Paving the Way to Food Grade Analytical Chemistry: Use of a Natural Deep Eutectic Solvent to Determine Total Hydroxytyrosol and Tyrosol in Extra Virgin Olive Oils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Oil Samples
2.2. NADES Preparation
2.3. Extraction with NADES and Spectrophotometric Analysis of the Extract (NADES-UV Method)
2.4. HPLC Analysis of Total Phenolic Compounds Free OHTyr and Tyr, and Total OHTyr and Tyr
2.5. NADES-UV Method Validation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Spectral Characterization of NADES Standard Solutions
3.2. NADES Extraction and Extracts Characterization
3.3. Analysis of Correlation
3.4. Determination of Total OHTyr and Tyr
3.5. Sum of OHTyr and Tyr
- Use of environment- and operator-friendly solvents;
- Use of low-cost equipment;
- Easy analytical procedure;
- Short analysis time.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gavahian, M.; Khaneghah, A.M.; Lorenzo, J.M.; Munekata, P.E.; Garcia-Mantrana, I.; Collado, M.C.; Meléndez-Martínez, A.J.; Barba, F.J. Health benefits of olive oil and its components: Impacts on gut microbiota antioxidant activities, and prevention of noncommunicable diseases. Trends Food Sci. Technol. 2019, 88, 220–227. [Google Scholar] [CrossRef]
- Romani, A.; Ieri, F.; Urciuoli, S.; Noce, A.; Marrone, G.; Nediani, C.; Bernini, R. Health Effects of Phenolic Compounds Found in Extra-Virgin Olive Oil, By-Products, and Leaf of Olea europaea L. Nutrients 2019, 11, 1776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francisco, V.; Ruiz-Fernández, C.; Lahera, V.; Lago, F.; Pino, J.; Skaltsounis, A.-L.; González-Gay, M.A.; Mobasheri, A.; Gómez, R.; Scotece, M.; et al. Natural Molecules for Healthy Lifestyles: Oleocanthal from Extra Virgin Olive Oil. J. Agric. Food Chem. 2019, 67, 3845–3853. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Regulation EC No. 432/2012 establishing a list of permitted health claims made on foods, other than those referring to the reduction of disease risk and to children’s development and health. Off. J. Eur. Union 2012, L136, 1–40. [Google Scholar]
- Tsimidou, M.Z.; Nenadis, N.; Servili, M.; García-González, D.L.; Toschi, T.G.; Gonzáles, D.L.G. Why Tyrosol Derivatives Have to Be Quantified in the Calculation of “Olive Oil Polyphenols” Content to Support the Health Claim Provisioned in the EC Reg. 432/2012. Eur. J. Lipid Sci. Technol. 2018, 120, 1800098. [Google Scholar] [CrossRef] [Green Version]
- Mulinacci, N.; Giaccherini, C.; Ieri, F.; Innocenti, M.; Romani, A.; Vincieri, F.F. Evaluation of lignans and free and linked hydroxy-tyrosol and tyrosol in extra virgin olive oil after hydrolysis processes. J. Sci. Food Agric. 2006, 86, 757–764. [Google Scholar] [CrossRef]
- Romero, C.; Brenes, M. Analysis of Total Contents of Hydroxytyrosol and Tyrosol in Olive Oils. J. Agric. Food Chem. 2012, 60, 9017–9022. [Google Scholar] [CrossRef]
- Mastralexi, A.; Nenadis, N.; Tsimidou, M.Z. Addressing Analytical Requirements to Support Health Claims on “Olive Oil Polyphenols” (EC Regulation 432/2012). J. Agric. Food Chem. 2014, 62, 2459–2461. [Google Scholar] [CrossRef]
- Purcaro, G.; Codony, R.; Pizzale, L.; Mariani, C.; Conte, L. Evaluation of total hydroxytyrosol and tyrosol in extra virgin olive oils. Eur. J. Lipid Sci. Technol. 2014, 116, 805–811. [Google Scholar] [CrossRef]
- Paradiso, V.M.; Squeo, G.; Pasqualone, A.; Caponio, F.; Summo, C. An easy and green tool for olive oils labelling according to the contents of hydroxytyrosol and tyrosol derivatives: Extraction with a natural deep eutectic solvent and direct spectrophotometric analysis. Food Chem. 2019, 291, 1–6. [Google Scholar] [CrossRef]
- Reboredo-Rodríguez, P.; Valli, E.; Bendini, A.; Di Lecce, G.; Simal-Gándara, J.; Toschi, T.G. A widely used spectrophotometric assay to quantify olive oil biophenols according to the health claim (EU Reg. 432/2012). Eur. J. Lipid Sci. Technol. 2016, 118, 1593–1599. [Google Scholar] [CrossRef]
- de los Ángeles Fernández, M.; Boiteux, J.; Espino, M.; Gomez, F.J.; Silva, M.F. Natural deep eutectic solvents-mediated extractions: The way forward for sustainable analytical developments. Anal. Chim. Acta 2018, 1038, 1–10. [Google Scholar] [CrossRef]
- Choi, Y.H.; Van Spronsen, J.; Dai, Y.; Verberne, M.; Hollmann, F.; Arends, I.W.; Witkamp, G.-J.; Verpoorte, R. Are Natural Deep Eutectic Solvents the Missing Link in Understanding Cellular Metabolism and Physiology? Plant. Physiol. 2011, 156, 1701–1705. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Li, Y.; Wang, X.; Liu, W. Application of Deep Eutectic Solvents in Food Analysis: A Review. Molecules 2019, 24, 4594. [Google Scholar] [CrossRef] [Green Version]
- Fanali, C.; Della Posta, S.; Dugo, L.; Russo, M.; Gentili, A.; Mondello, L.; De Gara, L. Application of deep eutectic solvents for the extraction of phenolic compounds from extra-virgin olive oil. Electrophoresis 2020, 41, 1752–1759. [Google Scholar] [CrossRef]
- Shabani, E.; Zappi, D.; Berisha, L.; Dini, D.; Antonelli, M.L.; Sadun, C. Deep eutectic solvents (DES) as green extraction media for antioxidants electrochemical quantification in extra-virgin olive oils. Talanta 2020, 215, 120880. [Google Scholar] [CrossRef]
- Paradiso, V.M.; Clemente, A.; Summo, C.; Pasqualone, A.; Caponio, F. Towards green analysis of virgin olive oil phenolic compounds: Extraction by a natural deep eutectic solvent and direct spectrophotometric detection. Food Chem. 2016, 212, 43–47. [Google Scholar] [CrossRef]
- Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem. 2015, 187, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Pisano, P.L.; Espino, M.; de los Ángeles Fernández, M.; Silva, M.F.; Olivieri, A.C. Structural analysis of natural deep eutectic solvents. Theoretical and experimental study. Microchem. J. 2018, 143, 252–258. [Google Scholar] [CrossRef]
- International Olive Council. COI/T.20/Doc. No 29—Determination of Biophenols in Olive Oils by HPLC; International Olive Council: Madrid, Spain, 2009. [Google Scholar]
- Bellumori, M.; Cecchi, L.; Innocenti, M.; Clodoveo, M.L.; Corbo, F.; Mulinacci, N. The EFSA Health Claim on Olive Oil Polyphenols: Acid Hydrolysis Validation and Total Hydroxytyrosol and Tyrosol Determination in Italian Virgin Olive Oils. Molecules 2019, 24, 2179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellumori, M.; Cecchi, L.; Romani, A.; Mulinacci, N.; Innocenti, M. Recovery and stability over time of phenolic fractions by an industrial filtration system of olive mill wastewaters: A three-year study. J. Sci. Food Agric. 2018, 98, 2761–2769. [Google Scholar] [CrossRef]
- Govindaraj, N.; Gangadoo, S.; Truong, V.K.; Chapman, J.; Gill, H.; Cozzolino, D. The use of derivatives and chemometrics to interrogate the UV–Visible spectra of gin samples to monitor changes related to storage. Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2020, 227, 117548. [Google Scholar] [CrossRef] [PubMed]
- Ojeda, C.B.; Rojas, F.S. Recent applications in derivative ultraviolet/visible absorption spectrophotometry: 2009–2011. Microchem. J. 2013, 106, 1–16. [Google Scholar] [CrossRef]
- Parmar, A.; Sharma, S. Derivative UV-vis absorption spectra as an invigorated spectrophotometric method for spectral resolution and quantitative analysis: Theoretical aspects and analytical applications: A review. TrAC Trends Anal. Chem. 2016, 77, 44–53. [Google Scholar] [CrossRef]
- Bouzid, O.; Navarro, D.; Roche, M.; Asther, M.; Haon, M.; Delattre, M.; Lorquin, J.; Labat, M.; Asther, M.; Lesage-Meessen, L. Fungal enzymes as a powerful tool to release simple phenolic compounds from olive oil by-product. Process. Biochem. 2005, 40, 1855–1862. [Google Scholar] [CrossRef]
- López-Huertas, E.; Lozano-Sánchez, J.; Segura-Carretero, A. Olive oil varieties and ripening stages containing the antioxidants hydroxytyrosol and derivatives in compliance with EFSA health claim. Food Chem. 2021, 342, 128291. [Google Scholar] [CrossRef]
- Criado-Navarro, I.; López-Bascón, M.A.; Priego-Capote, F. Evaluating the Variability in the Phenolic Concentration of Extra Virgin Olive Oil According to the Commission Regulation (EU) 432/2012 Health Claim. J. Agric. Food Chem. 2020, 68, 9070–9080. [Google Scholar] [CrossRef]
- Roselli, L.; Clodoveo, M.L.; Corbo, F.; De Gennaro, B. Are health claims a useful tool to segment the category of extra-virgin olive oil? Threats and opportunities for the Italian olive oil supply chain. Trends Food Sci. Technol. 2017, 68, 176–181. [Google Scholar] [CrossRef]
- Pichierri, M.; Pino, G.; Peluso, A.M.; Guido, G. The interplay between health claim type and individual regulatory focus in determining consumers’ intentions toward extra-virgin olive oil. Food Res. Int. 2020, 136, 109467. [Google Scholar] [CrossRef] [PubMed]
Tyr | OHTyr | |
---|---|---|
Wavelength of second derivative (λ) | 290 nm | 299 nm |
Intercept (a) | −1.62972 × 10−4 | −2.87704 × 10−5 |
Slope (b) | 1.82318 × 10−4 | 7.11259 × 10−5 |
R2 | 0.998 | 0.997 |
Range | 5–40 mg L−1 | 3–30 mg L−1 |
Value | Significance | |
---|---|---|
Intercept | 6.26613 | 0.49 |
Slope | 1.02911 | <0.001 |
R2 | 0.925 | |
RMSE | 18.0 | |
RMSE% | 5.8 |
Value | Significance | |
---|---|---|
Before correction | ||
Intercept | −13.84855 | 0.10 |
Slope | 0.72584 | <0.001 |
R2 | 0.942 | |
RMSE | 14.0 | |
RMSE% | 5.0 | |
After correction | ||
Intercept | −13.48954 | 0.10 |
Slope | 0.75556 | <0.001 |
R2 | 0.945 | |
RMSE | 13.7 | |
RMSE% | 4.9 |
Tyr + OHTyr | |
---|---|
Wavelength of second derivative (λ) | 282 nm |
Intercept (a) | 1.30785 × 10−4 |
Slope (b) | −1.80048 × 10−4 |
R2 | 0.995 |
Ranges | 5–40 mg L−1 (Tyr); 3–30 mg L−1 (OHTyr); 8–70 mg L−1 (OHTyr + Tyr) |
Value | Significance | |
---|---|---|
Intercept | −55.61922 | 0.00679 |
Slope | 1.05626 | <0.001 |
R2 | 0.931 | |
RMSE | 29.5 | |
RMSE% | 5.6 |
OHTyr + Tyr | |
---|---|
LOQ (limit of quantification) | 11.8 mg kg−1 |
LOD (limit of detection) | 3.9 mg kg−1 |
Apparent recovery (%) 1 | 116.8 ± 15.2 |
Intra-day repeatability (CV%, n = 3 × 5 samples) | 2.7% |
Inter-day repeatability (CV% n = 3 × 1 sample × 3 days) | 5.1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paradiso, V.M.; Longobardi, F.; Fortunato, S.; Rotondi, P.; Bellumori, M.; Cecchi, L.; Cosma, P.; Mulinacci, N.; Caponio, F. Paving the Way to Food Grade Analytical Chemistry: Use of a Natural Deep Eutectic Solvent to Determine Total Hydroxytyrosol and Tyrosol in Extra Virgin Olive Oils. Foods 2021, 10, 677. https://doi.org/10.3390/foods10030677
Paradiso VM, Longobardi F, Fortunato S, Rotondi P, Bellumori M, Cecchi L, Cosma P, Mulinacci N, Caponio F. Paving the Way to Food Grade Analytical Chemistry: Use of a Natural Deep Eutectic Solvent to Determine Total Hydroxytyrosol and Tyrosol in Extra Virgin Olive Oils. Foods. 2021; 10(3):677. https://doi.org/10.3390/foods10030677
Chicago/Turabian StyleParadiso, Vito Michele, Francesco Longobardi, Stefania Fortunato, Pasqua Rotondi, Maria Bellumori, Lorenzo Cecchi, Pinalysa Cosma, Nadia Mulinacci, and Francesco Caponio. 2021. "Paving the Way to Food Grade Analytical Chemistry: Use of a Natural Deep Eutectic Solvent to Determine Total Hydroxytyrosol and Tyrosol in Extra Virgin Olive Oils" Foods 10, no. 3: 677. https://doi.org/10.3390/foods10030677
APA StyleParadiso, V. M., Longobardi, F., Fortunato, S., Rotondi, P., Bellumori, M., Cecchi, L., Cosma, P., Mulinacci, N., & Caponio, F. (2021). Paving the Way to Food Grade Analytical Chemistry: Use of a Natural Deep Eutectic Solvent to Determine Total Hydroxytyrosol and Tyrosol in Extra Virgin Olive Oils. Foods, 10(3), 677. https://doi.org/10.3390/foods10030677