Finite Element Modelling for Predicting the Puncture Responses in Papayas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Instrumental Tests
2.3. Puncture Test
2.4. Finite Element Analysis
2.4.1. Geometrical Modelling
2.4.2. Contact Modelling, Meshing, and Boundary Condition
2.4.3. Validation of FE Model
2.5. Statistical Analysis
3. Results and Discussion
3.1. Material Models
3.2. Puncture Mechanics
3.3. Validation of Finite Element Model
4. Conclusions
- A 3D geometrical model of the papaya sample and puncture test system was developed. The boundary conditions of the load direction, displacement, and impact velocity were defined to mimic the actual puncture test.
- The 2 mm stainless-steel flat indenter probe progressed into the fruit tissues at different impact velocities of 1.5 mm/s, 2 mm/s, and 2.5 mm/s. The discrepancy of simulation results was related to the different values of Young’s modulus, failure stress, and tangent modulus of papayas.
- Although a useful tool, one major drawback is that it is limited to the linear elastic-plastic response of the sample.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Department of Agriculture of Malaysia. Fruit Crops Statistic 2016. Available online: http://www.doa.gov.my/index/resources/aktiviti_sumber/sumber_awam/maklumat_pertanian/perangkaan_tanaman/perangkaan_buah_2018.pdf (accessed on 12 February 2020).
- de Oliveira, J.G.; Vitória, A.P. Papaya: Nutritional and pharmacological characterization, and quality loss due to physiological disorders. An overview. Food Res. Int. 2011, 44, 1306–1313. [Google Scholar] [CrossRef] [Green Version]
- Habib, M.T.; Majumder, A.; Jakaria, A.Z.M.; Akter, M.; Uddin, M.S.; Ahmed, F. Machine vision based papaya disease recognition. J. King Saud Univ. Comput. Inf. Sci. 2020, 32, 300–309. [Google Scholar] [CrossRef]
- Madani, B.; Mohamed, M.T.M.; Biggs, A.R.; Kadir, J.; Awang, Y.; Tayebimeigooni, A.; Shojaei, T.R. Effect of pre-harvest calcium chloride applications on fruit calcium level and post-harvest anthracnose disease of papaya. Crop Prot. 2014, 55, 55–60. [Google Scholar] [CrossRef]
- Ayón-Reyna, L.E.; González-Robles, A.; Rendón-Maldonado, J.G.; Báez-Flores, M.E.; López-López, M.E.; Vega-García, M.O. Application of a hydrothermal-calcium chloride treatment to inhibit postharvest anthracnose development in papaya. Postharvest Biol. Technol. 2017, 124, 85–90. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, Y.; Kan, C.; Chen, M.; Chen, J. Changes of peel color and fruit quality in navel orange fruits under different storage methods. Sci. Hortic. 2019, 256, 108522. [Google Scholar] [CrossRef]
- Ho, Q.T.; Carmeliet, J.; Datta, A.K.; Defraeye, T.; Delele, M.A.; Herremans, E.; Opara, L.; Ramon, H.; Tijskens, E.; Van Der Sman, R.; et al. Multiscale modeling in food engineering. J. Food Eng. 2013, 114, 279–291. [Google Scholar] [CrossRef]
- Li, Z.; Andrews, J.; Wang, Y. Mathematical modelling of mechanical damage to tomato fruits. Postharvest Biol. Technol. 2017, 126, 50–56. [Google Scholar] [CrossRef]
- Chen, L.; Opara, U.L. Texture measurement approaches in fresh and processed foods—A review. Food Res. Int. 2013, 51, 823–835. [Google Scholar] [CrossRef]
- Costa, F. Mechanical investigation to assess the peel contribution in apple fruit. Postharvest Biol. Technol. 2016, 111, 41–47. [Google Scholar] [CrossRef]
- Shiu, J.W.; Slaughter, D.C.; Boyden, L.E.; Barrett, D.M. Effect of the shear-to-compressive force ratio in puncture tests quantifying watermelon mechanical properties. J. Food Eng. 2015, 150, 125–131. [Google Scholar] [CrossRef]
- Zulkifli, N.; Hashim, N.; Harith, H.H.; Mohamad Shukery, M.F. Finite element modelling for fruit stress analysis—A review. Trends Food Sci. Technol. 2020, 97, 29–37. [Google Scholar] [CrossRef]
- Miraei Ashtiani, S.H.; Sadrnia, H.; Mohammadinezhad, H.; Aghkhani, M.H.; Khojastehpour, M.; Abbaspour-Fard, M.H. FEM-based simulation of the mechanical behavior of grapefruit under compressive loading. Sci. Hortic. 2019, 245, 39–46. [Google Scholar] [CrossRef]
- Tian, K.P.; Shen, C.; Li, X.W.; Huang, J.C.; Chen, Q.M.; Zhang, B. Mechanical properties and compression damage simulation by finite element for kiwifruit. Int. Agric. Eng. J. 2017, 26, 193–203. [Google Scholar]
- Du, D.; Wang, B.; Wang, J.; Yao, F.; Hong, X. Prediction of bruise susceptibility of harvested kiwifruit (Actinidia chinensis) using finite element method. Postharvest Biol. Technol. 2019, 152, 36–44. [Google Scholar] [CrossRef]
- Celik, H.K. Determination of bruise susceptibility of pears (Ankara variety) to impact load by means of FEM-based explicit dynamics simulation. Postharvest Biol. Technol. 2017, 128, 83–97. [Google Scholar] [CrossRef]
- Basulto, F.S.; Duch, E.S.; Gil, F.E.Y.; Plaza, R.D.; Saavedra, A.L.; Santamaría, J.M. Postharvest ripening and maturity indices for maradol papaya. Interciencia 2009, 34, 583–588. [Google Scholar]
- ASAE. Compression Test of Food Materials of Convex Shape; Standard 368. (DEC 2000); ASAE: Washington, DC, USA, 2008; Volume 2000. [Google Scholar]
- ASAE. Moisture measurement. In Grains and Seeds; ASAE Standards: ASAE 352.1; American Society of Agricultural Engineers: St. Joseph, MI, USA, 1983. [Google Scholar]
- Sirisomboon, P.; Tanaka, M.; Kojima, T. Evaluation of tomato textural mechanical properties. J. Food Eng. 2012, 111, 618–624. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y. A multiscale finite element model for mechanical response of tomato fruits. Postharvest Biol. Technol. 2016, 121, 19–26. [Google Scholar] [CrossRef]
- Van Gerwen, D.J.; Dankelman, J.; Van Den Dobbelsteen, J.J. Measurement and stochastic modeling of kidney puncture forces. Ann. Biomed. Eng. 2014, 42, 685–695. [Google Scholar] [CrossRef]
- Yousefi, S.; Farsi, H.; Kheiralipour, K. Drop test of pear fruit: Experimental measurement and finite element modelling. Biosyst. Eng. 2016, 147, 17–25. [Google Scholar] [CrossRef]
- Dintwa, E.; Van Zeebroeck, M.; Ramon, H.; Tijskens, E. Finite element analysis of the dynamic collision of apple fruit. Postharvest Biol. Technol. 2008, 49, 260–276. [Google Scholar] [CrossRef]
- Shimomura, K.; Horie, H.; Sugiyama, M.; Kawazu, Y.; Yoshioka, Y. Quantitative evaluation of cucumber fruit texture and shape traits reveals extensive diversity and differentiation. Sci. Hortic. 2016, 199, 133–141. [Google Scholar] [CrossRef]
- Kohyama, K.; Nagata, A.; Tamaki, Y.; Sakurai, N. Comparison of human-bite and instrument puncture tests of cucumber texture. Postharvest Biol. Technol. 2009, 52, 243–246. [Google Scholar] [CrossRef]
- Triki, E.; Gauvin, C. Analytical and experimental investigation of puncture-cut resistance of soft membranes. Mech. Soft Mater. 2019, 1, 6. [Google Scholar] [CrossRef] [Green Version]
- Celik, H.K.; Rennie, A.E.W.; Akinci, I. Deformation behaviour simulation of an apple under drop case by finite element method. J. Food Eng. 2011, 104, 293–298. [Google Scholar] [CrossRef]
- Nikara, S.; Ahmadi, E.; Alavi Nia, A. Finite element simulation of the micromechanical changes of the tissue and cells of potato response to impact test during storage by scanning electron microscopy. Postharvest Biol. Technol. 2020, 164, 111153. [Google Scholar] [CrossRef]
- Gzaiel, M.; Triki, E.; Barkaoui, A. Finite element modeling of the puncture-cutting response of soft material by a pointed probe. Mech. Mater. 2019, 136, 103082. [Google Scholar] [CrossRef]
- Feng, J.; McGlone, A.; Tanner, D.; White, A.; Olsson, S.; Petley, M. Effect of penetration speed on flesh firmness measured on stored kiwifruit. Postharvest Biol. Technol. 2011, 61, 29–34. [Google Scholar] [CrossRef]
Material | Elastic Modulus (MPa) | Yield Stress (MPa) | Tangent Modulus (MPa) | Poisson’s Ratio | Density (kg/m3) |
---|---|---|---|---|---|
Skin | 2, 6, 15 | 0.5, 2.5, 4 | 0.02, 0.03, 0.04 | 0.43, 0.44, 0.45 | 1000, 1100, 1200 |
Flesh | 0.5, 2, 4 | 0.05, 1, 1.8 | 0.002, 0.003, 0.004 | 0.43, 0.44, 0.45 | 1000, 1100, 1200 |
Storage Interval (d) | Velocity (mm/s) | Level | Bioyield Force (N) | Error (%) | Deformation | Error (%) | ||
---|---|---|---|---|---|---|---|---|
Measured | Simulated | Measured | Simulated | |||||
0 | 1.5 | 1 | 17.81 ± 0.64 | 17.30 ± 0.091 | 2.86 | 1.5 ± 0.29 | 2 ± 0.15 | 33.33 |
2 | 2 | 17.87 ± 2.22 | 17.35 ± 0.11 | 2.91 | 1.67 ± 0.27 | 2.15 ± 0.16 | 28.74 | |
2.5 | 3 | 18.36 ± 0.08 | 17.57 ± 0.14 | 4.30 | 1.8 ± 0.12 | 2.2 ± 0.15 | 22.22 | |
4 | 1.5 | 1 | 14.87 ± 0.87 | 14.76 ± 0.27 | 0.74 | 1.21 ± 0.07 | 2 ± 0.20 | 65.28 |
2 | 2 | 15.31 ± 2.11 | 15.81 ± 0.19 | 3.26 | 1.35 ± 0.09 | 2.1 ± 0.21 | 55.55 | |
2.5 | 3 | 16.42 ± 0.91 | 16.81 ± 0.22 | 2.37 | 1.45 ± 0.17 | 2.35 ± 0.29 | 62.06 | |
7 | 1.5 | 1 | 13.20 ± 2.13 | 11.29 ± 0.19 | 14.46 | 1.22 ± 0.16 | 1.8 ± 0.15 | 47.54 |
2 | 2 | 13.43 ± 0.89 | 12.22 ± 0.20 | 9.00 | 1.38 ± 0.05 | 1.85 ± 0.18 | 34.05 | |
2.5 | 3 | 13.55 ± 1.33 | 14.29 ± 0.20 | 5.46 | 1.43 ± 0.44 | 1.9 ± 0.16 | 32.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zulkifli, N.; Hashim, N.; Harith, H.H.; Mohamad Shukery, M.F.; Onwude, D.I.; Sairi, M. Finite Element Modelling for Predicting the Puncture Responses in Papayas. Foods 2021, 10, 442. https://doi.org/10.3390/foods10020442
Zulkifli N, Hashim N, Harith HH, Mohamad Shukery MF, Onwude DI, Sairi M. Finite Element Modelling for Predicting the Puncture Responses in Papayas. Foods. 2021; 10(2):442. https://doi.org/10.3390/foods10020442
Chicago/Turabian StyleZulkifli, Nurazwin, Norhashila Hashim, Hazreen Haizi Harith, Mohamad Firdza Mohamad Shukery, Daniel Iroemeha Onwude, and Masniza Sairi. 2021. "Finite Element Modelling for Predicting the Puncture Responses in Papayas" Foods 10, no. 2: 442. https://doi.org/10.3390/foods10020442
APA StyleZulkifli, N., Hashim, N., Harith, H. H., Mohamad Shukery, M. F., Onwude, D. I., & Sairi, M. (2021). Finite Element Modelling for Predicting the Puncture Responses in Papayas. Foods, 10(2), 442. https://doi.org/10.3390/foods10020442