon and Other Noble Gases for the MAP of Foods; Campden & Chorleywood Research Association: Chipping Campden, UK, 1995; pp. 6–7. [Google Scholar]
- Mostardini, F.; Piergiovanni, L. Argon Sì, Argon No. Tecnol. Aliment. 2002, 8, 76–77. [Google Scholar]
- Tinebra, I.; Sortino, G.; Inglese, P.; Fretto, S.; Farina, V. Effect of Different Modified Atmosphere Packaging on the Quality of Mulberry Fruit (Morus Alba L. cv Kokuso 21). Int. J. Food Sci. 2021. [Google Scholar] [CrossRef]
- Powrie, W.D.; Wu, C.R.H.; Skura, B.J. Preservation of Cut and Segmented Fresh Fruit Pieces. U.S. Patent No 4,895,729, 31 January 1990. [Google Scholar]
- Day, B. High Oxygen Modified Atmosphere Packaging for Fresh Prepared Produce. Postharv. News Inf. 1996, 7, 31N–34N. [Google Scholar]
- Day, B. Novel MAP: A Brand New Approach. Food Manuf. 1998, 73, 22–24. [Google Scholar]
- Kader, A.A.; Watkins, C.B. Modified Atmosphere Packaging—toward 2000 and Beyond. HortTechnology 2000, 10, 483–486. [Google Scholar] [CrossRef] [Green Version]
- Jamie, P.; Saltveit, M.E. Postharvest Changes in Broccoli and Lettuce during Storage in Argon, Helium, and Nitrogen Atmospheres Containing 2% Oxygen. Postharv. Biol. Technol. 2002, 26, 113–116. [Google Scholar] [CrossRef]
- Rocculi, P.; Romani, S.; Dalla Rosa, M. Effect of MAP with Argon and Nitrous Oxide on Quality Maintenance of Minimally Processed Kiwifruit. Postharv. Biol. Technol. 2005, 35, 319–328. [Google Scholar] [CrossRef]
- Zhang, D.; Quantick, P.C.; Grigor, J.M.; Wiktorowicz, R.; Irven, J. A Comparative Study of Effects of Nitrogen and Argon on Tyrosinase and Malic Dehydrogenase Activities. Food Chem. 2001, 72, 45–49. [Google Scholar] [CrossRef]
- Rymon, D. The Prices in Europe of Pomegranates and Arils. In Proceedings of the II International Symposium on the Pomegranate, Madrid, Spain, 19–21 October 2011; Séminaires Méditerranéens: Zaragoza, Spain; pp. 37–41. [Google Scholar]
- Holland, D.; Hatib, K.; Bar-Ya’akov, I. Pomegranate: Botany, Horticulture, Breeding. In Horticultural Reviews; Janick, J., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; pp. 127–191. ISBN 978-0-470-59377-6. [Google Scholar]
- Melgarejo, P.; Martínez, R. El Granado; Ediciones Mundi-Prensa: Madrid, Spain, 1992; p. 163. [Google Scholar]
- CBI. Exporting Fresh Pomegranates to Europe; CBI: New Delhi, India, 2019. [Google Scholar]
- Tinebra, I.; Scuderi, D.; Sortino, G.; Mazzaglia, A.; Farina, V. Pomegranate Cultivation in Mediterranean Climate: Plant Adaptation and Fruit Quality of ‘Mollar de Elche’ and ‘Wonderful’ Cultivars. Agronomy 2021, 11, 156. [Google Scholar] [CrossRef]
- Rymon, D. Mapping Features of the Global Pomegranate Market. Acta Hortic. 2011, 599–601. [Google Scholar] [CrossRef]
- Belay, Z.A.; Caleb, O.J.; Mahajan, P.V.; Opara, U.L. Design of Active Modified Atmosphere and Humidity Packaging (MAHP) for ‘Wonderful’ Pomegranate Arils. Food Bioprocess. Technol. 2018, 11, 1478–1494. [Google Scholar] [CrossRef]
- Artes, F.; Tomas-Barberan, F. Post-Harvest Technological Treatments of Pomegranate and Preparation of Derived Products. CIHEAM Options Mediterr. 2000, 42, 199–204. [Google Scholar]
- Passafiume, R.; Gaglio, R.; Sortino, G.; Farina, V. Effect of Three Different Aloe Vera Gel-Based Edible Coatings on the Quality of Fresh-Cut “Hayward” Kiwifruits. Foods 2020, 9, 939. [Google Scholar] [CrossRef]
- Sortino, G.; Saletta, F.; Puccio, S.; Scuderi, D.; Allegra, A.; Inglese, P.; Farina, V. Extending the Shelf Life of White Peach Fruit with 1-Methylcyclopropene and Aloe Arborescens Edible Coating. Agriculture 2020, 10, 151. [Google Scholar] [CrossRef]
- Farina, V.; Barone, F.; Mazzaglia, A.; Lanza, C.M. Evaluation of fruit quality in loquat using both chemical and sensory analyses. Acta Hortic. 2011, 887, 345–349. [Google Scholar] [CrossRef]
- Gianguzzi, G.; Mazzaglia, A.; Sortino, G.; Farina, V. Instrumental and Sensory Evaluation of Seven Apple (Malus domestica Borkh.) Cultivars under Organic Cultivation in Sicily. Agron. Res. 2017, 15. [Google Scholar] [CrossRef]
- Almenar, E.; Del-Valle, V.; Hernández-Muñoz, P.; Lagarón, J.M.; Catalá, R.; Gavara, R. Equilibrium Modified Atmosphere Packaging of Wild Strawberries. J. Sci. Food Agric. 2007, 87, 1931–1939. [Google Scholar] [CrossRef]
- Ayhan, Z.; Eştürk, O. Overall Quality and Shelf Life of Minimally Processed and Modified Atmosphere Packaged “Ready-to-eat” Pomegranate Arils. J. Food Sci. 2009, 74, C399–C405. [Google Scholar] [CrossRef]
- Bhatia, K.; Asrey, R.; Jha, S.; Singh, S.; Kannaujia, P.K. Influence of Packaging Material on Quality Characteristics of Minimally Processed Mridula Pomegranate (Punica Granatum) Arils during Cold Storage. Indian J. Agric. Sci. 2013, 83, 872–876. [Google Scholar]
- Belay, Z.A.; Caleb, O.J.; Mahajan, P.V.; Opara, U.L. Application of Simplex Lattice Mixture Design for Optimization of Active Modified Atmosphere for Pomegranate Arils (Cv. Wonderful) Based on Microbial Criteria. Food Packag. Shelf Life 2017, 14, 12–17. [Google Scholar] [CrossRef]
- O’grady, L.; Sigge, G.; Caleb, O.; Opara, U.L. Effects of Storage Temperature and Duration on Chemical Properties, Proximate Composition and Selected Bioactive Components of Pomegranate (Punica Granatum L.) Arils. LWT Food Sci. Technol. 2014, 57, 508–515. [Google Scholar] [CrossRef]
- Hussein, Z.; Caleb, O.J.; Jacobs, K.; Manley, M.; Opara, U.L. Effect of Perforation-Mediated Modified Atmosphere Packaging and Storage Duration on Physicochemical Properties and Microbial Quality of Fresh Minimally Processed ‘Acco’Pomegranate Arils. LWT Food Sci. Technol. 2015, 64, 911–918. [Google Scholar] [CrossRef]
- Meighani, H.; Ghasemnezhad, M.; Bakshi, D. Evaluation of Biochemical Composition and Enzyme Activities in Browned Arils of Pomegranate Fruits. Int. J. Hortic. Sci. Technol. 2014, 1, 53–65. [Google Scholar]
- Fagundes, C.; Moraes, K.; Pérez-Gago, M.B.; Palou, L.; Maraschin, M.; Monteiro, A.R. Effect of Active Modified Atmosphere and Cold Storage on the Postharvest Quality of Cherry Tomatoes. Postharv. Biol. Technol. 2015, 109, 73–81. [Google Scholar] [CrossRef]
- Selcuk, N.; Erkan, M. Changes in Antioxidant Activity and Postharvest Quality of Sweet Pomegranates Cv. Hicrannar under Modified Atmosphere Packaging. Postharv. Biol. Technol. 2014, 92, 29–36. [Google Scholar] [CrossRef]
- De Reuck, K.; Sivakumar, D.; Korsten, L. Effect of Passive and Active Modified Atmosphere Packaging on Quality Retention of Two Cultivars of Litchi (Litchi chinensis Sonn.). J. Food Qual. 2010, 33, 337–351. [Google Scholar] [CrossRef]
- Belay, Z.A.; Caleb, O.J.; Mahajan, P.V.; Opara, U.L. Response of Pomegranate Arils (Cv. Wonderful) to Low Oxygen Stress under Active Modified Atmosphere Condition. J. Sci. Food Agric. 2019, 99, 1088–1097. [Google Scholar] [CrossRef] [PubMed]
- Caleb, O.J.; Mahajan, P.V.; Manley, M.; Opara, U.L. Evaluation of Parameters Affecting Modified Atmosphere Packaging Engineering Design for Pomegranate Arils. Int. J. Food Sci. Technol. 2013, 48, 2315–2323. [Google Scholar] [CrossRef]
- Olatunde, O.O.; Benjakul, S.; Vongkamjan, K. Comparative Study on Nitrogen and Argon-Based Modified Atmosphere Packaging on Microbiological, Chemical, and Sensory Attributes as Well as on Microbial Diversity of Asian Sea Bass. Food Packag. Shelf Life 2019, 22, 100404. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, M.; Wang, S. Effects of High Pressure Argon Treatments on the Quality of Fresh-Cut Apples at Cold Storage. Food Control 2012, 23, 120–127. [Google Scholar] [CrossRef]
Fruit Weight (g) | 420.14 ± 9.44 | |
Fruit Length—Longitudinal Diameter (cm) | 6.33 ± 0.39 | |
Fruit Width—Transverse Diameter (cm) | 8.63 ± 0.66 | |
Fruit Volume (cm3) | 156.67 ± 20.82 | |
Shape Index | 1.36 ± 0.40 | |
Skin Color | L* | 59.37 ± 0.97 |
a* | 29.87 ± 1.56 | |
b* | 35.42 ± 4.00 | |
Skin Weight (g) | 147.66 ± 7.36 | |
Skin Thickness (cm) | 0.23 ± 0.20 | |
Skin Index | 0.35 ± 0.10 |
Number of Arils | 644.67 ± 32.20 | |
Weight of Arils per fruit (g) | 264.47 ± 7.77 | |
Weight of 20 Arils (g) | 6.41 ± 2.23 | |
Aril Height—Longitudinal Diameter (cm) | 1.14 ± 0.07 | |
Aril Width—Transverse Diameter (cm) | 0.68 ± 0.13 | |
Aril Yield (Fruit Weight—Skin Weight) (g) | 272.48 ± 15.28 | |
Aril Color | L* | 28.78 ± 6.78 |
a* | 15.88 ± 2.62 | |
b* | 28.78 ± 3.70 | |
Weight of 20 Seeds (g) | 1.09 ± 0.08 |
Juice Content (mL/100 g) | 148 ± 4.58 |
Total Soluble Solids Content (°Brix) | 15.4 ± 0.53 |
Titratable Acidity (g L−1 citric acid) | 0.14 ± 0.04 |
pH | 4.17 ± 0.06 |
Storage Days | L* | a* | b* | ΔE | C* | h° (rad) | |
---|---|---|---|---|---|---|---|
0 | Fresh fruit | 28.78 | 15.88 | 10.60 | - | 19.09 | 0.59 |
4 | CTR | 17.57 ± 0.84 c | 16.67 ± 1.75 b | 9.58 ± 1.34 ns | 11.28 a | 19.23 b | 0.52 b |
MAP N2 | 22.69 ± 8.31 b | 15.14 ± 2.18 b | 11.48 ± 2.16 ns | 6.20 b | 19.00 b | 0.65 a | |
MAP Ar | 30.08 ± 5.05 a | 18.75 ± 2.79 a | 10.98 ± 1.77 ns | 3.17 c | 21.73 a | 0.53 b | |
8 | CTR | 24.13 ± 4.82 c | 19.39 ± 0.84 a | 10.03 ± 2.10 b | 5.85 b | 21.83 b | 0.48 b |
MAP N2 | 36.20 ± 11.68 a | 20.93 ± 0.84 a | 13.66 ± 5.63 a | 9.48 a | 24.99 a | 0.58 a | |
MAP Ar | 28.42 ± 8.61 b | 17.22 ± 0.88 b | 11.53 ± 1.86 b | 1.67 c | 20.72 b | 0.59 a | |
12 | CTR | 25.58 ± 2.66 a | 19.05 ± 1.93 a | 10.23 ± 3.10 a | 4.52 a | 21.62 a | 0.49 c |
MAP N2 | 23.71 ± 0.57 b | 14.12 ± 1.64 b | 8.9 ± 1.30 b | 5.62 a | 16.71 b | 0.56 b | |
MAP Ar | 26.82 ± 7.11 a | 16.68 ± 6.62 b | 11.80 ± 2.73 a | 2.43 b | 20.43 a | 0.62 a | |
16 | CTR | 18.58 ± 1.43 b | 16.59 ± 3.15 ns | 10.29 ± 1.43 ns | 10.23 a | 19.52 ns | 0.56 b |
MAP N2 | 24.81 ± 4.36 a | 15.79 ± 1.29 ns | 10.50 ± 1.02 ns | 3.97 b | 18.96 ns | 0.59 a | |
MAP Ar | 20.74 ± 2.30 b | 17.15 ± 1.77 ns | 10.11 ± 2.00 ns | 8.15 a | 19.91 ns | 0.53 b |
Treatments | TMM | TPM | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
T0 | T4 | T8 | T12 | T16 | T0 | T4 | T8 | T12 | T16 | |
CTR | <2 ns | <2 ns | <2 ns | 3.10 ± 0.10 a | 4.00 ± 0.11 a | <2 ns | <2 ns | <2 ns | <2 ns | 4.40 ± 0.09 a |
MAPN2 | <2 ns | <2 ns | <2 ns | 2.67 ± 0.19 b | 3.65 ± 0.20 b | <2 ns | <2 ns | <2 ns | <2 ns | 3.90 ± 0.08 b |
MAPAr | <2 ns | <2 ns | <2 ns | 2.37 ± 0.20 b | 3.25 ± 0.17 c | <2 ns | <2 ns | <2 ns | <2 ns | 3.70 ± 0.10 c |
Treatments | Yeast | Molds | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
T0 | T4 | T8 | T12 | T16 | T0 | T4 | T8 | T12 | T16 | |
CTR | <2 ns | <2 ns | <2 ns | 3.10 ± 0.10 a | 3.70 ± 0.11 | <2 a | <2 a | <2 a | <2 a | 3.00 ± 0.09 a |
MAPN2 | <2 ns | <2 ns | <2 ns | 2.20 ± 0.19 b | 2.40 ± 0.20 | <2 a | <2 a | <2 a | <2 a | 2.80 ± 0.08 b |
MAPAr | <2 ns | <2 ns | <2 ns | 2.00± 0.20 b | 2.20 ± 0.17 | <2 a | <2 a | <2 a | <2 a | 2.60 ± 0.10 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tinebra, I.; Scuderi, D.; Sortino, G.; Inglese, P.; Farina, V. Effects of Argon-Based and Nitrogen-Based Modified Atmosphere Packaging Technology on the Quality of Pomegranate (Punica granatum L. cv. Wonderful) Arils. Foods 2021, 10, 370. https://doi.org/10.3390/foods10020370
Tinebra I, Scuderi D, Sortino G, Inglese P, Farina V. Effects of Argon-Based and Nitrogen-Based Modified Atmosphere Packaging Technology on the Quality of Pomegranate (Punica granatum L. cv. Wonderful) Arils. Foods. 2021; 10(2):370. https://doi.org/10.3390/foods10020370
Chicago/Turabian StyleTinebra, Ilenia, Dario Scuderi, Giuseppe Sortino, Paolo Inglese, and Vittorio Farina. 2021. "Effects of Argon-Based and Nitrogen-Based Modified Atmosphere Packaging Technology on the Quality of Pomegranate (Punica granatum L. cv. Wonderful) Arils" Foods 10, no. 2: 370. https://doi.org/10.3390/foods10020370
APA StyleTinebra, I., Scuderi, D., Sortino, G., Inglese, P., & Farina, V. (2021). Effects of Argon-Based and Nitrogen-Based Modified Atmosphere Packaging Technology on the Quality of Pomegranate (Punica granatum L. cv. Wonderful) Arils. Foods, 10(2), 370. https://doi.org/10.3390/foods10020370