A Systematic Review on Gluten-Free Bread Formulations Using Specific Volume as a Quality Indicator
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.1.1. Inclusion Criteria
2.1.2. Exclusion Criteria
2.2. Information Sources
2.3. Study Selection
2.4. Data Collection Process
2.5. Risk of Bias (RB)
3. Results
3.1. Study Selection and Characteristics
3.2. Gluten-Free Bread Formulations
4. Discussion
4.1. Hydrocolloids
4.2. Enzymes
4.3. Other Additives and Gluten Substitutes
4.4. Sensory Analysis and Crust and Crumb Analysis
4.5. Risk of Bias (RB)
4.6. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cauvain, S. Technology of Breadmaking, 2nd ed.; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-14686-7. [Google Scholar]
- Sluimer, P. Principles of Breadmaking: Functionality of Raw Materials and Process Steps; American Association of Cereal Chemists: St. Paul, MI, USA, 2005; ISBN 1891127454. [Google Scholar]
- Lazaridou, A.; Duta, D.; Papageorgiou, M.; Belc, N.; Biliaderis, C.G. Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. J. Food Eng. 2007. [Google Scholar] [CrossRef]
- Barak, S.; Mudgil, D.; Khatkar, B.S. Influence of Gliadin and Glutenin Fractions on Rheological, Pasting, and Textural Properties of Dough. Int. J. Food Prop. 2014, 17, 1428–1438. [Google Scholar] [CrossRef]
- Green, P.H.R.; Lebwohl, B.; Greywoode, R. Celiac disease. J. Allergy Clin. Immunol. 2015, 135, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Elli, L.; Branchi, F.; Tomba, C.; Villalta, D.; Norsa, L.; Ferretti, F.; Roncoroni, L.; Bardella, M.T. Diagnosis of gluten related disorders: Celiac disease, wheat allergy and non-celiac gluten sensitivity. World J. Gastroenterol. 2015, 21, 7110–7119. [Google Scholar] [CrossRef] [PubMed]
- Mezaize, S.; Chevallier, S.; Le Bail, A.; de Lamballerie, M. Optimization of Gluten-Free Formulations for French-Style Breads. J. Food Sci. 2009, 74, E140–E146. [Google Scholar] [CrossRef] [PubMed]
- Catassi, C.; Elli, L.; Bonaz, B.; Bouma, G.; Carroccio, A.; Castillejo, G.; Cellier, C.; Cristofori, F.; de Magistris, L.; Dolinsek, J.; et al. Diagnosis of Non-Celiac Gluten Sensitivity (NCGS): The Salerno Experts’ Criteria. Nutrients 2015, 7, 4966–4977. [Google Scholar] [CrossRef] [PubMed]
- Ontiveros, N.; Rodríguez-Bellegarrigue, C.I.; Galicia-Rodríguez, G.; de Vergara-Jiménez, M.J.; Zepeda-Gómez, E.M.; Arámburo-Galvez, J.G.; Gracia-Valenzuela, M.H.; Cabrera-Chávez, F. Prevalence of Self-Reported Gluten-Related Disorders and Adherence to a Gluten-Free Diet in Salvadoran Adult Population. Int. J. Environ. Res. Public Health 2018, 15, 786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barker, J.M.; Liu, E. Celiac disease: Pathophysiology, clinical manifestations, and associated autoimmune conditions. Adv. Pediatr. 2008, 55, 349–365. [Google Scholar] [CrossRef] [Green Version]
- Norsa, L.; Tomba, C.; Branchi, F.; Bardella, M.T.; Roncoroni, L.; Conte, D.; Elli, L. Gluten-free diet or alternative therapy: A survey on what parents of celiac...: EBSCOhost. Int. J. Food Sci. Nutr. 2015, 66, 590–594. [Google Scholar] [CrossRef]
- Pellegrini, N.; Agostoni, C. Nutritional aspects of gluten-free products. J. Sci. Food Agric. 2015, 95, 2380–2385. [Google Scholar] [CrossRef]
- Missbach, B.; Schwingshackl, L.; Billmann, A.; Mystek, A.; Hickelsberger, M.; Bauer, G.; König, J. Gluten-free food database: The nutritional quality and cost of packaged gluten-free foods. PeerJ 2015, 3, e1337. [Google Scholar] [CrossRef]
- Machado, J.; Gandolfi, L.; Coutinho De Almeida, F.; Malta Almeida, L.; Puppin Zandonadi, R.; Pratesi, R. Gluten-free dietary compliance in Brazilian celiac patients: Questionnaire versus serological test. Nutr. Clin. Diet. Hosp. 2013, 33, 46–49. [Google Scholar] [CrossRef]
- Cross, C. Gluten-free industry is healthy, but is the food? CMAJ 2013, 185, 4555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melini, V.; Melini, F. Gluten-free diet: Gaps and needs for a healthier diet. Nutrients 2019, 11, 170. [Google Scholar] [CrossRef] [Green Version]
- Sapone, A.; Bai, J.C.; Ciacci, C.; Dolinsek, J.; Green, P.H.R.; Hadjivassiliou, M.; Kaukinen, K.; Rostami, K.; Sanders, D.S.; Schumann, M.; et al. Spectrum of gluten-related disorders: Consensus on new nomenclature and classification. BMC Med. 2012, 10, 13. [Google Scholar] [CrossRef] [Green Version]
- FAO/WHO. Codex Alimentarius Comission. Standard for Foods for Special Dietary Use for Persons Intolerant to Gluten, Joint FAO/WHO Food Standards Program. 2008. Available online: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B118-1979%252FCXS_118e_2015.pdf (accessed on 20 January 2021).
- European Commission. Regulation (EU) No 828/2014; European Commission: Brussels, Belgium, 2014; p. 1. [Google Scholar]
- Canadian Celiac Association Gluten-Free Certification Program. 2011, pp. 1–88. Available online: https://www.celiac.ca/living-gluten-free/gluten-free-certification-program/ (accessed on 20 January 2021).
- Argentina Codigo Alimentario Argentino—Resolución Conjunta 131/2011 y 414/2011. 2011. Available online: https://www.argentina.gob.ar/normativa/nacional/resoluci%C3%B3n-131-2011-184719/texto (accessed on 20 January 2021).
- Diaz-Amigo, C.; Popping, B. Gluten and gluten-free: Issues and considerations of labeling regulations, detection methods, and assay validation. J. AOAC Int. 2012, 95, 337–348. [Google Scholar] [CrossRef]
- Health Canada Health Canada’s Position on Gluten-Free Claims—Canada.ca. Available online: https://www.canada.ca/en/health-canada/services/food-nutrition/food-safety/food-allergies-intolerances/celiac-disease/health-canada-position-gluten-free-claims.html#a2 (accessed on 3 March 2021).
- Brazil Law 10.674, 16th May 2003; Brazilian National Congress: Brasília, Brazil, 2003; p. 1.
- Market Research Report Gluten-Free Products Market Size Worth $33.05 Billion by 2025. Available online: https://www.grandviewresearch.com/press-release/global-gluten-free-products-market (accessed on 1 August 2018).
- López, A.C.B.; Guimarães Pereira, A.J.; Junqueira, R.G. Flour mixture of rice flour, corn and cassava starch in the production of gluten-free white bread. Braz. Arch. Biol. Technol. 2004. [Google Scholar] [CrossRef] [Green Version]
- Witczak, M.; Ziobro, R.; Juszczak, L.; Korus, J. Starch and starch derivatives in gluten-free systems—A review. J. Cereal Sci. 2016, 67, 46–57. [Google Scholar] [CrossRef]
- Renzetti, S.; Rosell, C.M. Role of enzymes in improving the functionality of proteins in non-wheat dough systems. J. Cereal Sci. 2016, 67, 35–45. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira Pineli, L.d.L.; Zandonadi, R.P.; Assunção Botelho, R.B.; de Oliveira, V.R.; de Alencar Figueiredo, L.F. The use of sorghum to produce gluten-free breads (GFB): A systematic review. J. Adv. Nutr. Hum. Metab. 2015, 2944944, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Capriles, V.D.; Arêas, J.A.G. Novel Approaches in Gluten-Free Breadmaking: Interface between Food Science, Nutrition, and Health. Compr. Rev. Food Sci. Food Saf. 2014, 13, 871–890. [Google Scholar] [CrossRef]
- Mir, S.A.; Shah, M.A.; Naik, H.R.; Zargar, I.A. Influence of Hydrocolloids on Dough Handling and Technological Properties of Gluten-Free Breads. Trends Food Sci. Technol. 2016, 51, 49–57. [Google Scholar] [CrossRef]
- Torbica, A.; Hadnadev, M.; Dapčević, T. Rheological, textural and sensory properties of gluten-free bread formulations based on rice and buckwheat flour. Food Hydrocoll. 2010, 24, 626–632. [Google Scholar] [CrossRef]
- Cappa, C.; Lucisano, M.; Mariotti, M. Influence of Psyllium, sugar beet fibre and water on gluten-free dough properties and bread quality. Carbohydr. Polym. 2013. [Google Scholar] [CrossRef] [PubMed]
- Doxastakis, G.; Zafiriadis, I.; Irakli, M.; Marlani, H.; Tananaki, C. Lupin, soya and triticale addition to wheat flour doughs and their effect on rheological properties. Food Chem. 2002, 77, 219–227. [Google Scholar] [CrossRef]
- Zannini, E.; Jones, J.M.; Renzetti, S.; Arendt, E.K. Functional Replacements for Gluten. Annu. Rev. Food Sci. Technol. 2012, 3, 227–245. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Lu, F.; Zhao, L.; Han, C. Recent developments in gluten-free bread baking approaches: A review. Food Sci. Technol. 2017, 37, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Naqash, F.; Gani, A.A.; Gani, A.A.; Masoodi, F.A. Gluten-free baking: Combating the challenges—A review. Trends Food Sci. Technol. 2017, 66, 98–107. [Google Scholar] [CrossRef]
- Padalino, L.; Conte, A.; Del Nobile, M. Overview on the General Approaches to Improve Gluten-Free Pasta and Bread. Foods 2016, 5, 87. [Google Scholar] [CrossRef] [Green Version]
- Hüttner, E.K.; Arendt, E.K. Recent advances in gluten-free baking and the current status of oats. Trends Food Sci. Technol. 2010, 21, 303–312. [Google Scholar] [CrossRef]
- Roman, L.; Belorio, M.; Gomez, M. Gluten-Free Breads: The Gap Between Research and Commercial Reality. Compr. Rev. Food Sci. Food Saf. 2019, 18, 690–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houben, A.; Höchstötter, A.; Becker, T. Possibilities to increase the quality in gluten-free bread production: An overview. Eur. Food Res. Technol. 2012, 235, 195–208. [Google Scholar] [CrossRef]
- Capriles, V.D.; Arêas, J.A.G. Approaches to reduce the glycemic response of gluten-free products: In vivo and in vitro studies. Food Funct. 2016, 7, 1266–1272. [Google Scholar] [CrossRef]
- Masure, H.G.; Fierens, E.; Delcour, J.A. Current and forward looking experimental approaches in gluten-free bread making research. J. Cereal Sci. 2016, 67, 92–111. [Google Scholar] [CrossRef]
- Gutkoski, L.C.; Jacobsen Neto, R. Procedure to laboratorial test of bread making: Form bread type. Ciência Rural 2002, 32, 873–879. [Google Scholar] [CrossRef]
- Renzetti, S.; Dal Bello, F.; Arendt, E.K. Microstructure, fundamental rheology and baking characteristics of batters and breads from different gluten-free flours treated with a microbial transglutaminase. J. Cereal Sci. 2008, 48, 33–45. [Google Scholar] [CrossRef]
- Roman, L.; Reguilon, M.P.; Martinez, M.M.; Gomez, M. The effects of starch cross-linking, stabilization and pre-gelatinization at reducing gluten-free bread staling. LWT 2020, 132, 109908. [Google Scholar] [CrossRef]
- Aoki, N.; Kataoka, T.; Nishiba, Y. Crucial role of amylose in the rising of gluten- and additive-free rice bread. J. Cereal Sci. 2020, 92, 102905. [Google Scholar] [CrossRef]
- Bravo-Núñez, Á.; Sahagún, M.; Gómez, M. Assessing the Importance of Protein Interactions and Hydration Level on Protein-Enriched Gluten-Free Breads: A Novel Approach. Food Bioprocess Technol. 2019, 12, 820–828. [Google Scholar] [CrossRef]
- Hernández-Aguirre, M.A.; Islas-Hernández, J.J.; Sánchez-Pardo, M.E.; Rodríguez-Ambriz, S.L.; Osorio-Díaz, P. Response surface methodology for optimization of gluten-free bread made with unripe banana flour. J. Food Meas. Charact. 2019, 13, 1652–1660. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Altman, D.G.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; et al. PRISMA Group Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Food Safety Authority Nutrition Applications: Regulations and Guidance|European Food Safety Authority. Available online: https://www.efsa.europa.eu/en/applications/nutrition/regulationsandguidance (accessed on 20 June 2018).
- El Dash, A.A. Standardized mixing and fermentation procedure for experimental baking test [Quality, wheat, flour]. Cereal Chem. 1978, 55, 436–446. [Google Scholar]
- Esteller, M.S. Structural Modifications of Baked Goods by Heat and Biochemical Treatment Processes (Modificações Estruturais de Produtos Panificados por Processos de Tratamentos Térmico e Bioquímico). Ph.D.Thesis, Biblioteca Digital de Teses e Dissertações da Universidade de São Paulo, São Paulo, Brazil, 2007. [Google Scholar]
- Esteller, M.S.; Lannes, S.C.D.S. Complementary parameters of requirements to fixing identity and quality of bakery products. Food Sci. Technol. 2005, 25, 802–806. [Google Scholar] [CrossRef] [Green Version]
- Esteller, M.S.; Lanner, S.C.S. Production and characterization of sponfe-dough bread using scalded rye. J. Texture Stud. 2008, 39, 56–67. [Google Scholar] [CrossRef]
- Sehn, G.A.R.; Steel, C.J. Classification of whole wheat flour using a dimensionless number. J. Food Sci. Technol. 2017, 54, 3827–3836. [Google Scholar] [CrossRef]
- Qazi, W.M.; Ballance, S.; Uhlen, A.K.; Kousoulaki, K.; Haugen, J.-E.; Rieder, A. Protein enrichment of wheat bread with the marine green microalgae Tetraselmis chuii—Impact on dough rheology and bread quality. LWT 2021, 111115. [Google Scholar] [CrossRef]
- Suárez-Estrella, D.; Cardone, G.; Buratti, S.; Pagani, M.A.; Marti, A. Sprouting as a pre-processing for producing quinoa-enriched bread. J. Cereal Sci. 2020, 96, 103111. [Google Scholar] [CrossRef]
- Ortiz de Erive, M.; He, F.; Wang, T.; Chen, G. Development of β-glucan enriched wheat bread using soluble oat fiber. J. Cereal Sci. 2020, 95, 103051. [Google Scholar] [CrossRef]
- Koerner, T.B.; Cléroux, C.; Poirier, C.; Cantin, I.; Alimkulov, A.; Elamparo, H. Gluten contamination in the Canadian commercial oat supply. Food Addit. Contam. Part A 2011, 28, 705–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickey, W. Making oats safer for patients with coeliac disease. Eur. J. Gastroenterol. Hepatol. 2008, 20, 494–495. [Google Scholar] [CrossRef] [PubMed]
- Storsrud, S.; Malmheden Yman, I.; Lenner, R.A.; Størsrud, S.; Malmheden Yman, I.; Lenner, R.A. Gluten contamination in oat products and products naturally free from gluten. Eur. Food Res. Technol. 2003, 217, 481–485. [Google Scholar] [CrossRef]
- Isosaki, M.; Cardoso, E.; Glina, D.M.R.; Pustiglione, M.; Rocha, L.E. Intervention in a hospital foodservice and its effects on musculoskeletal symptoms. Rev. Nutr. 2011, 24, 449–462. [Google Scholar] [CrossRef] [Green Version]
- Andersson, H.; Öhgren, C.; Johansson, D.; Kniola, M.; Stading, M. Extensional flow, viscoelasticity and baking performance of gluten-free zein-starch doughs supplemented with hydrocolloids. Food Hydrocoll. 2011, 25, 1587–1595. [Google Scholar] [CrossRef]
- Aoki, N. Sweet Potato Flour Decreases Firmness of Gluten-free Rice Bread. Food Sci. Technol. Res. 2018, 24, 105–110. [Google Scholar] [CrossRef]
- Belorio, M.; Gómez, M. Effect of Hydration on Gluten-Free Breads Made with Hydroxypropyl Methylcellulose in Comparison with Psyllium and Xanthan Gum. Foods 2020, 9, 1548. [Google Scholar] [CrossRef] [PubMed]
- Berta, M.; Koelewijn, I.; Öhgren, C.; Stading, M. Effect of zein protein and hydroxypropyl methylcellulose on the texture of model gluten-free bread. J. Texture Stud. 2019, 50, 341–349. [Google Scholar] [CrossRef]
- Borges, V.C.; Salas-Mellado, M.M. Influence of a-amilase, trehalose, sorbitol, and polysorbate 80 on the quality of gluten-free bread. Int. Food Res. J. 2016, 23, 1973–1979. [Google Scholar]
- Chakraborty, S.K.; Gupta, S.; Kotwaliwale, N. Quality characteristics of gluten free bread from barnyard millet–soy flour blends. J. Food Sci. Technol. 2016, 53, 4308–4315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crockett, R.; Ie, P.; Vodovotz, Y. Effects of soy protein isolate and egg white solids on the physicochemical properties of gluten-free bread. Food Chem. 2011, 129, 84–91. [Google Scholar] [CrossRef]
- De la Barca, A.M.C.; Rojas-Martínez, M.E.; Islas-Rubio, A.R.; Cabrera-Chávez, F. Gluten-Free Breads and Cookies of Raw and Popped Amaranth Flours with Attractive Technological and Nutritional Qualities. Plant Foods Hum. Nutr. 2010, 65, 241–246. [Google Scholar] [CrossRef]
- Da Silva Graça, C.; Barbosa, J.B.; De Souza, M.Z.; Da Silveira Moreira, A.; De Mello Luvielmo, M.; De Las Mercedes Salas Mellado, M. Addition of collagen to gluten-free bread made from rice flour. Braz. J. Food Technol. 2017, 20, e2016105. [Google Scholar] [CrossRef] [Green Version]
- Gumul, D.; Korus, A.; Ziobro, R.; Harangozo, L.; Tokár, M. Physical characteristics and nutritional composition of gluten-free bread with share of freeze-dried red potatoes. CyTA J. Food 2017, 15, 629–638. [Google Scholar] [CrossRef] [Green Version]
- Gujral, H.S.; Guardiola, I.; Carbonell, J.V.; Rosell, C.M. Effect of Cyclodextrinase on Dough Rheology and Bread Quality from Rice Flour. J. Agric. Food Chem. 2003, 51, 3814–3818. [Google Scholar] [CrossRef]
- Han, A.; Romero, H.M.; Nishijima, N.; Ichimura, T.; Handa, A.; Xu, C.; Zhang, Y. Effect of egg white solids on the rheological properties and bread making performance of gluten-free batter. Food Hydrocoll. 2019, 87, 287–296. [Google Scholar] [CrossRef]
- Horstmann, S.; Belz, M.; Heitmann, M.; Zannini, E.; Arendt, E. Fundamental Study on the Impact of Gluten-Free Starches on the Quality of Gluten-Free Model Breads. Foods 2016, 5, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horstmann, S.W.; Foschia, M.; Arendt, E.K. Correlation analysis of protein quality characteristics with gluten-free bread properties. Food Funct. 2017, 8, 2465–2474. [Google Scholar] [CrossRef] [PubMed]
- Horstmann, S.W.; Axel, C.; Arendt, E.K. Water absorption as a prediction tool for the application of hydrocolloids in potato starch-based bread. Food Hydrocoll. 2018, 81, 129–138. [Google Scholar] [CrossRef]
- Kringel, D.H.; Filipini, G.D.S.; Salas‐Mellado, M.D.L.M. Influence of phosphorylated rice flour on the quality of gluten-free bread. Int. J. Food Sci. Technol. 2017, 52, 1291–1298. [Google Scholar] [CrossRef]
- Krupa-Kozak, U.; Baczek, N.; Rosell, C.M. Application of dairy proteins as technological and nutritional improvers of calcium-supplemented gluten-free bread. Nutrients 2013, 11, 4503. [Google Scholar] [CrossRef] [Green Version]
- Mancebo, C.M.; Martínez, M.M.; Merino, C.; de la Hera, E.; Gómez, M. Effect of oil and shortening in rice bread quality: Relationship between dough rheology and quality characteristics. J. Texture Stud. 2017, 48, 597–606. [Google Scholar] [CrossRef]
- Martínez, M.M.; Gómez, M. Rheological and microstructural evolution of the most common gluten-free flours and starches during bread fermentation and baking. J. Food Eng. 2017, 197, 78–86. [Google Scholar] [CrossRef]
- Matos, M.E.; Rosell, C.M. Quality Indicators of Rice-Based Gluten-Free Bread-Like Products: Relationships Between Dough Rheology and Quality Characteristics. Food Bioprocess Technol. 2013, 6, 2331–2341. [Google Scholar] [CrossRef] [Green Version]
- Nishita, K.D.; Roberts, R.L.; Bean, M.M.; Kennedy, B.M. Development of a Yeast-Leavened Rice-Bread Formula. Cereal Chem. 1976, 53, 626–635. [Google Scholar]
- Nishita, K.D.; Bean, M.M. Physiocochemical Properties of Rice in Relation to Rice Bread. Cereal Chem. 1979, 56, 185–189. [Google Scholar]
- Olojede, A.O.; Sanni, A.I.; Banwo, K. Effect of legume addition on the physiochemical and sensorial attributes of sorghum-based sourdough bread. LWT 2020, 118, 108769. [Google Scholar] [CrossRef]
- Ozturk, O.K.; Mert, B. The effects of microfluidization on rheological and textural properties of gluten-free corn breads. Food Res. Int. 2018, 105, 782–792. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, O.K.; Mert, B. The use of microfluidization for the production of xanthan and citrus fiber-based gluten-free corn breads. LWT 2018, 96, 34–41. [Google Scholar] [CrossRef]
- Paciulli, M.; Ganino, T.; Carini, E.; Pellegrini, N.; Pugliese, A.; Chiavaro, E. Effect of different cooking methods on structure and quality of industrially frozen carrots. J. Food Sci. Technol. 2016, 53, 2443–2451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasqualone, A.; Caponio, F.; Summo, C.; Paradiso, V.M.; Bottega, G.; Pagani, M.A. Gluten-Free Bread Making Trials from Cassava ( Manihot Esculenta Crantz) Flour and Sensory Evaluation of the Final Product. Int. J. Food Prop. 2010, 13, 562–573. [Google Scholar] [CrossRef] [Green Version]
- Peressini, D.; Pin, M.; Sensidoni, A. Rheology and breadmaking performance of rice-buckwheat batters supplemented with hydrocolloids. Food Hydrocoll. 2011. [Google Scholar] [CrossRef]
- Pérez-Quirce, S.; Collar, C.; Ronda, F. Significance of healthy viscous dietary fibres on the performance of gluten-free rice-based formulated breads. Int. J. Food Sci. Technol. 2014, 49, 1375–1382. [Google Scholar] [CrossRef] [Green Version]
- Pico, J.; Reguilón, M.P.; Bernal, J.; Gómez, M. Effect of rice, pea, egg white and whey proteins on crust quality of rice flour-corn starch based gluten-free breads. J. Cereal Sci. 2019, 86, 92–101. [Google Scholar] [CrossRef]
- Roman, L.; Gomez, M.; Hamaker, B.R.; Martinez, M.M. Banana starch and molecular shear fragmentation dramatically increase structurally driven slowly digestible starch in fully gelatinized bread crumb. Food Chem. 2019, 274, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Sahagún, M.; Benavent-Gil, Y.; Rosell, C.M.; Gómez, M. Modulation of in vitro digestibility and physical characteristics of protein enriched gluten free breads by defining hydration. LWT 2020, 117, 108642. [Google Scholar] [CrossRef]
- Sanchez, H.D.; Osella, C.A.; de la Torre, M.A. Use of Response Surface Methodology to Optimize Gluten-Free Bread Fortified with Soy Flour and Dry Milk. Food Sci. Technol. Int. 2004, 10, 5–9. [Google Scholar] [CrossRef]
- Southgate, A.N.N.; Scheuer, P.M.; Martelli, M.F.; Menegon, L.; de Francisco, A. Quality Properties of a Gluten-Free Bread with Buckwheat. J. Culin. Sci. Technol. 2017, 15, 339–348. [Google Scholar] [CrossRef]
- Storck, C.R.; da Rosa Zavareze, E.; Gularte, M.A.; Elias, M.C.; Rosell, C.M.; Guerra Dias, A.R. Protein enrichment and its effects on gluten-free bread characteristics. LWT Food Sci. Technol. 2013, 53, 346–354. [Google Scholar] [CrossRef]
- Tsatsaragkou, K.; Kara, T.; Ritzoulis, C.; Mandala, I.; Rosell, C.M. Improving Carob Flour Performance for Making Gluten-Free Breads by Particle Size Fractionation and Jet Milling. Food Bioprocess Technol. 2017, 10, 831–841. [Google Scholar] [CrossRef] [Green Version]
- Yano, H.; Fukui, A.; Kajiwara, K.; Kobayashi, I.; Yoza, K.; Satake, A.; Villeneuve, M. Development of gluten-free rice bread: Pickering stabilization as a possible batter-swelling mechanism. LWT Food Sci. Technol. 2017, 79, 632–639. [Google Scholar] [CrossRef]
- Ziobro, R.; Witczak, T.; Juszczak, L.; Korus, J. Supplementation of gluten-free bread with non-gluten proteins. Effect on dough rheological properties and bread characteristic. Food Hydrocoll. 2013. [Google Scholar] [CrossRef]
- Crockett, R.; Ie, P.; Vodovotz, Y. How do xanthan and hydroxypropyl methylcellulose individually affect the physicochemical properties in a model gluten-free dough? J. Food Sci. 2011. [Google Scholar] [CrossRef] [PubMed]
- Olojede, A.O.; Sanni, A.I.; Banwo, K. Rheological, textural and nutritional properties of gluten-free sourdough made with functionally important lactic acid bacteria and yeast from Nigerian sorghum. LWT 2020, 120. [Google Scholar] [CrossRef]
- Roman, L.; Gomez, M.; Martinez, M.M. Mesoscale structuring of gluten-free bread with starch. Curr. Opin. Food Sci. 2021, 38, 189–195. [Google Scholar] [CrossRef]
- Gujral, H.S.; Rosell, C.M. Improvement of the breadmaking quality of rice flour by glucose oxidase. Food Res. Int. 2004. [Google Scholar] [CrossRef]
- Sciarini, L.S.; Ribotta, P.D.; León, A.E.; Pérez, G.T. Influence of Gluten-free Flours and their mixtures on batter properties and bread quality. Food Bioprocess Technol. 2010, 3, 577–585. [Google Scholar] [CrossRef]
- Sciarini, L.S.; Ribotta, D.; León, A.E.; Pérez, G.T.; Ribotta, P.D.; León, A.E.; Pérez, G.T.; Ribotta, D.; León, A.E.; Pérez, G.T. Incorporation of several additives into gluten free breads: Effect on dough properties and bread quality. J. Food Eng. 2012, 111, 590–597. [Google Scholar] [CrossRef]
- Aprodu, I.; Banu, I. Influence of dietary fiber, water, and glucose oxidase on rheological and baking properties of maize based gluten-free bread. Food Sci. Biotechnol. 2015, 24, 1301–1307. [Google Scholar] [CrossRef]
- Kulp, K.; Frank, N.H.; Thomas, A.L. Preparation of bread without gluten. Bak. Dig 1974, 48, 34–38. [Google Scholar]
- Steinmacher, N.C. Physico-Chemical Characterization, Rheological Properties and Proteins of Zea Mays (Caracterização Fisico-química, das Propriedades Reológicas e das Proteínas de Milho Crioulo—Zea Mays). Marter Thesis, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil, 2005. [Google Scholar]
- Nunes, M.H.B.; Moore, M.M.; Ryan, L.A.M.; Arendt, E.K. Impact of emulsifiers on the quality and rheological properties of gluten-free breads and batters. Eur. Food Res. Technol. 2009. [Google Scholar] [CrossRef]
- De la Hera, E.; Talegen, M.; Caballero, P.; Gomez, M. Influence of maize flour particle size on gluten-free breadmaking. J. Sci. Food Agric. 2013. [Google Scholar] [CrossRef]
- Pyler, E.J. Baking: Science and Technology Volume II by E. J. Pyler: Siebel Publishing Company, Chicago Hardcover, Third Corrected Printing. Logical Unsanity Books; Siebel Publishing Company: Chicago, IL, USA, 1982. [Google Scholar]
- Pico, J.; Antolín, B.; Román, L.; Bernal, J.; Gómez, M. Selection of the most suitable mixture of flours and starches for the improvement of gluten-free breads through their volatile profiles. Eur. Food Res. Technol. 2019, 245, 1755–1766. [Google Scholar] [CrossRef]
- Pomeranz, Y.; Shellenberger, J.A.A. Bread Science and Technology, 1st ed.; AVI Publishing Company: Westport, CT, USA, 1971; Volume 17, ISBN 978-0870551048. [Google Scholar]
- Alvarez-Jubete, L.; Arendt, E.K.; Gallagher, E. Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends Food Sci. Technol. 2010, 21, 106–113. [Google Scholar] [CrossRef]
- O’Shea, N.; Arendt, E.; Gallagher, E. State of the Art in Gluten-Free Research. J. Food Sci. 2014, 79, R1067–R1076. [Google Scholar] [CrossRef] [Green Version]
- Ziobro, R.; Korus, J.; Witczak, M.; Juszczak, L. Influence of modified starches on properties of gluten-free dough and bread. Part II: Quality and staling of gluten-free bread. Food Hydrocoll. 2012, 29, 68–74. [Google Scholar] [CrossRef]
- Alvarez-Jubete, L.; Auty, M.; Arendt, E.K.; Gallagher, E. Baking properties and microstructure of pseudocereal flours in gluten-free bread formulations. Eur. Food Res. Technol. 2009. [Google Scholar] [CrossRef]
- Bartz, J.; Madruga, K.M.; Klein, B.; Pinto, V.Z.; Dias, Á.R.G. Pasting properties of native and acetylated rice starches. Braz. J. Food Technol. 2012, 15, 78–83. [Google Scholar] [CrossRef] [Green Version]
- Weber, F.H.; Collares-Queiroz, F.P.; Chang, Y.K. Physicochemical, rheological, morphological, and thermal characterization of normal, waxy, and high amylose corn starches. Food Sci. Technol. 2009, 29, 748–753. [Google Scholar] [CrossRef] [Green Version]
- Leonel, M. Analysis of the shape and size of starch grains from different botanical species. Food Sci. Technol. 2007, 27, 579–588. [Google Scholar] [CrossRef] [Green Version]
- Baldino, N.; Laitano, F.; Lupi, F.R.; Curcio, S.; Gabriele, D. Effect of HPMC and CMC on rheological behavior at different temperatures of gluten-free bread formulations based on rice and buckwheat flours. Eur. Food Res. Technol. 2018, 244, 1829–1842. [Google Scholar] [CrossRef]
- Rosell, C.M.; Foegeding, A. Interaction of hydroxypropylmethylcellulose with gluten proteins: Small deformation properties during thermal treatment. Food Hydrocoll. 2007, 21, 1092–1100. [Google Scholar] [CrossRef]
- Rojas, J.A.; Rosell, C.M.; Benedito de Barber, C. Pasting properties of different wheat flour-hydrocolloid systems. Food Hydrocoll. 1999, 13, 27–33. [Google Scholar] [CrossRef]
- Collar, C.; Andreu, P.; Martínez, J.; Armero, E. Optimization of hydrocolloid addition to improve wheat bread dough functionality: A response surface methodology study. Food Hydrocoll. 1999, 13, 467–475. [Google Scholar] [CrossRef]
- Grover, J.A. Methylcellulose (MC) and hydroxypropylmethylcellulose (HPMC). Food Hydrocoll. 1982, 138, 121–154. [Google Scholar]
- Moore, M.M.; Schober, T.J.; Dockery, P.; Arendt, E.K. Textural comparisons of gluten-free and wheat-based doughs, batters, and breads. Cereal Chem. 2004, 81, 567–575. [Google Scholar] [CrossRef]
- Blanco, C.A.; Ronda, F.; Pérez, B.; Pando, V. Improving gluten-free bread quality by enrichment with acidic food additives. Food Chem. 2011. [Google Scholar] [CrossRef]
- Kadan, R.S.; Robinson, M.G.; Thibodeaux, D.P. Texture and other Physicochemical Properties of Whole Rice Bread. J. Food Sci. 2001, 66, 940–944. [Google Scholar] [CrossRef]
- Marco, C.; Rosell, C.M. Breadmaking performance of protein enriched, gluten-free breads. Eur. Food Res. Technol. 2008. [Google Scholar] [CrossRef] [Green Version]
- Mccarthy, D.F.; Gallagher, E.; Gormley, T.R.; Schober, T.J.; Arendt, E.K. Application of Response Surface Methodology in the Development of Gluten-Free Bread. Cereal Chem. J. 2005, 82, 609–615. [Google Scholar] [CrossRef]
- Nunes, M.H.B.; Ryan, L.A.M.; Arendt, E.K. Effect of low lactose dairy powder addition on the properties of gluten-free batters and bread quality. Eur. Food Res. Technol. 2009. [Google Scholar] [CrossRef]
- Demirkesen, I.; Mert, B.; Sumnu, G.; Sahin, S. Rheological properties of gluten-free bread formulations. J. Food Eng. 2010, 96, 295–303. [Google Scholar] [CrossRef]
- Hager, A.S.; Arendt, E.K. Influence of hydroxypropylmethylcellulose (HPMC), xanthan gum and their combination on loaf specific volume, crumb hardness and crumb grain characteristics of gluten-free breads based on rice, maize, teff and buckwheat. Food Hydrocoll. 2013. [Google Scholar] [CrossRef]
- Guarda, A.; Rosell, C.; Benedito, C.; Galotto, M. Different hydrocolloids as bread improvers and antistaling agents. Food Hydrocoll. 2004, 18, 241–247. [Google Scholar] [CrossRef]
- Encina-Zelada, C.R.; Cadavez, V.; Monteiro, F.; Teixeira, J.A.; Gonzales-Barron, U. Combined effect of xanthan gum and water content on physicochemical and textural properties of gluten-free batter and bread. Food Res. Int. 2018, 111, 544–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djordjević, M.; Šoronja-Simović, D.; Nikolić, I.; Dokić, L.; Djordjević, M.; Šereš, Z.; Šaranović, Ž. Rheology and bread-making performance of gluten-free formulations affected by different levels of sugar beet fibre, hydroxypropylmethylcellulose and water. Int. J. Food Sci. Technol. 2018, 53, 1832–1837. [Google Scholar] [CrossRef]
- Moore, M.M.; Heinbockel, M.; Dockery, P.; Ulmer, H.M.; Arendt, E.K. Network formation in gluten-free bread with application of transglutaminase. Cereal Chem. 2006, 83, 28–36. [Google Scholar] [CrossRef]
- Jemli, S.; Messaoud, E.B.; Ayadi-Zouari, D.; Naili, B.; Khemakhem, B.; Bejar, S. A β-cyclodextrin glycosyltransferase from a newly isolated Paenibacillus pabuli US132 strain: Purification, properties and potential use in bread-making. Biochem. Eng. J. 2007, 34, 44–50. [Google Scholar] [CrossRef]
- Krupa-Kozak, U.; Altamirano-Fortoul, R.; Wronkowska, M.; Rosell, C.M. Breadmaking performance and technological characteristic of gluten-free bread with inulin supplemented with calcium salts. Eur. Food Res. Technol. 2012. [Google Scholar] [CrossRef] [Green Version]
- Zandonadi, R.P.; Botelho, R.B.A.; Araújo, W.M.C. Psyllium as a Substitute for Gluten in Bread. J. Am. Diet. Assoc. 2009, 109, 1781–1784. [Google Scholar] [CrossRef] [PubMed]
- Gambus, H.; Nowotna, A.; Ziobro, R.; Gumul, D.; Sikora, M. The effect of use of guar gum with pectin mixture in gluten-free bread. Electron. J. Polish Agric. Univ. Ser. Food Sci. Technol. 1998, 4, 176. [Google Scholar]
- Sanchez, H.D.D.; Osella, C.A.A.; De, M.A.; Torre, L.; Torre, M.A. Optimization of Gluten-Free Bread Prepared from Cornstarch, Rice Flour, and Cassava Starch. Food Sci. 2002, 67, 416–419. [Google Scholar] [CrossRef]
- Milde, L.B.; Ramallo, L.A.; Puppo, M.C. Gluten-free Bread Based on Tapioca Starch: Texture and Sensory Studies. Food Bioprocess Technol. 2012. [Google Scholar] [CrossRef]
- Schober, T.J.; Bean, S.R.; Boyle, D.L.; Park, S.H. Improved viscoelastic zein-starch doughs for leavened gluten-free breads: Their rheology and microstructure. J. Cereal Sci. 2008. [Google Scholar] [CrossRef]
- Graça, A.; Esteves, E.; Nunes, C.; Abadias, M.; Quintas, C. Microbiological quality and safety of minimally processed fruits in the marketplace of southern Portugal. Food Control 2017, 73, 775–783. [Google Scholar] [CrossRef]
- Ziobro, R.; Korus, J.; Juszczak, L.; Witczak, T. Influence of inulin on physical characteristics and staling rate of gluten-free bread. J. Food Eng. 2013. [Google Scholar] [CrossRef]
- Myers, T.D. Achieving external validity in home advantage research: Generalizing crowd noise effects. Front. Psychol. 2014, 5, 532. [Google Scholar] [CrossRef] [Green Version]
- AACC. Approved Methods of the American Association of Cereal Chemists, 10th ed.; AACC: St. Paul, MN, USA, 2000. [Google Scholar]
- Ahlborn, G.J.; Pike, O.A.; Hendrix, S.B.; Hess, W.M.; Huber, C.S. Sensory, Mechanical, and Microscopic Evaluation of Staling in Low-Protein and Gluten-Free Breads. Cereal Chem. 2005, 82, 328–335. [Google Scholar] [CrossRef]
- Moore, M.M.; Juga, B.; Schober, T.J.; Arendt, E.K. Effect of Lactic Acid Bacteria on Properties of Gluten-Free Sourdoughs, Batters, and Quality and Ultrastructure of Gluten-Free Bread. Cereal Chem. 2007, 84, 357–364. [Google Scholar] [CrossRef]
Author (Year) | Starch Sources, Gluten Substitutes, and Additives | Water (% of Flour Weight) | Best Formulation (% of Flour Weight) | Specific Volume (cm3/g) | Crumb and Crust | Sensory Analysis |
---|---|---|---|---|---|---|
Andersson et al. (2011) [64] | Zein, CS, HPMC, β-Glucan, MS, OW28. | 64 to 80% | Flour (20% zein + 80% CS) + 2% HPMC + 2% salt + 5% sugar + 1% yeast + 75% water | 4.4 | - | - |
Aoki (2018) [65] | RF. Formulations in which 1, 2, and 5% of the rice flour were replaced with sweet potato flour and β-amylase. | 90% | Flour (100% RF) +2% salt + 9% sugar + 2% yeast + 2.5 olive oil 90% water | 4.20 | Firmness (N) = 0.55 | - |
- | - | 90% | Flour (100% RF—Mizuhockikara with 22.3% of amylose) + 0.00005% protease A+ 2% salt + 9% sugar + 2% yeast + 2.5 olive oil 90% water | 5.0 | ||
Belorio & Gómez (2020) [66] | RF or MS and hydrocolloid (HPMC, XG or Psyllium) | 70 to 120% | Flour (100% MS) + 2% HPMC + 6% sunflower oil + 5% sugar + 3% yeast power + 1.8 salt + 80% water | 7.58 | Hardness (N) = 1.44 Springiness = 1.011 Cohesiveness = 0.754 Resilience = 0.493 | - |
Berta et al. (2019) [67] | CS, PS, zein and HPMC | 39.4% | Flour (86% CS + 14% PS) + 5% zein + 5% HPMC + 3% salt + 4% sugar + 2% dry yeast + 6% olive oil + 82% water | 6.0 | Firmness (N) = 5.5 Cohesiveness = 0.70 Crust hardness (N)~3 | - |
Borges & Salas-Mellado (2016) [68] | RF, MC and TGase added by sorbitol, trehalose, alpha-amylase, or polysorbate | 75% | Flour (100%RF) + 2% MC + 6% vegetable oil + 5% sugar + 2% yeast + 2% salt + 75% water+ 0.1% polysorbate + 1% vegetable oil + 0.5% TGase + 0.0009% ascorbic acid | 3.5 | Hardness (N) = 3.07 | - |
Bravo-Núñez et al. (2019) [48] | MS, and HPMC added by pea protein and/or EWP | 80.49 to 139.22% | Flour (70% MS + 30% EWP) + 2% HPMC + 6% oil + 5% sugar + 3% yeast + 1.8% salt + 80.49% water | 5.5 | Hardness = 21.98 Springiness = 1.03 Cohesiveness = 0.61 Chewiness = 13.83 | - |
Chakraborty et al. (2016) [69] | Millet and soybean flour | 80% | Flour (85% millet flour + 15% soy flour) + 2.6% salt + 3% sugar + 5% yeast + 80% water | 3.44 | Hardness = 159.1N Cohesiveness = 0.77 Resilience = 0.64 Springiness = 0.98 L* = 21.77; a* = 117.54 b* = 98.87 | - |
Crockett et al. (2011) [70] | RF and CS (added or not with Methocel E15-HPMC) + soy protein and/or EWP. | 132 to 148% | Flour (67% RF + 33% cassava starch) + 16% HPMC + 50% EW + 10% yeast + 2% salt + 4% sugar + 148% water | ~4.0 | Hardness (N)~8.0 Springiness~8.0 | N = 28 The average score in acceptability testing 4.0 ± 2.0 Texture: too dry, coarse, sponge-like, sandy, foamy Flavor: beany, chemical aftertaste |
de la Barca et al. (2010) [71] | Popped AF and raw AF | 58% | Flour (70% popped AF + 30% raw AF) + 2% yeast + 2% salt + 6% sugar + 58% water | 3.5 | - | - |
Graça et al. (2017) [72] | RF, ascorbic acid, MC, TGase, collagen powder and collagen fiber. Control: without collagen powder or collagen fiber. | 120% | Flour (100% RF) + 2% MC + 0.5% TGase + 4% collagen fiber + 2% salt + 5% sugar + 2% dry yeast + 6% soy oil + 0.009% ascorbic acid + 120% water | 3.8 | Crumb firmness~0.2 Color crust L* = 74.00; a* = 2.50 b* 22.38 Color crumb L* = 70.40; a* = −1.02 b* 6.75 | 80 tasters Sensory acceptance 75% |
Gumul et al. (2017) [73] | Control: MS, PSGG. GFB+5BS: Control+ freeze-dried red potatoes (Blue Star variety). GFB+5ML: Control+ freeze-dried red potatoes (Magenta Love variety). GFB+SV: Control+ freeze dried red potatoes (Violeta variety). | 103% | Flour (80% MS + 20% PS -Magenta love variety) + 1.7% GG + 1.7% pectin + 5% yeast + 1.7% salt + 2% sucrose + 3% oil + 103% water | 3.56 mL/g | Number of pores = 1408 Porosity (%) = 0.401 Number of pores/cm2 = 4779 | |
Gujral et al. (2003) [74] | RF, HPMC, and CGTase. | 90% | Flour (100% RF) + 0.00002% CGTase + 4% HPMC + 6% oil + 7.5% sugar + 2% salt + 3% yeast + 90% water | 4.3 | Crumb firmness = 247.1 g | |
Han et al. (2019) [75] | Control: flour (a mixture of garbanzo bean flour, PS, TF, whole grain sorghum flour and fava bean flour), rice fiber, TS. M5: mix flour, rice fiber, 6 g TS, white egg M200. M10: mix flour, rice fiber, TS, trehalose, white egg M200. M15: mix flour, rice fiber, tapioca starch, trehalose, and white egg M200. P5: mix flour, rice fiber, TS, trehalose, white egg P110. P10: mix flour, rice fiber, TS, trehalose, soybean oil, white egg P110. P15: mix flour, rice fiber, TS, sugar, trehalose, soybean oil, white egg P110. | 100% | M15: Flour (85% mix flour + 15% egg white solid) + 4% rice fiber+ 3% TS + 10% sugar + 1.6% salt + 5% trehalose + 12% soybean oil + 3% yeast +100% water + 15% EW M200. | 4.45 | Hardness (N) = 5.1 Springiness = 0.95 Cohesiveness = 0.78 Chewiness = 3.7 Resilience = 0.46 | - |
Hernández-Aguirre et al. (2019) [49] | Unripe banana flour(UBF), HPMC, Pregelatinized Unripe banana flour(UBF-P) | 46 to 100% | Flour (75% UBF + 25% UBF-P) + 4% HPMC + 73% fresh eggs + 8% sugar, 8% shortening, 1% instant yeast + 2% salt | 4.82 | Large cell (%) = 0.95 Number of large cells 6.17 Number of the largest cell 1.47 | - |
Horstmann et al. (2016) [76] | WS, PS, TS, MS, RS, HPMC. | 80% | Flour (100% PS) + 2% HPMC + 2% salt + 4% sugar + 2% yeast + 80% water | 5.0 | - | - |
Horstmann et al. (2017) [77] | PS, HPMC and protein source (potato protein, soy protein isolate, pea protein lupin protein, carob protein) | 80% | Flour (100% PS) + 2% HPMC + 2% lupin protein + 2% salt + 4% sugar + 2% yeast + 80% water | 3.66 | Hardness (N) = 7.12 Springiness rate = 0.230 Cohesiveness = 0.057 Resilience = 0.049 | - |
Horstmann et al. (2018) [78] | PS, and hydrocolloid (GG/XG/LGB/HPMC/pectin/sodium alginate) | 80% | Flour (100% PS) + 1% sodium alginate + 2% salt + 4% sugar + 2% yeast + 80% water | 3.6 | Hardness (N) = 4.3 | - |
Kringel et al. (2017) [79] | RF with native RF or phosphorylated RF, ascorbic acid, MC, and TGase. | 120% | Flour (100% RF phosphorylated) + 2%MC + 0.5% TGase + 2% salt + 2% soy oil + 2% dry yeast + 5% sugar + 120% water | 3.74 | Color crust L* = 70.12; a* = 4.02 b* 26.08 Color crumb L* = 74.21; a* = −0.82 b* 9.35 | - |
Krupa-Kozak et al. (2013) [80] | PS; P; Calcium citrate; MS added by protein Calcium caseinate, sodium caseinate, isolated whey protein, and hydrolyzed whey proteins) | 105% | Flour (79% CS + 21% PS) + 5% pectin + 2% salt + 6% sugar + 6% dried yeast + 3% oil + 8% calcium citrate + 16% sodium caseinate + 105% water | 4.7 | Hardness (N) = 11.43 Springiness = 0.981 Cohesiveness = 0.427 Chewiness = 475.84 Crust L* = 30.25; a* = 8.31 b* = 13.02 Crumb L* = 69.92; a* = −0.95 b* = 12.55 | - |
Mancebo et al. (2017) [81] | RF and HPMC added by different percentages of oil | 70 to 100% | Flour (100% RF) + 2% HPMC + 5% sucrose + 1.8% salt + 3% instant yeast + 20% oil + 100% | 4.0 | Highest value for the a* and b* parameters of the crust. It also decreases hardness, cohesiveness, springiness, and the L* | - |
Martinez & Gomez (2017) [82] | MF/RF, MF/MS, MF/PS and HPMC. | 100% | Flour (100% MF/MS) + 2% HPMC + 3% instant dry yeast + 6% oil + 1.8% salt + 5% white sugar | 7.14 | Hardness (N) = 1.25 Springiness = 0.95 Cohesiveness = 0.56 Resilience = 0.41 Crust color L* = 82.09; a* = 2.64 b* = 19.32 | - |
Matos & Rosell (2013) [83] | Gluten-free commercial mixture; or RF + HPMC; or RF +MS + PS+ soy protein + XG; or RF + MS + PS + pectin; or RF + MS + PS+ skim milk powder + whole egg powder + XG + HPMC; or RF + PS + skim milk powder + HPMC. | 56.5 to 120% | Flour (50% RF + 50% PS) + 2.2 HPMC + 5% fresh yeast + 5% sugar + 6% vegetable oil + 2% salt + 10% skim milk powder + 79% water | 5.07 | Hardness (N) = 5.43 Crumb color L* = 81.50; a* = −1.53 b* = 6.475 - | GFB Crumb appearance 3.17 Taste = 3.33 Odor = 2.83 Springiness 2.33 Hardness (N) 4.33 Crumbiness 3.00 |
Nishita et al. (1976) [84] | RF, + MC/GG/LBG/CMC-Na/XG/DG/SSL2/CSL2/SMG/EMG. | 75% | Flour (100% RF) + 3% of MC–90 HG 4000 + 3% compressed yeast + 7.5% sugar + 6% vegetable oil + 2% salt + 75% water | 5–5.3 | Very good crumb, white coloring, satisfactory flavor, when fresh. | 57 tasters—“slightly disliked” bread (4.2 on a 0–9 scale) |
Nishita & Bean (1979) [85] | RF + MC. | 75% | Flour (100% RF) + 3% of MC-90 HG 4000 + 3% compressed yeast + 7.5% sugar + 6% vegetable oil + 2% salt + 75% water | 5.2–5.7 | Good crumb texture. | - |
Olojede et al. (2020) [86] | SF + cowpea flour. + Sourdough (Pediococcus pentosaceus SA8). | 105% | Flour (90% SF + 10% cowpea flour) + 2% salt + 4% sugar + 1% baking fat + 2% compressed yeast. | 3.63 | Hardness (N) = 26.40 Cohesiveness = 0.21 Springiness = 10.93 Gumminess = 0.56 Chewiness = 6.14 Crust color L* = 40.10; a* = 5.17 b* = 14.06 Crumb color L* = 42.78; a* = 5.32; b* = 13.99 | Appearance (7.09) Taste (7.09) Texture (7.82) Aroma (7.09) Crumb (7.45) (Scale 0–9) |
Ozturk & Mert (2018) [87] | CGM + CS + GG or HPMC. | 83.33% | Flour (22% CGM + 78% CS) + 5% HPMC + 1% dry yeast + 5% sugar + 2% salt + 83.33% water | 3.46 | Microfluidization and the addition of HPMC decreased hardness and increased springiness and cohesiveness. L* = 88.96; a* = 3.00 b* = 53.77 | - |
Ozturk & Mert (2018) [88] | CGM + CS+ XG or citrus fiber | 75 to 93.75% | Flour (22% CGM + 78% CS) + 5% XG + 1% dry yeast + 5% sugar + 2% salt + 83.33% water | 3.59 | Lower hardness, higher cohesiveness, and springiness values were obtained as a result of microfluidization and supplement addition. | - |
Paciulli et al. (2016) [89] | F1: MS, PS, skimmed milk, dextrose, cellulose, GG and HPMC. F2: MS, RF, lupine proteins, dextrose, HPMC, vegetable fiber. Control: commercial mixture. | 88 to 90% | Flour (43.5% CS + 40% RF+ 6.5% lupine proteins) + 4.5% destrose + 2% HPMC + 2% vegetable fiber + 3.5% salt + 5% yeast + 5% sunflower oil + 90% water | 5.1 | Crumb Hardness (N) = 0.70 Cohesiveness—0.81 Resilience—0.44 Chewiness (N)—0.50 Crust color L* 77.5; a* 2.8; b* 17.1 Crumb color L* 76.1; a* 1.5; b* 11.8 | - |
Pasqualone et al. (2010) [90] | Control: MS; Cassava bread with oil (CBO): CS; Cassava bread with EWP (CBE): CF + EW; Cassava bread with EWP and extra-virgin olive oil (CBOE): CF + EWP. | 100 to 120% | Flour (100% cassava flour) + 2.5% fresh compressed yeast + 9% sucrose + 2% salt + 6% extra virgin olive oil + 40% EWP + 100% water | 3.93 | Crumb color = 3.3 Crust thickness = 1.6 Crumb Firmness (N) = 4.67 Cohesiveness = 7.3 Consistency = 4.7 Overall acceptability = 8.4 | - |
Peressini et al. (2011) [91] | RF, BWF, salt, and XG or PGA. | 80 to 100% | Flour (60% RF + 40% BWF) + 1.5% salt + 4.4% oil + 5.3% compressed yeast + 1.5% PGA | 3.78 | Firmness (N) < 2 | - |
Pérez-Quirce et al. (2014) [92] | RF and HPMC-SFE or BG. | 70 to 110% | Flour (100% RF) + 6% oil + 5% sucrose + 2% salt + 3% dried yeast + 1.6% HPMC-SFE + 90% water | 4.80 | Firmness (N) = 1.0 Chewiness = 0.27 Resilience = 0.22 Cohesiveness = 0.47 Springiness = 0.57 Crumb color L* = 73; h = 90; C* = 7 Crust color L* = 61; h = 65; C* = 31 | - |
Pico et al. (2019) [93] | Control: RF, HPMC and MS + protein source (rice protein, pea protein, egg protein, or whey protein) | 90% | Flour (95% RF + 5% rice protein) + 2% HPMC + 5% sucrose + 1.8% salt + 3% instant yeast + 6% sunflower oil + 90% water | 7.58 | Crust thickness 3.99 ± 0.16 Crust color L* 69.79; a* 3.08 b* 19.34 | - |
Roman et al. (2019) [94] | MS, RS, HPMC, native banana starch (NB), and extruded banana starch. | 105% | Flour (80% MS and RF + 20% NB) + 2% HPMC + 5% white sugar + 2% salt + 3% instant yeast + 6% oil + 105% water | 5.34 | Hardness (N) = 3.04 Springiness = 0.99 Cohesiveness = 0.45 Resilience = 0.21 | Appearance 6.5 Odor 6.0 Flavor 5.3 Texture 5.8 Overall liking 6.0 |
Roman et al. (2019) [40] | Flour (waxy rice flour, basmati rice flour, Thai rice flour, sushi rice flour or bomba rice flour) and HPMC | 90% | Flour (100% Bomba rice flour) + 2% HPMC + 5% white sugar + 2% salt + 3% instant yeast + 6% oil + 90% water | 4.85 | Hardness (N) = 0.88 Cohesiveness = 0.67 Resilience = 0.32 | - |
Roman et al. (2020) [46] | MS, RF, and HPMC added with Acetylated di-starch adipate (ADA), Di-starch phosphate (DP), and/or Pre-gelatinized acetylated di-starchphosphate (PADP) starches. | 120% | Flour (90% RF + 10% DP) + 2% HPMC + 5% white sugar + 2% salt + 3% instant yeast + 6% oil + 90% water | 5.08 | - | - |
Sahagún et al. (2020) [95] | MS +HPMC added with pea or EWP | 90% | Flour (100% MS + 69% EWP) + 2% HPMC + 5% sugar + 1.8% salt + 3% yeast + 6% oil + 90% water | 5.47 | Hardness (N) = 22.34 Springiness = 1.00 Cohesiveness = 0.61 Chewiness = 13.61 | - |
Sánchez et al. (2004) [96] | MS, RF, CS, soy flour and milk powder | 83.33% | Flour (74.2% MS + 17.2% RF + 8.6% CS) + 7.5% soy flour + 7.8% dry milk + 10% fat + 3% HPMC + 5% sugar + 3% salt + 10% yeast + 83.33% water | 3.7 | Crumb grain score = 7.9 Bread score = 74 | - |
Southgate et al. (2017) [97] | RF + sweet cassava flour + BWF | 100% | Flour (30% RF + 25% sweet CF + 45% BWF) + 3% sugar + 2% salt + 1.5% instant active dry yeast + 6% vegetable oil + 100% water | 4.52 | Mean cell area (mm2) 0.339 Cell density = 811.21 Circularity = 0.699 | Sensory acceptability analysis = 6.56 (0 to 9) |
Storck et al. (2013) [98] | RF, flour improver, XG and TGase (egg albumin and casein | 115% | Flour (100% RF) + 1.35UI TGase + 0.67% albumin + 5% sugar + 3% salt + 2% compressed yeast + 3% soy oil + 1% XG + 3% bread improver + 115% water | 5.43 | Hardness (N) = 1.2 Adhesiveness = −4.08 Cohesiveness = 0.51 Chewiness = 583.6 | - |
Tsatsaragkou et al. (2017) [99] | RF, carob flour, EWP, WP, shortening, DATEM, LBG and enzyme. Commercial mixtures: (C1): a mixture of RF, MF, and PS (C2): wheat starch, sugar beet fiber, HPMC, and GG. (C3): CS, RF, BWF, dextrose, and thickeners (carob seeds, C, HPMC). | 80 to 120% | Flour (100% C3) + 6% fresh yeast + 3.5% shortening + 3% sugar + 2% salt + 85% water | 3.95 | Lower crumb firmness values and acceptable elasticity and porosity. | - |
Yano et al. (2017) [100] | RF (low starch damage). | 87.5% | Flour (100% RF—low starch damage <5 g/100 g) + 9.3% sugar + 1% salt + 3.1% yeast + 1.2% butter+ 87.5% water | 4.0 | - | - |
Ziobro et al. (2013b) [101] | CS, PS, GG, P + protein source (albumin, lupine protein, soy protein concentrate, pea, and collagen) | 130% | Flour (72% CS + 18% PS) + 10% albumin + 1.7% GG + 1.7% pectin + 5% yeast + 1.7% salt + 2% sucrose + 3% oil + 130% water | 4.7 | Porosity = 0.409 Cell density (1/cm2) = 9.0 % de pores > 5 mm = 0.446 Hardness (N) <1.0 Cohesiveness~1.0 Chewiness <1.0 Crumb L* = 84.68; a* = −1.17 b* = 14.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteiro, J.S.; Farage, P.; Zandonadi, R.P.; Botelho, R.B.A.; de Oliveira, L.d.L.; Raposo, A.; Shakeel, F.; Alshehri, S.; Mahdi, W.A.; Araújo, W.M.C. A Systematic Review on Gluten-Free Bread Formulations Using Specific Volume as a Quality Indicator. Foods 2021, 10, 614. https://doi.org/10.3390/foods10030614
Monteiro JS, Farage P, Zandonadi RP, Botelho RBA, de Oliveira LdL, Raposo A, Shakeel F, Alshehri S, Mahdi WA, Araújo WMC. A Systematic Review on Gluten-Free Bread Formulations Using Specific Volume as a Quality Indicator. Foods. 2021; 10(3):614. https://doi.org/10.3390/foods10030614
Chicago/Turabian StyleMonteiro, Jordanna S., Priscila Farage, Renata Puppin Zandonadi, Raquel B. A. Botelho, Livia de L. de Oliveira, António Raposo, Faiyaz Shakeel, Sultan Alshehri, Wael A. Mahdi, and Wilma M. C. Araújo. 2021. "A Systematic Review on Gluten-Free Bread Formulations Using Specific Volume as a Quality Indicator" Foods 10, no. 3: 614. https://doi.org/10.3390/foods10030614
APA StyleMonteiro, J. S., Farage, P., Zandonadi, R. P., Botelho, R. B. A., de Oliveira, L. d. L., Raposo, A., Shakeel, F., Alshehri, S., Mahdi, W. A., & Araújo, W. M. C. (2021). A Systematic Review on Gluten-Free Bread Formulations Using Specific Volume as a Quality Indicator. Foods, 10(3), 614. https://doi.org/10.3390/foods10030614